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Abstract In a recent paper, Muneer [1] introduced the Smarandache inversion sequence.

In this paper, we study some properties of the Smarandache inversion sequence. Moreover,

we find the necessary and sufficient condition such that [SI(n)]2 + [SI(n + 1)]2 is a perfect

square.
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§1. Introduction

The Smarandache reverse sequence is (see, for example, Ashbacher [2])

1, 21, 321, 4321, 54321, · · · ,

and in general, the n− th term of the sequence is

S(n) = n(n− 1) · · · 321.

In connection with the Smarandache reverse sequence, Muneer [1] introduced the concept of
the Smarandache inversion sequence, SI(n), defined as follows :

Definition 1.1. The value of the Smarandache inversion of (positive) integers in a number
is the number of order relations of the form i > j (where i and j are digits of the positive
integers of the number under consideration), with SI(0) = 0, SI(1) = 0.

More specifically, for the Smarandache reverse sequence number

S(n) = n(n− 1) · · · 321,

the following order relations hold :

(A− 1)n > n− 1 > · · · > 3 > 2 > 1,

(A− 2)n− 1 > n− 2 > · · · > 3 > 2 > 1,

· · ·
(A− (n− 1))2 > 1.

Note that, the number of order relations in (A − 1) is n − 1, that in (A − 2) is n − 2, and so
on, and finally, the number of order relation in (A− (n− 1)) is 1. We thus have the following
result :
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Lemma 1.1. SI(n) =
n(n− 1)

2
for any integer n ≥ 1.

Proof. SI(n) = (n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2
.

Lemma 1.2. For any integer n ≥ 1,
n∑

i=1

SI(1) =
n(n2 − 1)

6
.

Proof. Using Lemma 1.1,

n∑

i=1

SI(1) =
n∑

i=1

i(i− 1)
2

=
1
2

(
n∑

i=1

i2 −
n∑

i=1

i

)

=
1
2

[
n(n + 1)(2n + 1)

6
− n(n + 1)

2

]
=

n(n2 − 1)
6

.

Muneer [1] also derived the following results.
Lemma 1.3. SI(n + 1) + SI(n) = n2 for any integer n ≥ 1.
Lemma 1.4. SI(n + 1)− SI(n) = n for any integer n ≥ 1.
Proof. Since

SI(n + 1) =
n(n + 1)

2
=

n(n− 1)
2

+ n = SI(n) + n,

we get the desired result.
Lemma 1.5. [SI(n + 1)]2 − [SI(n)]2 = n3 for any integer n ≥ 1.
Proof. Using Lemma 1.3 and Lemma 1.4,

[SI(n + 1)]2 − [SI(n)]2 = [SI(n + 1) + SI(n)][SI(n + 1)− SI(n)] = (n2)(n) = n3.

Lemma 1.6. SI(n + 1)SI(n− 1) + SI(n) =
(

n(n− 1)
2

)2

for any integer n ≥ 1.

We also have the following recurrence relation.
Lemma 1.7. SI(n + 1)− SI(n− 1) = 2n− 1 for any integer n ≥ 1.
Proof. Using Lemma 1.4,

SI(n + 1)− SI(n− 1) = [SI(n + 1)SI(n)] + [SI(n)− SI(n− 1)]

= n + (n− 1) = 2n− 1.

Muneer [1] also considered the equation

[SI(n)]2 + [SI(n + 1)]2 = k2 (1)

for some integers n ≥ 1, k ≥ 1, and found two solutions, namely, n = 7 and n = 8.
In this note, we derive a necessary and sufficient condition such that (1) is satisfied. This

is given in the next section.

§2. Main Results

We consider the equation

[SI(n)]2 + [SI(n + 1)]2 = k2 (2)
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for some integers n ≥ 1, k ≥ 1. By definition,

[SI(n)]2 + [SI(n + 1)]2 =
(

n(n− 1)
2

)2

+
(

n(n + 1)
2

)2

=
1
2
n2(n2 + 1)

We thus arrive at the following result.
Lemma 2.1. The equation (2) has a solution (for n and k) if and only if 1

2 (n2 + 1) is a
perfect square.

Lemma 2.2. The Diophantine equation

1
2
(n2 + 1) = k2 (3)

has a solution (for n and k) if and only if there is an integer m ≥ 1 such that m2 + (m + 1)2 is
a perfect square, and in that case, n = 2m + 1, k2 = m2 + (m + 1)2.

Proof. We consider the equation (3) in the equivalent form

n2 + 1 = 2k2, (4)

which shows that n must be odd; so let

n = 2m + 1. (5)

for some integer m ≥ 1. Then, from (4),

(2m + 1)2 + 1 = 2k2,

that is, (4m2 + 4m + 1) + 1 = 2k2, that is, m2 + (m + 1)2 = k2.
Searching for all consecutive integers upto 1500, we found only four pairs of consecutive

integers whose sums of squares are perfect squares. These are

(1)32 + 42 = 52, (6)

(2)202 + 212 = 292, (7)

(3)1192 + 1202 = 1692, (8)

(4)6962 + 6972 = 9852. (9)

The first two give respectively the solutions
(a) [SI(7)]2 + [SI(8)]2 = 352,
(b) [SI(41)]2 + [SI(42)]2 = 11892,

which were found by Muneer [1], while the other two give respectively the solutions 　　
(c) [SI(239)]2 + [SI(240)]2 = 403912,
(d) [SI(1393)]2 + [SI(1394)]2 = 13721052.
The following lemma, giving the general solution of the Diophantine equation x2 +y2 = z2,

is a well-known result (see, for example, Hardy and Wright [3]). 　　　　
Lemma 2.3. The most general (integer) solution of the Diophantine equation x2+y2 = z2

is

x = 2ab, y = a2 − b2, z = a2 + b2, (10)
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where x > 0, y > 0, z > 0 are integers with (x, y) = 1 and x is even, and a and b are of opposite
parity with (a, b) = 1.

Lemma 2.4. The problem of solving the Diophantine equation

m2 + (m + 1)2 = k2, (11)

is equivalent to the problem of solving the Diophantine equations

x2 − 2y2 = 1.

Proof. By Lemma 2.3, the general solution of the Diophantine equation

(m + 1)2 + m2 = k2

has one of the following two forms :
(a) m = 2ab, m + 1 = a2 − b2, k = a2 + b2 for some integers a, b ≥ 1 with (a, b) = 1;
(b) m = a2 − b2, m + 1 = 2ab, k = a2 + b2 for some integers a, b ≥ 1 with (a, b) = 1.
In case (a),

1 = (m + 1)−m = (a2 − b2)2 − 2ab = (a− b)2 − 2ab2,

which leads to the Diophantine equation x2 − 2y2 = 1.
In case (b),

−1 = m− (m + 1) = (a2 − b2)2 − 2ab = (a− b)2 − 2ab2,

leading to the Diophantine equation x2 − 2y2 = −1.
The general solutions of the Diophantine equations x2−2y2 = ±1 are given in the following

lemma (see, for example, Hardy and Wright [3]).
Lemma 2.5. All solutions of the Diophantine equation

x2 − 2y2 = 1

are given by

x +
√

2y = (1 +
√

2)2n, (12)

n ≥ 0 is an integer; and all solutions of the Diophantine equation

x2 − 2y2 = −1,

are given by

x +
√

2y = (1 +
√

2)2n+1, (13)

n ≥ 0 is an integer.
Remark 2.1. Lemma 2.5 shows that the Diophantine equation m2 + (m + 1)2 = k2 has

infinite number of solutions. The first four solutions of the Diophantine equation (11) are given
in (6 - 9). It may be mentioned here that the first and third solutions can be obtained from
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(12) corresponding to n = 1 and n = 2 respectively, while the second and the fourth solutions
can be obtained from (13) corresponding to n = 0 and n = 1 respectively. The fifth solution
may be obtained from (12) with n = 3 as follows :

x +
√

2y = (1 +
√

2)6 = 99 + 70
√

2 ⇒ x = 99, y = 70.

Therefore,
a− b = 99, b = 70 ⇒ a = 169, b = 70,

and finally,
m = 2ab = 23660, m + 1 = a2 − b2 = 23661.

Corresponding to this, we get the following solution to (2) :

[SI(47321)]2 + [SI(47322)]2 = 15834079812.

§3. Some Observations

In [1], Muneer has found three relations connecting four consecutive Smarandache inversion
functions. These are as follows :

(1) SI(6) + SI(7) + SI(8) + SI(9) = 102,
(2) SI(40) + SI(41) + SI(42) + SI(43) = 582,
(3) SI(238) + SI(239) + SI(240) + SI(241) = 3382.
Searching for more such relations upto n = 1500, we got a fourth one :
(4) SI(1392) + SI(1393) + SI(1394) + SI(1395) = 19702.
Since

SI(n− 1) + SI(n) + SI(n + 1) + SI(n + 2) = (n− 1)2 + (n + 1)2,

the problem of finding four consecutive Smarandache inversion functions whose sum is a
perfect square reduces to the problem of solving the Diophantine equation

m2 + (m + 2)2 = k2.

In this respect, we have the following result.

Lemma 3.1. If m0, m0 + 1 and k0 =
√

m2
0 + (m0 + 1)2 is a solution of the Diophantine

equation

m2 + (m + 1)2 = k2, (14)

then 2m0, 2(m0 + 1) and l0 = 2
√

m2
0 + (m0 + 1)2 is a solution of the Diophantine equation

m2 + (m + 2)2 = l2, (15)

and conversely.

Proof. First, let m0, m0 + 1 and k0 =
√

m2
0 + (m0 + 1)2 be a solution of (14), so that

m2
0 + (m0 + 1)2 = k2

0, (16)
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Multiplying throughout of (1) by 4, we get

(2m0)2 + [2(m0 + 1)]2 = (2k0)2,

so that 2m0, 2(m0 + 1) and l0 = 2k0 is a solution of (15).

Conversely, let m0, m0 + 2 and l0 =
√

m2
0 + (m0 + 2)2 be a solution of (15). Note that,

m0 and m0 +2 are of the same parity. Now, both m0 and m0 +2 cannot be odd, for otherwise,

m0 ≡ 1(mod2), m0 + 2 ≡ 1(mod2) ⇒ l20(mod4),

which is impossible. Thus, both m0 and m0 + 2 must be even. It, therefore, follows that
m0

2
,

m0

2
+ 1 and k0 =

l0
2

is a solution of (14).
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