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An inequality of the Smarandache function
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Abstract For any positive integer n, the famous Smarandache function S(n) is defined as

the smallest positive integer m such that n|m!. That is, S(n) = min{m : m ∈ N, n|m!}. In

an unpublished paper, Dr. Kenichiro Kashihara asked us to solve the following inequalities

S (xn
1 ) + S (xn

2 ) + · · · · · ·+ S (xn
n) ≥ nS (x1) · S (x1) · · · · · ·S (xn) .

In this paper, we using the elementary method to study this problem, and prove that for any

integer n ≥ 1, the inequality has infinite group positive integer solutions (x1, x2, · · · , xn).
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§1. Introduction and Results

For any positive integer n, the famous F.Smarandache function S(n) is defined as the
smallest positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}. For
example, the first few values of S(n) are S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5,
S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, · · · · · · . About
the elementary properties of S(n), many authors had studied it, and obtained some interesting
results, see reference [2], [3], [4] and [5]. For example, Wang Yongxing [3] studied the mean
value properties of S(n), and obtained a sharper asymptotic formula about this function:

∑

n≤x

S(n) =
π2

12
x2

lnx
+ O

(
x2

ln2 x

)
.

Lu Yaming [4] studied the solutions of an equation involving the F.Smarandache function S(n),
and proved that for any positive integer k ≥ 2, the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinite group positive integer solutions (m1,m2, · · · ,mk).
Jozsef Sandor [5] proved for any positive integer k ≥ 2, there exist infinite group positive

integers (m1, m2, · · · , mk) satisfied the following inequality:

S(m1 + m2 + · · ·+ mk) > S(m1) + S(m2) + · · ·+ S(mk).

Also, there exist infinite group positive integers (m1,m2, · · · ,mk) such that

S(m1 + m2 + · · ·+ mk) < S(m1) + S(m2) + · · ·+ S(mk).



Vol. 4 An inequality involving the Smarandache function 131

In [6], Fu Jing proved more deeply conclusion, i.e., if the positive integer k and m satisfying
one of the following conditions:

(a) k > 2 and m ≥ 1 are all odd numbers.
(b) k ≥ 5 is odd, m ≥ 2 is even.
(c) Any even numbers k ≥ 4 and any positive integer m;
then the equation

m · S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinite group positive integer solutions (m1, m2, · · · , mk).
On the other hand, Xu Zhefeng [7] studied the value distribution properties of S(n), and

obtained a more interesting result. That is, he proved the following conclusion:
Let P (n) be the largest prime factor of n, then for any real numbers x > 1, we have the

asymptotic formula:

∑

n≤x

(S(n)− P (n))2 =
2ζ

(
3
2

)
x

3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
,

where ζ(s) is the Riemann zeta-function.
In an unpublished paper, Dr. Kenichiro Kashihara asked us to solve the following inequal-

ities

S (xn
1 ) + S (xn

2 ) + · · · · · ·+ S (xn
n) ≥ nS (x1) · S (x1) · · · · · ·S (xn) . (1)

About this problem, it seems that none had studied it yet, at least we have not seen any related
papers before. The main purpose of this paper is using the elementary methods to study this
problem, and prove the following:

Theorem 1. For any fixed positive integer n > 1, the inequality (1) has infinite group
positive integer solutions (x1, x2, · · · , xn).

Theorem 2. For any fixed positive integer n ≥ 3, if (x1, x2, · · · , xn) satisfying the
inequality (1), then at least n− 1 of x1, x2, · · · , xn are 1.

It is clear that the condition n ≥ 3 in Theorem 2 is necessary. In fact if n = 2, we can take
x1 = x2 = 2, then we have the identity

S(x2
1) + S(x2

2) = S(22) + S(22) = 4 + 4 = 8 = 2S(2)S(2) = 2S(x1)S(x2).

So if n = 2, then Theorem 2 is not correct.

§2. Proof of the theorems

In this section, we shall prove our theorems directly. First we prove Theorem 1. If n = 1,
then this time, the inequality (1) become S(x1) ≥ S(x1), and it holds for all positive integers
x1. So without lose of generality we can assume that n ≥ 2. We taking x1 = x2 = · · ·xn−1 = 1,
xn = p > n, where p be a prime. Note that S(1) = 1, S(p) = p and S(pn) = np, so we have

S (xn
1 ) + S (xn

2 ) + · · · · · ·+ S (xn
n) = n− 1 + S(pn) = n− 1 + np (2)
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and

nS (x1) · S (x1) · · · · · ·S (xn) = nS(p) = np. (3)

From (2) and (3) we may immediately deduce that

S (xn
1 ) + S (xn

2 ) + · · · · · ·+ S (xn
n) ≥ nS (x1) · S (x1) · · · · · ·S (xn) . (4)

Since there are infinite primes p > n, so all positive integer groups

(x1, x2, · · · , xn) = (1, 1, · · · , p)

are the solutions of the inequality (1). Therefore, the inequality (1) has infinite group positive
integer solutions (x1, x2, · · · , xn). This proves Theorem 1.

Now we prove Theorem 2. Let n ≥ 3, if (x1, x2, · · · , xn) satisfying the inequality (1),
then at least n − 1 of x1, x2, · · · , xn are 1. In fact if there exist x1 > 1, x2 > 1, · · · , xk > 1
with 2 ≤ k ≤ n such that the inequality

S (xn
1 ) + S (xn

2 ) + · · · · · ·+ S (xn
n) ≥ nS (x1) · S (x1) · · · · · ·S (xn) . (5)

Then from the definition and properties of the function S(n) we have S(xi) > 1 and S (xn
i ) ≤

nS(xi), i = 1, 2, · · · , k. Note that a1 + a2 + · · · + ak < a1a2 · · · ak if ai > 1 and k ≥ 3,
i = 1, 2, · · · , k; If k = 2, then a1 +a2 ≤ a1a2, and the equality holds if and only if a1 = a2 = 2
(a1 > 1, a2 > 1). So this time, the inequality (5) become

n− k + S (xn
1 ) + S (xn

2 ) + · · · · · ·+ S (xn
k ) ≥ nS(x1)S(x2) · · ·S(xk). (6)

If k ≥ 3, then from (6) and the properties of S(n) we have

n− k + n [S (x1) + S (x2) + · · · · · ·+ S (xk)] ≥ nS(x1)S(x2) · · ·S(xk)

or

n− k

n
+ S (x1) + S (x2) + · · · · · ·+ S (xk) ≥ S(x1)S(x2) · · ·S(xk). (7)

Note that 0 ≤ n−k
n < 1, so the inequality (7) is not possible, because

S(x1)S(x2) · · ·S(xk) ≥ S(x1) + S(x2) + · · ·+ S(xk) + 1.

If k = 2, then the inequality (6) become

n− 2 + S (xn
1 ) + S (xn

2 ) ≥ nS(x1)S(x2). (8)

Note that S(xn) ≤ nS(x), S(x1) + S(x2) ≤ S(x1)S(x2) and the equality holds if and only if
x1 = x2 = 2, so if S(x1) > 2 or S(x2) > 2, then (8) is not possible. If S(x1) = S(x2) = 2, then
x1 = x2 = 2. Therefore, the inequality (8) become

S (2n) ≥ 3n

2
+ 1. (9)
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Let S(2n) = m, then m ≥ 4, if n ≥ 3. From the definition and properties of S(n) we have

∞∑

i=1

[
m− 1

2i

]
< n ≤

∞∑

i=1

[m

2i

]
.

Thus,

n ≥ 1 +
∞∑

i=1

[
m− 1

2i

]
>

m− 1
2

+
m− 1

4
=

3(m− 1)
4

,

from (9) we have

m = S(2n) ≥ 3n

2
+ 1 ≥ 9

8
(m− 1) + 1 = m +

m− 1
8

> m.

This inequality is not possible. So if n ≥ 3 and (x1, x2, · · · , xn) satisfying the inequality (1),
then at least n− 1 of x1, x2, · · · , xn are 1. This completes the proof of Theorem 2.
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