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In this paper we investigate some properties of Smarandache sequences of the
2nd kind and demonstrate that these numbers are near prime numbers. In
particular, we establish that prime numbers and Smarandache numbers of the
2nd kind (a) may be computed from the similar analytical expressions, (b) may
be used for constructing Magic squares 3x3 or Magic squares 9x9, consisted of
9 Magic squares 3x3. )
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1 Introduction

We remind [2, 3], that in the general case Magic squares represent by themselves
numerical or analytical square tables, whose elements satisfy a set of definite
basic and additional relations. The basic relations therewith assign some
constant property for the elements located in the rows, columns and two main
diagonals of a square table, and additional relations, assign additional
characteristics for some other sets of its elements.

Let it be required to construct Magic squares 7 in size from a given set of
numbers. Judging by the mentioned general definition of Magic squares, there is
no difficulty in understanding that the foregoing problem consists of the four
interrelated problems

1. Elaborate the practical methods for generating the given set of numbers;

2. Look for a concrete family of n? elements, which would satisfy both the
basic and all the additional characteristics of the Magic squares;

3. Determine how many Magic squares can be constructed from the chosen
family of n? elements;

4. Elaborate the practical methods for constructing these Magic squares.
For instance, as we demonstrated in [5],
a) every (n+1)-th term a,,, of Smarandache sequences of 1st kind may be

formed by subjoining several natural numbers to previous terms a, and also
may be computed from the analytical expression
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Bgm= 6(a,107" +Ef@(n)}), M

where ¢(n), W(a,) and E{p(n)} are some functions; ¢ is an operator. In other
words, for generating Smarandache sequences of 1st kind, the set of analytical
formulae may be used (see the problem 1);
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Figure 1. Magic squares 3x3 from k-truncated
Smarandache numbers of Ist kind.

b) it is impossible to construct Magic squares 3x3 from Smarandache
numbers of 1st kind without previous truncating these numbers. Consequently,
if the given set of numbers consists only of Smarandache numbers of Ist kind,
then one releases from care on solving problems, mentioned above in items 2 —
4

¢) there is a set of analytical formulae available for constructing Magic
squares 3x3 in size from k-truncated Smarandache numbers of 1st kind
(examples of Magic squares 3x3, obtained by these formulae, are shown in
figure 1). In this case the foregoing set of analytical formulae is also the desired
practical method for conmstructing Magic squares 3x3 from k-truncated
Smarandache numbers of 1st kind (see the problem 4).

The main goal of this paper is to investigate some properties of Smarandache
sequences of the 2nd kind [6, 9] and to demonstrate that these numbers are near
prime numbers. In particular, we establish in the paper, that prime numbers and
Smarandache numbers of the 2nd kind
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a) may be computed from the similar analytical expressions (see Section 2
and 3);

b) may be used for constructing Magic squares 3x3 or Magic squares 9x9,
consisted of 9 Magic squares 3x3 (see Section 5 and 6).

2 Prime Nuambers

We remind that in number theory {2, 10, 11] any positive integer (any natural
number), simultaneously dividing positive integers a, b, ..., m, is called their
common divisor. The largest of common divisors is called greatest common
divisor and denoted by the symbol GCD(q, b, ..., m). The existence of GCD
appears from the finiteness of the number of common divisors. The numbers a
and b for which GCD(a, b) = 1 are called relatively prime numbers. The
analytical formula available for counting the value of GCD({g, ) has form [6]

GCD(a, b) = b{1 —sign(r)} + ksign(r), r=a-bla/b], 2
k= MgX{i(l—d)} , d=sign{a-ia/i]} +sign{b-ib/i},

where the function MAX(a;, ay, ..., a,) gives the greatest from numbers a, aa,
..y @3 sign(x) =| x|/x if x#0 and sign(0) = 0.

It is easy to prove, that any natural number larger than a unit, has no less
than two divisors: the unit and itself. Any natural number p > 1, having exactly
two divisors, is called prime. If the number of divisors is more than 2, then the
number is called composite (for example, the number 11, having divisors 1 and
11, is the prime number, whereas the number 10, having the divisors 1, 2, 5 and
10, is the composite number). In this paper we shall consider the number 1 as
the least prime number. The analytical formula, generating n-th prime number
P, has form [6]

(124 m Vi) . o
p,= X sgn-1-%x) x,= Il{sg(i- i/ D}, 3)
m=0 =3 J=2

wherep, =2,p3=3,ps=5,...;sg(x)=1 if x>0 and sg(x)=0 if x<0.

It is proved in the number theory [2, 10, 11], that any natural number larger
than a unit can be represented as a product of prime numbers and this
representation is unique (we assume that products, differing only by the order
of cofactors, are identical). For solving the problem on decomposing the natural
number ¢ in simple cofactors, it is necessary to know all the prime numbers
p,<+a.

Let m = [\/;z- ], where the notation [b] means integer part from b. Then, for
finding all the prime number p, one may use the following procedure
(Eratosthenes sieve) |2, 10, 11]:

1. Write out all the successive numbers from 2 tom and put p = 2;
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2. In the series of the numbers 2, 3, 4, ..., m, cross out all the numbers having
the formp + kp, where k=1, 2, ._;

3. If, in the series of the numbers 2, 3, 4, ..., m, all the numbers larger than p
have been crossed out, then pass to step 4. If there still remain the
numbers larger than p, which have not been crossed out, then the first of
these ones we denote by p;. If pl >m, then pass to step 4. Otherwise,
put p = p; and pass to step 2;

4. The end of the procedure: primes are all the numbers of the series 1, 2, 3,
4, ..., m, which have not been deleted.

If an arithmetical progression from » prime numbers is found then it should
be known that[2, 10]

The difference of any arithmetical progression, containing n prime numbers
larger than n, is divisible by all the prime numbers < n (Cantor theorem).

From the series of the consecutive prime numbers one may reveal
subsequences of numbers, possessed the different interesting properties. For
instance

a) two prime numbers are called reversed, if each is obtained from other by
reversing of its digits. If p < 1 000 then such numbers are

1,2,3,5,7,11,13, 17,31, 37, 71, 73, 79, 97, 101, 107, 113, 131, 149, )]
151, 157, 167,179, 181, 191, 199, 311, 313, 337, 347, 353, 359, 373,

383, 389, 701, 709, 727, 733, 739, 743, 751, 757, 761, 769, 787, 797,

907, 919, 929, 937, 941, 953, 967, 971, 983, 991.

b) among the numbers of (4) one may reveal the symmetric prime numbers:
1,2,3,5,7,11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, )
787,797, 919, 929;

¢) two prime numbers are called mirror-reversed, if each is obtained from
other by reflecting in the mirror, located above the number. If p < 3000 then
such numbers are:

1,2,3,5, 11, 13, 23, 31, 53, 83, 101, 131, 181, 227, 251, 311, 313, ©)
331, 383, 521, 557, 811, 823, 853, 881, 883, 1013, 1021, 1031, 1033,

1051, 1103, 1123, 1153, 1181, 1223, 1231, 1283, 1301, 1303, 1381,

1531, 1553, 1583, 1811, 1831, 2003, 2011, 2053, 2081, 2113, 2203,

2251, 2281, 2333, 2381, 2531, 2851.
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3 Smarandache Numbers of the 2nd Kind

In this section we consider 4 different Smarandache sequences of the 2nd kind
[6, 9] and demonstrate that the value of n-th numbers a, in these sequences may
be computed by the universal analytical formula {compare with formula (3)}

a,= z‘]):'sg(n+2—b—f‘.x.-), D
=0 =

where y; are the characteristic numbers for the described below Smarandache
sequences of the 2nd type and U, = 10 + (1)

3.1 Pseudo-Prime Numbers

a) Smarandache P;-series

1,2,3,5,7,11, 13, 14, 16, 17, 19, 20, 23, 29, 30, 31, 32, 34, ... 8)
contains the only such natural numbers, which are or prime numbers itself or
prime numbers can be obtained from P;-series numbers by a permutation of
digits (for instance, the number 115 is the pseudo-prime of P;-series because the
number 151 is the prime).

It is clear from the description of Pj-series numbers that they may be
generated by the following algorithm

1. Write out all the successive prime numbers from 1 to 13: 1, 2, 3, 5, 7, 11,
13 and put n=8; a, = 13;

2. Assumep =a, +1.

3. Examine the number p. If p is a prime or a prime number can be obtained
from a, by a permutation of digits, then increase n by 1, put @, = p and go
to step 2. Else increase p by 1 and go to the beginning of this step.

To convert the foregoing algorithm into a computer-oriented method (see
problem 1 in Section 1), we are evidently to translate this description into one of
special computer-oriented languages. There is a set of methods to realise such
translation [6]. The most simplest among ones is to write program code directly
from the verbal description of the algorithm without any preliminary
construction. For instance, Pascal program identical with the verbal description
of the algorithm under consideration are shown in Table 1. In this program the
procedure Pd, the functions PrimeList and PseudoPrime are used for generating
respectively permutations, primes numbers and pseudo-prime numbers; the
meaning of the logical function Belong ToPrimes is clear from its name.

In the case, when verbal descriptions are complex, babelized or incomplete,
the translation of these descriptions into computer languages may be performed
sometimes in two stages [7]: firstly, verbal descriptions of computational
algorithms are translated into analytical ones and then analytical descriptions
are translated into computer languages. To demonstrate how this scheme is
realised in practice, let us apply it to the algorithm, generating P)-series
numbers.
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Table 1. Pascal program 1 for generating Smarandache P,-series

Type Ten=Armray{1..10]Of Integer;
Procedure Pd(Var m4,n1,n:integer;Var
nb3,nb4,nb5:Ten);
Label A28,A29,A30; Var ntk,m:integer;
Begin
if Md=1 Then
Begin
m4:=0;n:=nt;
Fork:=2tondo
Begin Nb4[k]:=0; Nb5[k]:=1; End;
Exit;

End;
k:=0; n:=n1;
A28: m:=Nb4[n]+Nb5[n];Nb4[n]:=m;
i m=n Then
Begin Nb5[n]:=-1;Goto A2S; End;
If Abs{m)>0 Then Goto A30;
Nb5[n]:=1;inc{k);
A29: If n>2 Then
Begin Dec(n);Goto A28, End,
Inc{m);m4:=1;
A30: m=m+k; nt:=nb3[m};
nb3[m]:=nb3[m+1]; nb3[m+1]:=nt
End;

Const Mn=10000; MaxN:Integer=Mn;
Type int=Amay[1..Mn]Of Integer; pint="int;
Var pl:pint;

Function PrimeList(Var MaxN:Integer):pint;
Var ijk:Integer; p:pint;Ok:Boolean;
Begin
GetMem(p,MaxN); p*[1]:=2;i:=3;k:=1,;
While i<MaxN do
Begin {Is i prime or not ?}
j:=3;0k:=True;
While Ok And (j<=Round{Sqrt(i))) do
If i mod j=0 Then Ok:=Faise
Else Inc(j,2);
If Ok Then Begin Inc(k);p*k]:=i;End;
Inc(i,2);
End;
MaxN:=k;Primelist:=p;
End {PrimeList} ;

Function
BelongToPrimes(num:Integer):Boolean;
Var i,r.j:Integer;
Begin
BelongToPrimes:=True; I:=1;r-=MaxN;
Repeat
j=(l+nshr 1; If num<PI*[j] Then r=j

Else If num>PIAf]] Then I:=j+1

Else Exit;

Untit I=r;BelongToPrimes:=False;
End;

Function
PseudoPrime(Num:integer):Boolean;
Var g,nb3,nb4,nb5:Ten;
nd,m,r,mn,m4,n1,mm,i,j,d k,n:integer;
Begin
PseudoPrime:=True;
{Decomposition number num on digits}
d:=Num;k:=0;
Repeat
Inc{k); gfkl:=d mod 10;
r=d; d:=d div 10;
Until r div 10=0;
{Examination whether numbers,
composed from digits are prime}
m4:=1; m:=0; n1:=k;
For i:=1 to n1 do Nb3[i}:=g[i};
Repeat
Pd(m4,n1,n,nb3,nb4,nb5); Inc(m);
If m4=1 Then Break; mm:=1,d:=0;
Fori:=1ton1do
Begin
d:=d+nb3[i}*'mm; mm:=mm*10;
End;
if BelongToPrimes(d) Then Exit;
Untit False; PseudoPrime:=False,
End;
Var Ind,Num,i:Integer; List:pint;
Begin pl:=PrimeList(MaxN);
{Generating list of primes up to MaxNj}
Ind:=0;Getmem(List,4*(MaxN shi 1));
For Num:=10 to MN do
If PseudoPrime(Num) Then
{if number is pseudoprime then add it to list}
Begin Inc(Ind);List*[ind]:=Num; End;
{Output generated numbers to * Sp1’ file,
10 values per row}
Assign{Output,'Sp1");Rewrite(Output),
WriteLn(Ind);
Fori:=1 to Ind do
Begin
Write(ListAfi}:7);
If i mod 10=0 Then WiritelLn;
End;
Close(output)
End.
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Table 2. Pascal program 2 for generating Smarandache P,-series

Const MaxG=5;
Var ¢,d,r-Array{1. MaxG]Of integer;
g:integer;

Function Sg(x:Integer):integer;
Begin {function returns unit if argument is
greater than zero}
If x>0 Then Sg:=1 Eise Sg:=0;
End;

Function Fact{x:Integer):Longint;
Var i:Integer;f:Longint;
Begin {function caiculates factorial of
argument}

f:=1; Fori:=1to x do f=fi; Fact=f
End;

Function Lg(x:Extended):Extended;

Begin {function returns decimal logarithm of
argument}

Lg:=Ln{x)/L.n{10);

End;

Function _
Power(x:Extended;Deg:Integer):Extended;
Var p:Extended;i:integer;
Begin {function returns argument in 'deg’
power}
p:=1;Fori:=1 to Deg do p:=p*x;
Power=p;
Endg;

Function Mu(p,g:Integer):integer;
Var m,q:integer;
{this is an auxiliary function}
Begin m:=1;
For q:=1to p do m:=m*(g-q+1); Mu:=m;
End;

Function GetPos(k,p:Integer).integer;
Var i,f-integer;
Begin
{function retums location of element ‘p’
in ‘K'th permutation of 'g’ objects}
clp):=(k div Mu(p,g)) mod 2;
f:=(k div Mu(p-1,g))mod (g-p+1);
dipl:=p-1+(1-clp])*f+clp]*(g-p-1);
ripl:=d[p];
For i:=p-1 downto 1 do
rip]:=r{p}-Byte(d[i]>=rip]); GetPos:=r[p];
End;

Function MXi(i:Integer):Integer;
Var k,q,p,s,Pro:integer;
Sum,c:Extended;
Begin
{function retums unit if examined value T}
{belongs to set of Smarandache numbers}
8:=0;g:=Trunc{Lg(i))+1;
For k:=0 to Fact(g)-1 do
Begin
{Construction number ‘¢’ from permutated
digits of number '’}
sum:=0; For p:=1togdo
sum:=sum-+(int(i/Power(10,g-p))-
10*Int(i/Power(10,g-p+1)))/
Power{10,GetPos(k,p));
c:=Power(10,g-1)*sum;
Pro:=1; {if °’c’ is prime number}
For q:=2 to Trunc(sqrt(c)) do
Pro:=Pro*Sg(Round(c) mod q);
s:=s+Pro;
End; Mxi:=Sg(s);
End;

Var xi,n,M:Integer;

Function BuildAn(n:integer):integer;
Var i, xi,a:integer;
m,Un,SumXi:Longint;
Begin
{function retumns 'n'th element of
Smarandache sequence}
a:=0;Un:=Sqr(Longint(n));
For m:=0 to Un do
Begin
{SumXi' is quantity of Smarandache
numbers which are less than number 'm’}
SumXi:=0; Fori:=1tomdo
SumXi:=SumXi+MXi(i);
a:=a+sg{n-SumXi);
End; BuildAn:=a;
End;

Begin {Output of the first ‘M’ Smarandache
numbers}
M:=30;
For n:=1 to M do Write(BuildAn(n):5),
Writeln;
End.
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The analytical formula available for determining n-th number in the P;-
series is obtained from (7) when [6]

g1 |i/_'i1
b=2, y;i=sg{ X [Ilsg(c—glc/ql)}, ©)
k=0 g=2
and g, ¢ andr, are calculated by the formulae
g=lg1+1, c=10¢E{[i/10=71-10{i 1105713107 ), 10
i)

=2, d,=p-1+f(1-¢)+c,(e-p-Nc,=l(-D?-11/2,
f= 4= @-p D /E-p+ D) 4=[k/Tl(g-g+D}

= - sg(l+d, — 23), = z3—sg(l+d, —z3), ...,
Z,,= 2,,-sg(1+d, ,—-z,,), z,, =d,—sg(l+ d, - d).

Pascal program identical with the analytical description (9} — (10) of the
algorithm, generating P;-series numbers, takes the form, shown in Table 2.

It should be noted that most part of Pascal text of program 2 consists of
formulae (9) - (10). In other words, translating analytical descriptions of
computative algorithms into computer languages requires noticeably less efforts
than the translation of verbal descriptions. Therefore, our conclusion is that

if it is possible, one should provide the verbal descriptions of computational
algorithms with the analytical ones, constructed, for instanse, by using logical
JSunctions [5-7].

b) Smarandache P;-series

14, 16, 20, 30, 32, 34, 35, 38, 50, 70, 74, 76,91, 92, 95, 98, ... (1)
contains the only such natural numbers, which are the composite numbers itself,
but the prime numbers can be obtained from P;-series numbers by a
permutation of digits. The analytical formula available for determining n-th
number in the P;-series has the same form as for P;-series numbers, but in this
case the value of x; from (9) is computed by the formula

- Vel
%= (1= wojsg(S we), wi= Tsg (e =dle/q)). (12)

3.2 Some Modifications of Eratosthenes Sieve

a) Smarandache Ti-series

7,13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, ... (13)
is obtained from the series of natural numbers by deleting all even numbers and
all such odd numbers f; that the numbers #+2 are primes. The analytical
formula for the determination of n-th number in the T;-series has the form (7)
with

133



Wiaam

b=2, x,=0G-2[i/2) {1- kI=]2 sg(i+2—-k(i+2)/kD}, (14)

b) Smarandache T;-series

1,3,5,9,11,13,17,21,25,27, 29, 33, 35, 37,43, 49, ... (15)
This series may be obtained from the series of natural numbers by the following
step-procedure:

On k-th step each 2*-th numbers are deleted from the series of numbers
constructed on (k—1)-th step.

The analytical formula for the determination of n-th number in the T5-series
has the form (7) with

flogi}+l y
X = sg( i}l {x. _2k[xk /2k]} hx1 =10, X, =x, ~[x, 1241, (16)

where log a is the logarithm of the number a to the base 2.

4 Algorithms for Solving Problems on Constructing Magic Squares 3x3 from
Given Class of Numbers

Proposition 1. A set of nine numbers is available for constructing Magic
squares 3x3 only in the case if one succeeds to represent these nine numbers in the
form of such three arithmetic progressions from 3 numbers whose differences are
identical and the first terms of all three progressions are also forming an arithmetic
progression.

Proof. The general algebraic formula of Magic squares 3x3 is shown in figure
1(3) 2, 4]. The table 1(4) is obtained from table 1(3) by arranging its symbols. It is
noteworthy that arithmetic progressions with the difference b are placed in the rows
of the table 1(4), whereas ones, having the difference c, are located in its columns.
Thus, the proof of Proposition 1 follows directly from the construction of tables 1(3)
and/or 1(4).

1{213 at+b+2c a at2b+c

41516 a+2b a+b+c a+2c

71819 a+tc a+2b+2c atbh
1) 3

124 a a+b a+2b

31517 atc atb+c a+2b+c

61819 a+2c atb+2c a+2b+2c
@ “)

Figure 1. To proofs of correctness of Proposition 1 and Algorithm 1:

(3) — the general algebraic formula of Magic squares 3x3; (4) — additional table of
Magic squares 3x3; (1) (¢ > 2b) and (2) (b < ¢ < 2b) — two possible arrangements of the
nine increasing numbers in cells of the additional table (4).
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By Proposition 1 and two possible arrangements of the nine increasing
numbers in cells of the additional table 1(4), which are shown in figures 1(1) and
1(2), we may elaborate algorithm 1 available for constructing Magic squares 3x3
from an arbitrarily given set of nine increasing numbers [2]:

1. Take two square tables 3x3 and arrange 9 testing numbers in them so as it

is shown in figures 1(1) and 1(2).

2. Check whether three arithmetic progressions of Proposition 1 are in one of

these square tables 3x3.

It should be noted, if the problem on constructing the Magic square 3x3
from the given set of nine increasing numbers has the solution, then this
solution is always unique with regard for rotations and mappings.

For finding all Magic squares 3x3 from a given class of numbers with the
number f in its central cell, one may use the following algorithm 2 [2, 4]
a) write out the possible decompositions of the number 2f in the two
summands of the following form:

o = xi() + xA s 17
where j is the number of a decomposition and x;{ j), x2(j) are the two
numbers such that x;{ j) < x2(j) and both these numbers belong to the
given class of numbers;

b) in the complete set of various decompositions (17), fix one, having, for
instance, the number & and, for this decomposition, determine the
number d(k): d(k) =f-xi(j);

¢) find all possible arithmetic progressions from 3 numbers with differences
equal d(k) among a set of numbers {x,( j)} without x;(k). If there are m
such arithmetic progressions then there are m Magic squares 3x3 with the
numbers x;{ k) and x( k) in its cells;

d) repeat items (b) and (c) for other values of k.

5 Magic Squares 3>3 and 9x9 from Prime Numbers

Propesition 2. A Magic square 3x3 can be constructed from prime numbers only
in the case if the parameters b and c¢ of the general algebraic formula 1(3) and/or
additional table 1(4) are the numbers multiple of 6.

Proof. The truth of Proposition 2 follows from Proposition 1 and Cantor
theorem of Section 2

Corollaries from Proposition 2 [2]:

1. By using prime numbers one cannot construct a Magic square 3x3 with
one of the cells containing numbers 2 or 3.
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2. All nine prime numbers of a Magic square 3x3 are either numbers of the
form 6k — 1 or have the form 6k + 1.

Propesition 3 [2]. With regard for rotations and mappings, the last digits of
the prime numbers may be arranged in the cells of the additional table of a Magic
square 3x3 only in such variants, which are shown in figure 2.

Proof. To prove the truth of Proposition 3, we need the two more easily verified
properties of the additional table 1(4).

1. In this table the sums of the symbols of the central row, central column
and both diagonals are identical and coincide with the Magic constant of the
general algebraic formula 1(3).

2. An arithmetic progression, consisting of three numbers, occurs not only in
the rows and columns but also in each diagonal of the additional table.

Now let us place a prime number, for instance, ending by 1, into the central
cell of the additional table 1(4). It is clear, that in this case the last digits of all
other prime numbers of the additional table of a Magic square 3x3 must be such
that their sums in the central column, central row and both diagonals would
terminate by 3. Thus, only certain arrangements of the last digits of prime
numbers are possible in the remaining cells of the additional table and all such
variants are shown m figure 2.

1111 31313 71717 91{919
111 3 71717 91919
1111 31313 71717 91919
(1 @ (N (19
31119 713149 11713 11917
31119 7{31]9 11713 11917
31149 71319 11713 11917
2 (%) ®) (1D
51311 51913 S5{1¢7 51719
3119 91317 1713 71911
1191(7 31711 7{319 91143
3 © ® (12)

Figure 2. All possible arrangements of the last digits of
the prime numbers in cells of the additional table 1(4).

Corollaries from Proposition 3 [2]:

1. Since 5 is a prime number having the form 6k — 1, only the prime numbers
of the form 6k — 1 can be placed in cells of the additional table 1(4) with
arrangements 2(3), 2(6), 2(9) and 2(12).
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2. The arithmetic progression from three prime numbers a,—30m, a;, a,+30m
may be found among nine prime numbers of any Magic square 3x3, where the
number q; is located in the central cell of the Magic square and m is some
integer number. Hence it appears that

no Magic square 3x3 may be constructed from prime numbers if a; < 30.

Let us consider some results of [2], obtained for prime numbers by
computer.

1. Magic squares 3x3, shown in figure 3, are the least ones, constructed only
from prime numbers.

67 ] 1 | 43 101 5 |71 101 [ 29 | 83 109 7 | 79

13137 ] 6l 29 | 59 | 89 53] 71 [ 89 43 | 73 | 103

3| B] 7 47 [ 113} 17 59 |13 ] 41 67 | 139 ] 37
) @ &) @)

Figure 3. The least Magic squares 3x3, constructed only from prime numbers.

2. Let it be required to construct a Magic square 3x3 only from prime
numbers with the number g; in its central cell. This problem cannot be solved
only for the following prime numbers g, >30:

a) having the form 6k - 1: 41, 101; 53, 83, 113, 233; 47, 107, 197, 317; 569,

b) having the form 6k + 1: 31, 61, 181, 331; 43, 163, 223, 313, 433; 67, 97,

277,457, 79, 199, 229, 439, 859.

3. The results of the item 2 make it possible to assume that, for any g; larger
than some prime number Pmax, One can always construct a Magic square 3x3
with Magic sum S = 3a, and the prime numbers, ending by the same digit as the
number a;. Pmax equals the following prime numbers:

a) having the form 6k - 1: 5081 (281); 3323 (683); 6257 (557); 3779 (359);

b) having the form 6k+1: 3931 (601); 3253 (523); 4297 (307); 7489 (769),
where in brackets we indicate the least prime numbers a;, for which one can
construct a Magic square 3x3 with S = 3g; and the prime numbers, ending by
the same digit as a;.

4. Let it be required from prime numbers to construct a Magic square 93,
which contains the number g, in its central cell and consists of 9 Magic squares
3x3.

The example of the least Magic square 9x9, constructed only from prime
numbers and consisted of 9 Magic squares 3x3, is shown in figure 4.

If a, > 1019, then the problem on constructing Magic squares 99, discussed
in this item, cannot be solved only for following prime numbers a;:

1021, 1031, 1033, 1039, 1049, 1051, 1061, 1069, 1087, 1091, 1093, (18)
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1097, 1109, 1117, 1123, 1129, 1153, 1171, 1181, 1193, 1201, 1213,
1217, 1229, 1231, 1237, 1249, 1259, 1279, 1283, 1303, 1307, 1321,
1327, 1439, 1453, 1481, 1483, 1489, 1511, 1531, 1543, 1567, 1783.

Figure 4. The example of the least Magic square 9x9, constructed only from
prime numbers and consisted of 9 Magic squares 3x3.

6 Magic Squares 3x3 and 9x9 from Smarandache Numbers of the 2nd Kind

6.1 Magic Squares 3x3 and 9x9 from P;-Series Numbers

Let the notation ch (N) means the quantity of all C-series numbers, whose values

are less than ¥, and the notation Py-series means the prime numbers series.
Proposition 4. For any natural number N the following inequality
Ay (N)2 4, (N) (19)

is fulfilled

Proof. The truth of Proposition 4 follows from the description of P;-series
numbers (see Section 3.1). Namely, Pp-series numbers is subset of Pj-series
numbers at any N and agree with a set of P;-series numbers only if N < 13.

Propeosition 5. P;-series numbers are available for constructing Magic squares
3x3.

Proof. The truth of Proposition 5 follows from Proposition 4 and that the prime
numbers are available for constructing Magic squares 3x3 (see Section 5).

Solving the problems on constructing Magic squares 33 from P;-series
numbers by computer, we find that
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1. Magic squares 3x3, shown in figure 5, are the least ones, constructed from
P;-series numbers.

471 5 |35 50 {11}35 5311141 50 17 [ 38

17129 [ 4 17132147 23]35] 47 23 | 35 | 47

23]s53]1 29]53]14 2915917 3253120
M) @ &) @

Figure 5. The least Magic squares 3x3, constructed from P;-series numbers.

2. Let it be required from P;-series numbers to construct a Magic square 3x3
with the number g, in its central cell.

If a,> 35, then this problem cannot be solved only for the following P;-
series numbers: 38, 43, 47, 50 and 61.

3. Let it be required from Pj-series numbers to comstruct a Magic square
9x9, which contains the number g, in its central cell and consists of 9 Magic
squares 3x3.

Magic square 9x9, shown in figure 6, is the least such one, constructed from
Pi-series numbers.

We note, that

a) in the Magic square 9x9, shown in figure 6, the numbers 215, 35, 143, 59,
203, 119, 227 and 47 may be replaced respectively by 203, 47, 143, 71, 191, 119,
215 and 59;

Figure 6. The least Magic square 9x9, constructed from
P,-series numbers and consisted of 9 Magic squares 3x3.

b) if q,> 194, then the problem on constructing Magic squares 9x9,
discussed in this point, cannot be solved only for following 10 P;-series numbers
a;: 196, 197, 199, 211, 214, 217, 223, 229, 232 and 300.
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6.2 Magic Squares 3x3 and 9x9 from P,-Series Numbers

Proposition 6. For any natural number N the following inequality
Ap(N)< A4, (N) (20)

is fulfilled

Proof. The truth of Proposition 6 follows from the description of Prseries
numbers (see Section 3.2). Namely, P,-series numbers may be obtained by
deleting all prime numbers from P;-series numbers.

It follows from Proposition 6 that, although we know about the availability of
P,- and P,-series numbers for constructing Magic squares 3x3, we cannot state
that P;-series numbers are also available for constructing Magic squares 3x3. To
clear up this situation, let us consider our results, obtained for Ps-series
numbers by computer.

1. Magic squares 3x3, shown in figure 7, are the least ones, constructed from
P,-series numbers.

152 14 [ 110 164 | 50 | 143 203 [ 20 [ 134 215 ] 20 | 140

50 | 92 | 134 98 | 119 | 140 50 | 119 | 188 50 | 125 | 200

74 [ 170 | 32 95 [ 188 | 74 104 | 218 | 35 110 | 230 | 35
M @ (€) @

Figure 7. The least Magic squares 3x3, constructed from Ps-series numbers.

2. Let it be required from P»-series numbers to construct a Magic square 3x3
with the number g, in its central cell.

If a, = 92, 125, 441, 448, 652, 766 or 928, then this problem has a single
solution.

If a,> 125, then this problem cannot be solved only for the foilowing P-
series numbers:

130, 142, 143, 145, 152, 160, 166, 169, 172, 175, 176, 190, 196, 232, @2n
238, 289, 292, 298, 300, 301, 304, 319, 325, 382, 385, 391, 478, 517.

3. Let it be required from P,-series numbers to construct a Magic square
9x9, which contains the number g in its central cell and consists of 9 Magic
squares 3x3.

If a, = 473, then there are 609 the least Magic squares 9x9 with mentioned
properties (the example of such Magic square is shown in figure 8).

If @, > 473, then the problem on constructing Magic squares 9x9, discussed
in this item, cannot be solved only for two P;-series numbers a;: 478 and 517.
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1007 | 140
146 | 575
572 | 1010
785 32

38 410

407 | 788
740 92
164 | 434
398 1 776

Figure 8. The example of the least Magic square 9x9, constructed from
Py-series numbers and consisted of 9 Magic squares 3x3.

6.3 Magic Squares 3x3 and 9x9 from T;-Series Numbers

Proposition 7. There exists such natural number Ny that for any natural N > Ny
the following inequality

A (N)> 4, (N) (22)
is fulfilled

Proof. As it follows from the description of Ti-series numbers (see Section
3.2), this series numbers may be obtained from series odd natural numbers by

deleting all such odd numbers, which are prime numbers decreased by 2. Thus,
we have the following relation

Ag(N)=(N=1)/2= 4, (N) or Ay(N)/ Ap,(N) = {(N-DV2}/ 4, (N)-1  (23)

where the term (N-1)/2 is the quantity of all odd natural numbers, whose \;alues
are less than V. Since [8]

A4, (N)= N{In(N)+1} £ N/In*(N), (24)
we obtain from (23) and (24) that
Ap(N)/ Ap (N) = In(N)/2 - 1>2 forany N> 500. (25)

Thus, Proposition 7 is true, if Np, for instance, equals 500.

Proposition 8. Ty-series numbers are available for constructing Magic squares
3x3.

Proof. The truth of Proposition 8 follows from Proposition 7 and that the prime
numbers are available for constructing Magic squares 3x3.

Let us consider our results, obtained for 7i-series numbers by computer.
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1. Magic square 3x3, shown in figure 9(1), is the least one, constructed from
T-series numbers.

4917137 83113} 63 117 | 19 | 89 185 | 31 | 141

1913143 3353173 47 1 75 ] 103 75 | 119 ] 163

25]55]13 43193123 61 | 131] 33 97 | 207 | 53
0 @ 3 )

Figure 9. Examples of Magic squares 3x3, constructed from T}-series numbers.

2. Let it be required from T;-series numbers to construct a Magic square 3x3
with the number q, in its central cell.

If a, = 53, 75 or 119, then this problem has a single solution {see figure 9(2 -
4)}.

If a, > 31, then this problem cannot be solved only for two 7j-series
numbers: 33 and 47.

3. Let it be required from T)-series numbers to construct a Magic square
9x9, which contains the number g, in its central cell and consists of 9 Magic
squares 3x3.

If g, = 181, then there are 118 the least Magic squares 9x9 with mentioned
properties (the example of such Magic square is shown in figure 10).

If a, > 181, then the problem on constructing Magic squares 9x9, discussed
in this item, can be solved for all Ti-series numbers ;.

Figure 10. The example of the least Magic square 9x9, constructed from
T;-series numbers and consisted of 9 Magic squares 3x3.

If a;, = 181, then there are 118 the least Magic squares 9x9 with mentioned
properties (the example of such Magic square is shown in figure 10).

If a, > 181, then the problem on constructing Magic squares 99, discussed
in this item, can be solved for all T}-series numbers g,
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6.4 Magic Squares 3x3 and 9x9 from T>-Series Numbers
Proposition 9. There exists such natural number Ny that for any natural N > Ny
the following inequality

Ap (N)> Ap (N) (26)
is fulfilled

Proof. As it follows from the description of T»-series numbers (see Section
3.2), this series numbers may be obtained from series natural numbers by

deleting all 2°-th numbers on each k-th step of step-procedure (sicve). Thus, we
have the following relation

An(N)=N _ N 112% = N(-2/{log ) (log(M)+1)}) = 27
- k=

= N(1-2.9%{In(N) (1.44 In(N) + D)}).
We obtain from (24) and (27) that
Ar(N)/ Ap (N) = In(N) >2 forany N>20. (28)
Thus, Proposition 9 is true, if Ny, for instance, equals 20.

Proposition 10. Ty-series numbers are available for constructing Magic
squares 3x3.

Proof. The truth of Proposition 10 follows from Proposition 9 and that the prime
numbers are available for constructing Magic squares 3x3.

Our computations give the following results:

1. Magic squares 3x3, shown in figure 11, are the least ones, constructed
from Tr-series numbers.

2911 121 3315125 St 1129 4311 |33 4315133

9 117125 1312129 512749 17 127} 37 17 | 27 | 37

13{33¢ 5 17137 9 25{53¢1 3 21 153111 2114911
I (2 3 @ &)

Figure 11. The least Magic squares 3x3, constructed from 7,-series numbers.

2. Let it be required from T»-series numbers to construct a Magic square 3x3
with the number g, in its central cell.

If g, > 27, then this problem cannot be solved omly for two 7:-series
numbers: 37 and 49.

3. Let it be required from 73-series numbers to construct a Magic square
9%9, which contains the number g, in its central cell and consists of 9 Magic
squares 3x3.
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395 1 11 [ 29941265} 17 | 1S3 43731 5 | 237
139 1 235 1 331 ] 33 | 145 | 257 1 69 | 205 | 341
171 | 459 | 75 || 137 { 273 | 25 }} 173 } 405 | 37

Figure 12. The example of the least Magic square 9x9, constructed from
T>-series numbers and consisted of 9 Magic squares 3x3.

If g, = 195, then there are 6 the least Magic squares 99 with mentioned
properties (the example of such Magic square is shown in figure 12).

If 4, > 195, then the problem on constructing Magic squares 99, discussed
in this point, cannot be solved only for the following P,-series numbers a;:

197, 201, 205, 213, 213, 217, 221, 225, 229, 237, (29)
245, 249, 257, 261, 269.

7 Concluding Remarks

As it is demonstrated in this paper, preliminary theoretical analysis of number-
theoretic and combinatorial problems is always useful. In particular, the results
of this analysis are able sometimes to provide investigators with valuable
information, facilitating considerably the solution of all such of practical tasks,
which are enumerated in Section 1. We hope, that the technique of theoretical
analysis, elaborated in the paper, will become useful tool of investigators,
occupied in the considered problems.
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