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Inequalities for the polygamma functions with
application1
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Abstract We present some inequalities for the polygamma funtions. As an application, we give

the upper and lower bounds for the expression
n∑

k=1

1
k
− ln n − γ, where γ = 0.57721 · · · is the Euler’s

constant.
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§1. Inequalities for the Polygamma Function

The gamma function is usually defined for Rez > 0 by

Γ(z) =
∫ ∞

0

tz−1e−tdt.

The psi or digamma function, the logarithmic derivative of the gamma function and the
polygamma functions can be expressed as

ψ(z) =
Γ
′
(z)

Γ(z)
= −γ +

∞∑

k=0

(
1

1 + k
− 1

z + k

)
,

ψn(z) = (−1)n+1n!
∞∑

k=0

1
(z + k)n+1

for Rez > 0 and n = 1, 2, · · · , where γ = 0.57721 · · · is the Euler’s constant.
M. Merkle [2] established the inequality

1
x

+
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2x2
+

2N∑

k=1

B2k

x2k+1
<

∞∑

k=0

1
(x + k)2

<
1
x

+
2N+1∑

k=1

B2k

x2k+1

for all real x > 0 and all integers N ≥ 1, where Bk denotes Bernoulli numbers, defined by

t

et − 1
=

∞∑

j=0

Bj

j!
tj .

The first five Bernoulli numbers with even indices are

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

, B10 =
5
66

.
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The following theorem 1 establishes a more general result.
Theorem 1. Let m ≥ 0 and n ≥ 1 be integers, then we have for x > 0,

lnx− 1
2x

−
2m+1∑

j=1

B2j

2j

1
x2j

< ψ(x) < lnx− 1
2x

−
2m∑

j=1

B2j

2j

1
x2j

(1)

and
(n− 1)!

xn
+

n!
2xn+1

+
2m∑

j=1

B2j

(2j)!
Γ(n + 2j)

xn+2j

< (−1)n+1ψ(n)(x) <
(n− 1)!

xn
+

n!
2xn+1

+
2m+1∑

j=1

B2j

(2j)!
Γ(n + 2j)

xn+2j
. (2)

Proof. From Binet’s formula [6, p. 103]

ln Γ(x) =
(

x− 1
2

)
lnx− x + ln

√
2π +

∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t2
dt,

we conclude that

ψ(x) = lnx− 1
2x

−
∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t
dt (3)

and therefore

(−1)n+1ψ(n)(n) =
(n− 1)!

xn
+

n!
2xn+1

+
∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
tn−1e−xtdt. (4)

It follows from Problem 154 in Part I, Chapter 4, of [3] that

2m∑

j=1

B2j

(2j)!
t2j <

t

et − 1
− 1 +

t

2
<

2m+1∑

j=1

B2j

(2j)!
t2j (5)

for all integers m > 0. The inequality (5) can be also found in [4].
From (3) and (5) we conclude (1), and we obtain (2) from (4) and (5). This completes the

proof of the theorem 1.
Note that ψ(x + 1) = ψ(x) + 1

x (see [1, p. 258]), (1) can be written as
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< ψ(x + 1)− lnx <
1
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B2j
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1
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(6)

and (2) can be written as

(n− 1)!
xn

− n!
2xn+1

+
2m∑
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B2j

(2j)!
Γ(n + 2j)

xn+2j

< (−1)n+1ψ(n)(x) <
(n− 1)!

xn
− n!

2xn+1
+
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(2j)!
Γ(n + 2j)
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In particular, taking in (6) m = 0 we obtain for x > 0,

1
2x

− 1
12x2

< ψ(x + 1)− lnx <
1
2x

(8)
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and taking in (7) m = 1 and n = 1, we obtain for x > 0

1
2x2

− 1
6x3

+
1

30x5
− 1

42x7
<

1
x
− ψ

′
(x + 1) <

1
2x2

− 1
6x3

+
1

30x5
(9)

The inequalities (8) and (9) play an important role in the proof of the theorem 2 in Section
2.

§2. Inequalities for Euler’s Constant

Euler’s constant γ = 0.57721 · · · is defined by

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
n
− lnn

)
.

It is of interest to investigate the bounds for the expression
n∑

k=1

1
k − lnn− γ. The inequality

1
2n

− 1
8n2

<
n∑

k=1

1
k
− lnn− γ <

1
2n

is called in literature Franel’s inequality [3, Ex. 18].

It is given in [1, p. 258] that ψ(n) =
n−1∑
k=1

1
k − γ, and then we have get

n∑

k=1

1
k
− lnn− γ = ψ(n + 1)− lnn. (10)

Taking in (6) x = n we obtain that

1
2n

−
2m+1∑

j=1

B2j

2j

1
n2j

<
n∑

k=1

1
k
− lnn− γ <

1
2n

−
2m∑

j=1

B2j

2j

1
n2j

. (11)

The inequality (11) provides closer bounds for
n∑

k=1

1
k − lnn− γ.

L.Tóth [5, p. 264] proposed the following problems:
(i) Prove that for every positive integer n we have

1
2n + 2

5

<
n∑

k=1

1
k
− lnn− γ <

1
2n + 1

3

.

(ii) Show that 2
5 can be replaced by a slightly smaller number, but that 1

3 can not be
replaced by a slightly larger number.

The following Theorem 2 answers the problem due to L.Tóth.
Theorem 2. For every positive integer n,

1
2n + a

<
n∑

i=1

1
i
− lnn− γ <

1
2n + b

, (12)

with the best possible constants



94 Chaoping Chen No. 2

a =
1

1− γ
− 2 and b =

1
3

Proof. By (10), the inequality (12) can be rearranged as

b <
1

ψ(n + 1)− lnn
− 2n ≤ a.

Define for x > 0

φ(x) =
1

ψ(x + 1)− lnx
− 2x.

Differentiating φ and utilizing (8) and (9) reveals that for x > 12
5

(ψ(x + 1)− lnx)2φ
′
(x) =

1
x
− ψ

′
(x + 1)− 2(ψ(x + 1)− lnx)2

<
1

2x2
− 1

6x3
+

1
30x5

− 2
(

1
2x

− 1
12x2

)2

=
12− 5x

360x5
< 0,

and then the function φ strictly decreases with x > 12
5 .

Straightforward calculation produces

φ(1) =
1

1− γ
− 2 = 0.36527211862544155 · · · ,

φ(2) =
1

3
2 − γ − ln 2

− 4 = 0.35469600731465752 · · · ,

φ(3) =
1

11
6 − γ − ln 3

− 6 = 0.34898948531361115 · · · .

Therefore, the sequence

φ(n) =
1

ψ(n + 1)− lnn
− 2n, n ∈ N

is strictly decreasing. This leads to

lim
n→∞

φ(n) < φ(n) ≤ φ(1) =
1

1− γ
− 2.

Making use of asymptotic formula of ψ (see [1, p. 259])

ψ(x) = lnx− 1
2x

− 1
12x2

+ O(x−4) (x →∞),

we conclude that

lim
n→∞

φ(n) = lim
x→∞

φ(x) = lim
x→∞

1
3 + O(x−2)
1 + O(x−1)

=
1
3
.

This completes the proof of the theorem 2.
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