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particular, we establish that prime numbers and Smarandache numbers of the 
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1 Introduction 

We remind [2, 3], that in the general case Magic squares represent by themselves 
numerical or analytical square tables, whose elements satisfy a set of definite 
basic and additional relations. The basic relations therewith assign some 
constant property for the elements located in the rows, columns and two main 
diagonals of a square table, and additional relations, assign additional 
characteristics for some other sets of its elements. 

Let it be required to construct Magic squares nxn in size from a given set of 
numbers. Judging by the mentioned general definition of Magic squares, there is 
no difficulty in understanding that the foregoing problem consists of the four 
interrelated problems 

1. Elaborate the practical methods for generating the given set of numbers; 

2. Look for a concrete family of n2 elements, which would satisfy both the 
basic and all the additional characteristics of the Magic squares; 

3. Determine how many Magic squares can be constructed from the chosen 
family of n2 elements; 

4. Elaborate the practical methods for constructing these Magic squares. 

For instance, as we demonstrated in [5], 
a) every (n+l)-th term arr+! of Smarandache sequences of 1st kind may be 

formed by subjoining several natural numbers to previous terms an and also 
may be computed from the analytical expression 
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(1) 

where cp(n), '!I(aJ and ~{cp(n)} are some functions; (J is an operator. In other 
words, for generating Smarandache sequences of 1st kind, the set of analytical 
formulae may be used (see the problem I); 

22232425262728 15161718192021 20212223242526 

17181920212223 19202122232425 21222324252627 

18192021222324 23242526272829 16171819202122 

(1) 

171819191817 lOll 12121110 151617171615 

121314141312 141516161514 161718181716 

131415151413 181920201918 111213131211 

(2) 

17181920191817 10111213121110 15161718171615 

12131415141312 14151617161514 16171819181716 

13141516151413 18192021201918 11121314131211 

(3) 

Figure 1. Magic squares 3x3 from k-truncated 
Smarandache numbers of 1st kind. 

b) it is impossible to construct Magic squares 3x3 from Smarandache 
numbers of 1st kind without previous truncating these numbers. Consequently, 
if the given set of numbers consists only of Smarandache numbers of 1st kind, 
then one releases from care on solving problems, mentioned above in items 2 -
4' , 

c) there is a set of analytical formulae avrulable for constructing Magic 
squares 3x3 in size from k-truncated Smarandache numbers of 1st kind 
(examples of Magic squares 3x3, obtained by these formulae, are shown in 
figure I). In this case the foregoing set of analytical formulae is also the desired 
practical method for constructing Magic squares 3x3 from k-truncated 
Smarandache numbers of 1st kind (see the problem 4). 

The main goal of this paper is to investigate some properties of Smarandache 
sequences of the 2nd kind [6, 9J and to demonstrate that these numbers are near 
prime numbers. In particular, we establish in the paper, that prime numbers and 
Smarandache numbers of the 2nd kind 
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a) may be computed from the similar analytical expressions (see Section 2 
and 3); 

b) may be used for constructing Magic squares 3x3 or Magic squares 9x9, 
consisted of9 Magic-squares 3x3 (see Section 5 and 6). 

2 Prime Numbers 

We remind that in number theory [2,10, 11] any positive integer (any natural 
number), simultaneously dividing positive integers a, b, ... , m, is called their 
common divisor. The largest of common divisors is called greatest common 
divisor and denoted by the symbol GCD(a, b, ... , m). The existence of GCD 
appears from the finiteness of the number of common divisors. The numbers a 
and b for which GCD(a, b) = 1 are called relatively prime numbers. The 
analytical formula available for counting the value of GCD(a, b) has form [6] 

GCD(a, b) = b{l- signer)} + k sign(r), r = a -b[a/b], (2) 

[bI2J . 

k= M,AX{i(I-d)}, d=sign{a-llalll} +sign{b-Ilblll}, 
1=2 

where the function MAX(aI, a2, ... , aJ gives the greatest from numbers aI, a2, 

... , a i; sign(x) = I x II x if x;to and sign(O) = O. 

It is easy to prove, that any natural number larger than a unit, has no less 
than two divisors: the unit and itself. Any natural numberp > 1, having exactly 
two divisors, is called prime. If the number of divisors is more than 2, then the 
number is called composite (for example, the number 11, having divisors 1 and 
11, is the prime number, whereas the number 10, having the divisors 1,2,5 and 
10, is the composite number). In this paper we shall consider the number 1 as 
the least prime number. The analytical formula, generating n-th prime number 
P .. , has form [6] 

(n+lr+! m [.ti] 

P .. = L sg(n-I- LX;), Xi = I1{sg(i- iIi! j])}, 
m=<l ;':'3 P'2 

(3) 

whereP2 = 2,P3 = 3,P4 = 5, ... ; sg{x) = I if x> 0 and sg(x) = 0 if x::;: o. 
It is proved in the number theory [2, 10, 11], that any natural number larger 

than a unit can be represented as a product of prime numbers and this 
representation is unique (we assume that products, differing only by the order 
of cofactors, are identical). For solving the problem on decomposing the natural 
number a in simple cofactors, it is necessary to know all the prime numbers 

Pa <../a. 
Let m = [ fa], where the notation [b] means integer part from b. Then, for 

finding all the prime number Pa one may use the following procedure 

(Eratosthenes sieve) [2, 10, 11]: 

I. Write out all the successive numbers from 2 to m and put p = 2; 
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2. In the series of the numbers 2, 3, 4, ... , m, cross out all the numbers having 
the formp + kp, where k = 1,2, ... ; 

3. If, in the series of the numbers 2, 3, 4, ... , m, all the numbers larger than p 
have been crossed out, then pass to step 4. If there still remain the 
numbers larger thanp, which have not been crossed out, then the first of 
these ones we denote by Pl. If P: ~ m, then pass to step 4. Otherwise, 

put p = PI and pass to step 2; 
4, The end of the procedure: primes are all the numbers of the series 1, 2, 3, 

4, .. "' m, which have not been deleted. 

If an arithmetical progression from n prime numbers is found then it should 
be known that [2, 101 

The difference of any arithmetical progression, containing n prime numbers 
larger than fl. is divisible by all the prime nwnbers ~ n (Cantor theorem). 

From the series of the consecutive prime numbers one may reveal 
subsequences of numbers, possessed the different interesting properties. For 
instance 

a) two prime numbers are called reversed, if each is obtained from other by 
reversing of its digits. If P < 1 000 then such numbers are 

1,2,3,5,7, ll, 13, 17,31,37,71,73,79,97,101,107,113,131,149, (4) 

151,157,167,179,181,191,199,311,313,337,347,353, 359, 373, 

383,389,701,709,727,733,739,743,751,757,761,769, 787, 797, 

907,919,929,937,941,953,967,971,983,991. 

b) among the numbers of(4) one may reveal the symmetric prime numbers: 

1,2,3,5,7,11,101,131,151,181, 191,313,353,373,383, 727,757, (5) 

787,797,919,929; 

c) two prime numbers are called mirror-reversed, if each is obtained from 
other by reflecting in the mirror, located above the number. If p < 3 000 then 
such numbers are: 

1,2,3,5,11,13,23,31,53,83, 101, 131, 181,227,251,311,313, (6) 

331,383,521,557,811,823,853,881,883,1013,1021,1031,1033, 

1051, 1103, 1123, 1153, 1181, 1223, 1231, 1283, 1301, 1303, 1381, 

1531, 1553, 1583, 1811, 1831,2003,2011,2053,2081,2113,2203, 

2251,2281,2333,2381,2531.2851. 
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3 Smarandache Numbers of the 2nd Kind 

In this section we consider 4 different Smarandache sequences of the 2nd kind 
[6, 9] and demonstrate that the value of n-th numbers a" in these sequences may 
be computed by the universal analytical formula {compare with formula (3)} 

u" m 
a" = Lsg(n+2-h- LXJ, (7) 

m=O 1=1 

where Xi are the characteristic numbers for the described below Smarandache 
sequences of the 2nd type and U" = 10 + (n+ Ii. 

3.1 Pseudo-Prime Numbers 

a) Smarandache PI-series 

1,2,3,5,7,11,13,14,16,17,19,20,23,29,30,31,32,34, (8) 
contains the only such natural numbers, which are or prime numbers itself or 
prime numbers can be obtained from PI-series numbers by a permutation of 
digits (for instance, the number 115 is the pseudo-prime of PI-series because the 
number 151 is the prime). 

It is clear from the description of PI-series numbers that they may be 
generated by the following algorithm 

1. Write out all the successive prime numbers from 1 to 13: 1, 2, 3, 5, 7, II, 
13 and put n=8; an = 13; 

2. Assumep = an +1. 
3. Examine the number p. If p is a prime or a prime number can be obtained 

from a" by a permutation of digits, then increase n by I, put a" = p and go 
to step 2. Else increase p by I and go to the beginning of this step. 

To convert the foregoing algorithm into a computer-oriented method (see 
problem 1 in Section 1), we are evidently to translate this description into one of 
special computer-oriented languages. There is a set of methods to realise such 
translation [6]. The most simplest among ones is to write program code directly 
from the verbal description of the algorithm without any preliminary 
construction. For instance, Pascal program identical with the verbal description 
of the algorithm under consideration are shown in Table 1. In this program the 
procedure Pd, the functions PrimeList and Pseudo Prime are used for generating 
respectively permutations, primes numbers and pseudo-prime numbers; the 
meaning of the logical function BelongToPrimes is clear from its name. 

In the case, when verbal descriptions are complex, babelized or incomplete, 
the translation of these descriptions into computer languages may be performed 
sometimes in two stages [7]: firstly, verbal descriptions of computational 
algorithms are translated into analytical ones and then analytical descriptions 
are translated into computer languages. To demonstrate how this scheme is 
realised in practice, let us apply it to the algorithm, generating PI-series 
numbers. 
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Table 1. Pascal program 1 for generating Smarandache PI-series 

Type Ten=Array{1 .. 10]Of Integer; 
Procedure Pd(Var m4,n1,n:lnteger;Var 
nb3,nb4,nbS:Ten); 
Label A28,A29,A30; Var nt,k,m:lnteger; 
Begin 

IfM4=1 Then 
Begin 

m4::;O;n::;n1 ; 
For k:=2 to n do 
Begin Nb4{k];:;O; Nb5[k]:=1; End; 
Exit; 

End; 
k:=O; n:=n1; 

A28: m:=Nb4[n]+Nb5[n);Nb4[n}:=m; 
Ifm=n Then 
Begin Nb5[n]:=-1;Goto A29; End; 
If Abs(m)>O Then Gota A30; 
Nb5[n]:=1 ;Inc(k); 

A29: If n>2 Then 
Begin Dec(n);Goto A28; End; 
lnc(m);m4:=1 ; 

A30: m:=m+k; nt:=nb3[m]; 
nb3[m):=nb3[m+1]; nb3[m+1):=nt 

End; 

Const Mn:;10000; MaxN:lnteger=Mn; 
Type int=Array[1 .. Mn]Of Integer; pint=Aint; 
Var pI:pint; 

Function Primelist(Var MaxN:lnteger):pint; 
Var i,j,k:lnteger; p:pint;Ok:Boolean; 
Begin 

GetMem(p,MaxN); pA[1]:=2;i:=3;k:=1; 
While i<MaxN do 
Begin {Is i prime or not ?} 

j:=3;Ok;:;True; 
While Ok And O<=Round(Sqrt(i») do 
If i mod j=O Then Ok::;False 
Else IncO,2); 
If Ok Then Begin Inc(k);p"[k]:=i;End; 
lnc(i.2); 

End; 
MaxN::;k; Primelist::;p; 

End {PrimeUst} ; 

Function 
BelongToPrimes(num:lnteger):Boolean; 
Var I,r,j:lnteger; 
Begin 

BelongToPrimes:=True; 1:=1 ;r.=MaxN; 
Repeat 
j:=(I+r)shr 1; If num<PJAW Then r.=j 

Else If nurn>PJAm Then l:=j+1 
Sse Exit; 
Untill=r;BelongToPrimes:=False; 

End; 

Function 
PseudoPrime(Num:lnteger):Boalean; 
Var g,nb3,nb4,nb5:Ten; 

nd,m,r,mn,m4,n1,mm,i,j.d.k,n:lnteger; 
Begin 

PseudoPrime:=True; 
{Decomposition number num on digits} 
d:=Num;k:=O; 
Repeat 

Inc(k); g[k]:=d mod 10; 
r.=d; d:=d div 10; 

Until r div 10:;0; 
{Examination whether numbers. 
composed from digits are prime} 

m4::;1; m:=O; n1:=k; 
For i:=1 to n1 do Nb3[i):=g[i]; 
Repeat 

Pd(m4.n1.n,nb3.nb4,nbS); Inc(m); 
If m4=1 Then Break; mm:=1 ;d:=O; 
For i:=1 to n1 do 
Begin 

d:=d+nb3[i]*mm; mm:=mm*10; 
End; 
If BelongToPrimes(d) Then Exit; 

Until False; PseudoPrime:=False; 
End; 

Var Ind.Num,i:lnteger; Listpint; 
Begin pl;=PrimeList(MaxN); 

{Generating list of primes up to MaxN} 
Ind:=O;Getmem(Ust,4*(MaxN shli»; 
For Num:=10 to MN do 
If PseudoPrime(Num) Then 

{If number is pseudoprime then add it to list} 
Begin Inc(lnd);UstA[lnd]::;Num; End; 

{OUtput generated numbers to' Sp1' file, 
10 values per row} 

Assign{Output,'Sp1~;Rewrite(Output); 

Writel.n(lnd); 
For i:=1 to Ind do 
Begin 

Write(UstA[ij: 7); 
If i mod 10=0 Then WriteLn; 

End; 
Oose(output) 

End, 
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Table 2. Pascal program 2 for generating Smarandache P1-series 

Const MaxG=5; 
Var c,d,r:Array[1 .. MaxG)Of Integer; 

g:lnteger, 

Function Sg(x:lnteger):lnteger; 
Begin {function returns unit if argument is 
greater than zero} 

If x>O Then Sg:=1 Else Sg:=O; 
End; 

Function Fact(x:lnteger):Longlnt; 
Var i:lnteger;f:Longlnt; 
Begin {function calculates factorial of 
argument} 

f:=1; For i:=1 to x do f:=f"i; Fact:=f; 
End; 

Function Lg(x:Extended):Extended; 
Begin {function returns decimal logarithm of 
argument} 

Lg:=Ln(x)JLn{10); 
End; 

Function 
Power(x: Extended; Deg: I nteger): Extended; 
Var p:Extended;i:lnteger; 
Begin {function returns argument in 'deg' 
power} 

p:=1 ; For i:=1 to Deg do p:=p"x; 
Power:=p; 

End; 

Function Mu(p,g:lnteger):lnteger; 
Var m,q:lnteger; 
{this is an auxiliary function} 
Begin m:=1; 

For q:=1 to p do m:=m*(g-q+1); Mu:=m; 
End; 

Function GetPos(k,p:lnteger):lnteger; 
Var i,tlnteger; 
Begin 

{function returns location of element 'p' 
in 'k'th permutation of 'g' objects} 

c[P]:=(k div Mu(p,g» mod 2; 
f:=(k div Mu(p-1.g»mod (g-p+1); 
d[P]:=p-1 +( 1-C[P])*f+C[P]*(g-p-f); 
r[p]:=d[P); 
For i:=p-1 downto 1 do 
r[p]:=r[p]-Byte(d[i]>=rfp)); GetPos:=rfp]; 

End; 

Function MXi(i:lnteger): Integer; 
Var k,q,p.s,Pro:lnteger; 

Sum,c:Extended; 
Begin 

{function returns unit if examined value 'il 
{belongs to set of Smarandache numbers} 

S:=O;g:=Trunc(Lg(i»+1 ; 
For k:=O to Fact(g)-1 do 
Begin 
{Construction number '(1 from permutated 

digits of number 'i'} 
sum:=O; For p:=1 to g do 
sum:=sum+(lnt(J/Power(10,g-p»)-

1 0*lnt(iJPower(1 0.g-p+1»}/ 
Power(10,GetPos(k,p»; 
c:=Power(10,g-1 )·sum; 
Pro:=1; {If 'c' is prime number} 
For q:=2 to Trunc(sqrt(c» do 
Pro:=Pro*Sg(Round(c) mod q); 
s:=s+Pro; 

End; Mxi:=Sg(s); 
End; 

Var xi,n,M:lnteger; 

Function BuildAn(n:lnteger):lnteger; 
Var i,xi,a:lnteger; 

m,Un,SumXi:Longlnt; 
Begin 

{function returns 'n'th element of 
Smarandache sequence} 

a:=O;Un:=Sqr(Longlnt(n»; 
For m:=O to Un do 
Begin 

rSumXi' is quantity of Smarandache 
numbers which are less than number 'm'} 

SumXi:=O; For i:=1 to m do 
SumXi:=SumXi+MXi(i); 
a:=a+sg{n-SumXi); 

End; BuildAn:=a; 
End; 

Begin {Output of the first 'M' Smarandache 
numbers} 

M:=30; 
For n:=1 to M do Write(BuildAn(n):5); 
WriteLn; 

End. 
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The analytical formula available for determining n-th number in the PI -

series is obtained from (7) when [6] 
8!-1 lEI 

b = 2, Xi = sg {I. llsg{c- q[c I qJ) }, (9) 
k=O q=2 

and g, c and rp are calculated by the formulae 

g = [lg 1]+ 1, c = 1()8 f ~ [ill()8-P] -10 [i 1108-P+1]} 11O'? ), 
p=I 

rp = z), dp = p - 1 + f(1 - cp) + cp (g - p -~, cp = I (-I)'P - 1112, 

f = tp-l - (g-p + I)[tp-l /(g-p + I)], tp = [k ITI(g-q+I)], 
q=I 

ZI=Z2-Sg(1+d,-Z2), Z2=Z3-Sg(1+d2 -Z3), ... , 

Zp-2 = Zp-I- sg(1+dp_2-zp-I)' zp-l = dp - sg(l + dp-'- dp). 

(10) 

Pascal program identical with the analytical description (9) - (10) of the 
algorithm, generating PI-series numbers, takes the form, shown in Table 2. 

It should be noted that most part of Pascal text of program 2 consists of 
formulae (9) - (10). In other words, translating analytical descriptions of 
computative algorithms into computer languages requires noticeably less efforts 
than the translation of verbal descriptions. Therefore, our conclusion is that 

if it is possible. one should provide the verbal descriptions of computational 
algorithms with the analytical ones, constructed, for instanse, by using logical 
Junctions [5 - 7]. 

b) Smarandache P2-series 

14,16,20,30,32,34,35,38,50, 70, 74, 76, 91, 92, 95, 98, .,. (11) 

contains the only such natural numbers, which are the composite numbers itself, 
but the prime numbers can be obtained from P2-series numbers by a 
permutation of digits. The analytical formula available for detennining n-th 
number in the Pz-series has the same form as for PI-series numbers, but in this 
case the value of;X; from (9) is computed by the formula 

(12) 

3.2 Some Modifications of Eratosthenes Sieve 

a) Smarandache TI-series 

7, 13, 19,23,25,31,33,37,43,47,49,53,55,61,63, ... (13) 

is obtained from the series of natural numbers by deleting all even numbers and 
all such odd numbers t; that the numbers t;+2 are primes. The analytical 
formula for the determination of n-th number in the TI-series has the form (7) 
with 
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[M}+{ 
b=2, XJ=(i-2[i!2D{I- IT sg(i+2-k[(i+2)/k])}, 

k=2 

b) Smarandache T2-series 

1,3,5,9,11,13,17,21,25,27,29,33,35,37,43,49, ... 

(14) 

(15) 

This series may be obtained from the series of natural numbers by the following 
step-procedure: 

On k-th step each ~-th numbers are deleted from the series of numbers 
constructed on (k-l)-th step. 

The analytical fonnula for the detennination ofn-th number in the Trseries 
has the form (7) with 

pogi]+1 k k. k 
XJ=sg( n {xk -2 [xkl2 ]}),Xl=I,Xk+,=Xk -[xk I2], 

k=1 

where log a is the logarithm of the number a to the base 2. 

(16) 

4 Algorithms for Solving Problems on Constructing Magic Squares 3><3 from 
Given Class of Numbers 

Proposition 1. A set of nine numbers is available for constructing Magic 
squares 3><3 only in the case if one succeeds to represent these nine numbers in the 
form of such three arithmetic progressions from 3 numbers whose differences are 
identical and the first terms of all three progressions are also forming an arithmetic 
progression. 

Proof The general algebraic fonnula of Magic squares 3x3 is shown in figure 
1(3) [2, 4]. The table 1(4) is obtained from table 1(3) by arranging its symbols. It is 
noteworthy that arithmetic progressions with the difference b are placed in the rows 
of the table 1(4), whereas ones, having the difference c, are located in its columns. 
Thus, the proof of Proposition 1 follows directly from the construction of tables 1 (3) 
and/or 1(4). 

I 2 3 a+b+2c a a+2b+c 
4 5 6 a+2b a+b+c a+2c 
7 8 9 a+c a+2b+2c a+b 

(1) (3) 

I 2 4 a a+b a+2b 

3 5 7 a+c a+b+c a+2b+c 

6 8 9 a+2c a+b+2c a+ 2b+2c 

(2) (4) 

Figure 1. To proofs of correctness of Proposition 1 and Algorithm 1: 

(3) - the general algebraic fonnula of Magic squares 3x3; (4) - additional table of 
Magic squares 3x3; (I) (c > 2b) and (2) (b < c < 2b) - two possible arrangements of the 

nine increasing numbers in cells of the additional table (4). 
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By Proposition I and two possible arrangements of the nine increasing 
numbers in cells of the additional table 1(4), which are shown in figures 1(1) and 
1(2), we may elaborate algoritlun 1 available for constructing Magic squares 3x3 
from an arbitrarily given set of nine increasing numbers [2]: 

1. Take two square tables 3x3 and arrange 9 testing numbers in them so as it 
is shown in figures 1 (1) and 1 (2). 

2. Check whether three arithmetic progressions of Proposition 1 are in one of 
these square tables 3x3. 

It should be noted, if the problem on constructing the Magic square 3x3 
from the given set of nine increasing numbers has the solution, then this 
solution is always unique with regard for rotations and mappings. 

For finding all Magic squares 3x3 from a given class of numbers with the 
numberJ in its central cell, one may use the following algorithm 2 [2,4] 

a) write out the possible decompositions of the number 7f in the two 
summands of the following form: 

(17) 

where j is the number of a decomposition and xJ( J), X2( J) are the two 
numbers such that Xl( J) < X2( J) and both these numbers belong to the 
given class of numbers; 

b) in the complete set of various decompositions (17), fix one, having, for 
instance, the number k and, for this decomposition, determine the 
number d(k): d(k) = f - xJ(;); 

c) find all possible arithmetic progressions from 3 numbers with differences 
equal d(k) among a set of numbers {XI(J)} withoutxJ(k). If there are m 
such arithmetic progressions then there are m Magic squares 3x3 with the 
numbers Xl( k) and X2( k) in its cells; 

d) repeat items (b) and (c) for other values ofk. 

5 Magic Squares 3x3 and 9x9 from Prime Numbers 

Proposition 2. A Magic square 3><3 can be constructedJromprime numbers only 
in the case if the parameters band c of the general algebraic formula 1 (3) and/or 
additional table 1 (4) are the numbers multiple oj 6. 

Proof The truth of Proposition 2 follows from Proposition 1 and Cantor 
theorem of Section 2 

CoroUaries from Proposition 2 [2]: 

L By using prime numbers one cannot construct a Magic square 3x3 with 
one of the cells containing numbers 2 or 3. 
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2. All nine prime numbers of a Magic square 3x3 are either numbers of the 
form 6k - I or have the form 6k + I. 

Proposition 3 [2]. With regard for rotations and mappings, the last digits of 
the prime numbers may be arranged in the cells of the additional table of a Magic 
square 3x3 only in such variants, which are shown infigure 2. 

Proof To prove the truth of Proposition 3, we need the two more easily verified 
properties of the additional table 1 (4). 

1. In this table the sums of the symbols of the central row, central column 
and both diagonals are identical and coincide with the Magic constant of the 
general algebraic formula 1(3). 

2. An arithmetic progression, consisting of three numbers, occurs not only in 
the rows and columns but also in each diagonal of the additional table. 

Now let us place a prime number, for instance, ending by 1, into the central 
cell of the additional table 1(4). It is clear, that in this case the last digits of all 
other prime numbers of the additional table of a Magic square 3x3 must be such 
that their sums in the central column, central row and both diagonals would 
terminate by 3. Thus, only certain arrangements of the last digits of prime 
numbers are possible in the remaining cells of the additional table and all such 
variants are shown in figure 2. 

1 

1 

1 

3 

3 

3 

5 
3 

1 

1 1 3 3 3 7 7 7 9 9 

1 I 3 3 3 7 7 7 9 9 

1 1 3 3 3 7 7 7 9 9 

(1) (4) (7) (10) 

1 9 7 3 9 1 7 3 1 9 

1 9 7 3 9 I 7 3 1 9 

1 9 7 3 9 1 7 3 1 9 

(2) (5) (8) (11) 

3 I 5 9 3 5 1 7 5 7 

I 9 9 3 7 I 7 3 7 9 

9 7 3 7 I 7 3 9 9 1 

(3) (6) (9) (12) 

Figure 2. All possible arrangements of the last digits of 
the prime numbers in cells of the additional table 1(4). 

Coronaries from Proposition 3 [2]: 

9 

9 

9 

7 

7 

7 

9 

1 
3 

1. Since 5 is a prime number having the form fk- 1, only the prime numbers 
of the form 6k - 1 can be placed in cells of the additional table 1(4) with 
arrangements 2(3),2(6),2(9) and 2(12). 
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2. The arithmetic progression from three prime numbersak-30m, a", ak+30m 
may be found among nine prime numbers of any Magic square 3x3, where the 
number ak is located in the central cell of the Magic square and m is some 
integer number. Hence it appears that 

no Magic square 3x3 may be constructed from prime numbers if ak < 30. 

Let us consider some results of [2], obtained for prime numbers by 
computer. 

1. Magic squares 3x3, shown in figure 3, are the least ones, constructed only 
from prime numbers. 

67 1 43 101 5 71 101 29 83 109 7 79 
13 37 61 29 59 89 53 71 89 43 73 103 
31 73 7 47 113 17 59 113 41 67 139 37 

(1) (2) (3) (4) 

Figure 3. The least Magic squares 3x3, constructed only from prime numbers. 

2. Let it be required to construct a Magic square 3><3 only from prime 
numbers with the number ak in its central cell. This problem cannot be solved 
only for the following prime numbers ak > 30: 

a) having the form 6k- 1: 41, 101; 53, 83,113,233; 47, 107, 197,317; 569; 

b) having the form 6k + 1: 31, 61, 181,331; 43, 163,223,313,433; 67, 97, 
277,457;79,199,229,439,859. 

3. The results of the item 2 make it possible to assume that, for anyak larger 
than some prime number Pmax, one can always construct a Magic square 3><3 
with Magic sum S = 3ak and the prime numbers, ending by the same digit as the 
number ak- Pmax equals the following prime numbers: 

a) having the form 6k- 1: 5081 (281); 3323 (683); 6257 (557); 3779 (359); 

b) having the form 6k+l: 3931 (601); 3253 (523); 4297 (307); 7489 (769), 
where in brackets we indicate the least prime numbers a", for which one can 
construct a Magic square 3x3 with S = 3ak and the prime numbers, ending by 
the same digit as ak' 

4. Let it be required from prime numbers to construct a Magic square 9><9, 
which contains the number ak in its central cell and consists of 9 Magic squares 
3x3. 

The example of the least Magic square 9x9, constructed only from prime 
numbers and consisted of9 Magic squares 3><3, is shown in figure 4. 

If at> 1019, then the problem on constructing Magic squares 9x9, discussed 
in this item, cannot be solved only for following prime numbersak: 

1021,1031,1033,1039,1049,1051,1061,1069,1087,1091,1093, (18) 
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1097,1109,1117,1123,1129,1153,1171,1181,1193,1201,1213, 

1217, 1229, 1231, 1237, 1249, 1259, 1279, 1283, 1303, 1307, 1321, 

1327,1439,1453,1481,1483,1489, 15l1, 1531, 1543, 1567, 1783. 

2531 17 1409 1097 71 863 2069 23 1091 
197 1319 2441 443 677 911 83 1061 2039 
1229 2621 107 491 1283 257 1031 2099 53 

1433 29 821 1811 137 1109 2153 311 1367 
149 761 1373 317 1019 1721 491 1277 2063 
701 1493 89 929 1901 227 1187 2243 401 

1487 431 1013 2339 173 1571 1307 11 839 
503 977 1451 593 1361 2129 251 719 1187 
941 1523 467 ll51 2549 383 599 1427 131 

Figure 4. The example of the least Magic square 9x9, constructed only from 
prime numbers and consisted of9 Magic squares 3x3. 

6 Magic Squares 3><3 and 9x9 from Smarandache Numbers of the 2nd Kind 

6.1 Magic Squares 3x3 and 9x9 from PI-Series Numbers 

Let the notation Ac
j 
(N) means the quantity of all <;-series numbers, whose values 

are less than N, and the notation Po-series means the prime numbers series. 

Proposition 4. For any natural number N the following inequality 

Apl(N)~ Apo(N) 

is fUlfilled 

(19) 

Proof The truth of Proposition 4 follows from the description of PI-series 
numbers (see Section 3.1). Namely, Po-series numbers is subset of PI-series 
numbers at any N and agree with a set of PI-series numbers only if N ~ 13. 

Proposition 5. PI-series numbers are availablefor constructing Magic squares 
3x3. 

Proof The truth of Proposition 5 follows from Proposition 4 and that the prime 
numbers are available for constructing Magic squares 3x3 (see Section 5). 

Solving the problems on constructing Magic squares 3x3 from PI-series 
numbers by computer, we find that 
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1. Magic squares 3x3, shown in figure 5, are the least ones, constructed from 
PI-series numbers. 

47 5 35 50 11 35 53 11 41 50 17 38 
17 29 41 17 32 47 23 35 47 23 35 47 
23 53 11 29 53 14 29 59 17 32 53 20 

(1) (2) (3) (4) 

FIgUre S. The least Magic squares 3x3, constructed from PI-series numbers. 

2. Let it be required from PI-Series numbers to construct a Magic square 3x3 
with the number ak in its central cell. 

If ale> 35, then this problem cannot be solved only for the following PI-

series numbers: 38,43,47,50 and 61. 

3. Let it be required from PI-series numbers to construct a Magic square 
9x9, which contains the number ak in its central cell and consists of 9 Magic 
squares 3x3. 

Magic square 9x9, shown in figure 6, is the least such one, constructed from 
PI-series numbers. 

We note, that 
a) in the Magic square 9><9, shown in figure 6, the numbers 215, 35, 143,59, 

203, 119,227 and 47 may be replaced respectively by 203,47, 143, 71, 191, 119, 
215 and 59; 

413 101 329 137 20 92 383 2 269 
197 281 365 38 83 128 104 218 332 
233 461 149 74 146 29 167 434 53 

215 35 143 293 11 278 380 17 374 
59 131 203 179 194 209 251 257 263 
119 227 47 110 377 95 140 497 134 

317 5 188 323 272 320 182 14 125 

41 170 299 302 305 308 50 107 164 
152 335 23 290 338 287 89 200 32 

Figure 6. The least Magic square 9x9, constructed from 
PI-series numbers and consisted of9 Magic squares 3x3. 

b) if ak> 194, then the problem on constructing Magic squares 9x9, 
discussed in this point, cannot be solved only for following 10 PI-series numbers 
ak: 196, 197, 199, 211, 214, 217, 223, 229, 232 and 300. 
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6.2 Magic Squares 3x3 and 9x9 from PrSeries Numbers 

Proposition 6. For any natural number N the following inequality 

A~ (N) < ApI (N) 

is fulfilled 

(20) 

Proof. The truth of Proposition 6 follows from the description of Pz-series 
numbers (see Section 3.2). Namely, P2-series numbers may be obtained by 
deleting all prime numbers from PI-Series numbers. 

It follows from Proposition 6 that, although we know about the availability of 
Po- and P2-series numbers for constructing Magic squares 3x3, we cannot state 
that P2-series numbers are also available for constructing Magic squares M. To 
clear up this situation, let us consider our results, obtained for Prseries 
numbers by computer. 

1. Magic squares 3x3, shown in figure 7, are the least ones, constructed from 
Prseries numbers. 

152 14 110 164 50 143 203 20 134 215 20 140 
50 92 134 98 119 140 50 119 188 50 125 200 
74 170 32 95 188 74 104 218 35 110 230 35 

(1) (2) (3) (4) 

Figure 7. The least Magic squares 3x3, constructed from P2-series numbers. 

2. Let it be required from P2-series numbers to construct a Magic square 3x3 
with the number ak in its central cell. 

If ak= 92, 125, 441, 448, 652, 766 or 928, then this problem has a single 
solution. 

If ak> 125, then this problem cannot be solved only for the following P2-
series numbers: 

130,142,143,145,152,160,166, 169,172,175,176,190,196,232, (21) 

238,289,292, 298, 300, 301,304,319,325,382,385,391,478,517. 

3. Let it be required from P2-series numbers to construct a Magic square 
9x9, which contains the number ak in its central cell and consists of 9 Magic 
squares 3x3. 

If ak = 473, then there are 609 the least Magic squares 9x9 with mentioned 
properties (the example of such Magic square is shown in figure 8). 

If ak > 473, then the problem on constructing Magic squares 9x9, discussed 
in this item, cannot be solved only for two Prseries numbers ak: 478 and 517. 
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1007 140 578 374 278 344 830 74 632 
146 575 1004 302 332 362 314 512 710 
572 1010 143 320 386 290 392 950 194 

785 32 413 728 20 671 902 14 692 
38 410 782 416 473 530 326 536 746 

407 788 35 275 926 218 380 1058 170 

740 92 470 872 236 734 533 203 377 
164 434 704 476 614 752 215 371 527 
398 116 128 494 992 356 365 539 209 

Figure 8. The example of the least Magic square 9x9, constructed from 
P2-Series numbers and consisted of9 Magic squares 3x3. 

6.3 Magic Squares 3x3 and 9x9 from T1-Series Numbers 

Proposition 7. There exists such natural number No that for any natural N > No 

the following inequality 

A1j (N» Apo(N) 

is fulfilled 

(22) 

Proof As it follows from the description of Tl-series numbers (see Section 
3.2), this series numbers may be obtained from series odd natural numbers by 
deleting all such odd numbers, which are prime numbers decreased by 2. Thus, 
we have the following relation 

A7j (N)=(N-I)12 -Apo (N) or A7j(N)/ Apo(N) = {(N-l)/2}/ Apo(N)-1 (23) 

where the term (N-I)/2 is the quantity of all odd natural numbers, whose values 
are less than N. Since [8] 

Apo(N)= N /{In(N)+I} ± N IIn2 (N) , (24) 

we obtain from (23) and (24) that 

A7j (N)/ Apo (N) == In(N)/2 - 1 > 2 for any N> 500. (25) 

Thus, Proposition 7 is true, if No, for instance, equals 500. 

Proposition 8. T1-series numbers are available for constructing Magic squares 
3><3. 

Proof The truth of Proposition 8 follows from Proposition 7 and that the prime 
numbers are available for constructing Magic squares 3><3. 

Let us consider our results, obtained for T1-series numbers by computer. 
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1. Magic square 3x3, shown in figure 9(1), is the least one, constructed from 
T1-series numbers. 

49 7 37 83 13 63 117 19 89 185 31 141 
19 31 43 33 53 73 47 75 103 75 119 163 
25 55 13 43 93 23 61 131 33 97 207 53 

(I) (2) (3) (4) 

Figure 9. Examples of Magic squares 3x3, constructed from TI-series numbers. 

2. Let it be required from T1-series numbers to construct a Magic square 3x3 
with the number ak in its central cell. 

If ak = 53, 75 or 119, then this problem has a single solution {see figure 9(2-
4)}. 

If ak > 31, then this problem cannot be solved only for two T1-series 
numbers: 33 and 47. 

3. Let it be required from TI-series numbers to construct a Magic square 
9x9, which contains the number ak in its central cell and consists of 9 Magic 
squares 3x3. 

If ak = 181, then there are 118 the least Magic squares 9x9 with mentioned 
properties (the example of such Magic square is shown in figure 10). 

If ak> 181, then the problem on constructing Magic squares 9x9, discussed 
in this item, can be solved for all T1-series numbers ak' 

319 247 301 55 7 49 317 93 241 
271 289 307 31 37 43 141 217 293 
277 331 259 25 67 19 193 341 117 

127 79 121 205 151 187 283 203 273 
103 109 115 163 181 199 243 253 263 
97 139 91 175 211 157 233 303 223 

215 61 159 443 169 363 123 13 83 
89 145 201 245 325 405 33 73 113 
131 229 75 287 481 207 63 133 23 

Figure 10. The example of the least Magic square 9x9, constructed from 
TI-series numbers and consisted of9 Magic squares 3x3. 

If ak = 181, then there are 118 the least Magic squares 9x9 with mentioned 
properties (the example of such Magic square is shown in figure 10). 

If ak> 181, then the problem on constructing Magic squares 9x9, discussed 
in this item, can be solved for all TI-series numbers ak' 
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6.4 Magic Squares 3x3 and 9x9 from T2-Series Numbers 

Proposition 9. There exists such natural number No that for any natural N > No 
the following inequality 

AT2 (N) > Apo(N) 

is fulfilled 

(26) 

Proof As it follows from the description of Trseries numbers (see Section 
3.2), this series numbers may be obtained from series natural numbers by 
deleting all ~-th numbers on each k-th step of step-procedure (sieve). Thus, we 
have the following relation 

[10*)) Ie 
Ar,(N)= N -N 11 112 = N(l-2/{10g(N) (log(N)+I)}) = 

- k~ 

= N(l-2.9/{ln(N) (l.44ln(N) + I)}). 

We obtain from (24) and (27) that 

A7j(N)/APo(N) = In(N) >2 forany N>20. 

Thus, Proposition 9 is true, if No. for instance, equals 20. 

(27) 

(28) 

Proposition 10. T2-series numbers are available for constructing Magic 
squares 3><3. 

Proof The truth of Proposition 10 follows from Proposition 9 and that the prime 
numbers are available for constructing Magic squares 3><3. 

Our computations give the following results: 

1. Magic squares 3x3, shown in figure 11, are the least ones, constructed 
from T rseries numbers. 

29 1 21 33 5 25 51 1 29 43 1 33 43 5 33 
9 17 25 13 21 29 5 27 49 17 27 37 17 27 37 
13 33 5 17 37 9 25 53 3 21 53 II 21 49 II 

(1) (2) (3) (4) (5) 

Figure 11. The least Magic squares 3x3, constructed from Trseries numbers. 

2. Let it be required from Tz-series numbers to construct a Magic square 3><3 
with the number ak in its central cell. 

If ak > 27, then this problem cannot be solved only for two Tz-series 
numbers: 37 and 49. 

3. Let it be required from T1-series numbers to construct a Magic square 
9x9, which contains the number ak in its central cell and consists of 9 Magic 
squares 3x3. 
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395 11 299 265 17 153 373 5 237 
139 235 331 33 145 257 69 205 341 

171 459 75 137 273 25 173 405 37 

249 29 197 325 1 259 397 9 269 
113 165 217 129 195 261 97 225 353 
133 301 81 131 389 65 181 441 53 

321 13 221 401 21 313 251 27 187 
85 185 285 157 245 333 91 155 219 
149 357 49 177 469 89 123 283 59 

Figure 12. The example of the least Magic square 9x9, constructed from 
TrSeries numbers and consisted of9 Magic squares 3x3. 

If ak = 195, then there are 6 the least Magic squares 9x9 with mentioned 
properties (the example of such Magic square is shown in figure 12). 

If Qk> 195, then the problem on constructing Magic squares 9x9, discussed 
in this point, cannot be solved only for the following P2-series numbers ak: 

197,201,205,213,213,217,221,215,229,237, 

245,249,257,261,269. 

7 Concluding Remarks 

(29) 

As it is demonstrated in this paper, preliminary theoretical analysis of number­
theoretic and combinatorial problems is always useful. In particular, the results 
of this analysis are able sometimes to provide investigators with valuable 
information, facilitating considerably the solution of all such of practical tasks, 
which are enumerated in Section 1. We hope, that the technique of theoretical 
analysis, elaborated in the paper, will become useful tool of investigators, 
occupied in the considered problems. 
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