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Let S (n), for n E N+ denote the Smarandache function, then S (n) is defined as the 

smallest m E N+, with nlm!. From the definition one can easily deduce that if n = 

prlp~2 .. . p~k is the canonical prime factorization of n, then Sen) = max{S(pfi)}, where 

the maximum is taken over the i's from 1 to k. This observation illustrates the importance 

of being able to calculate the Smarandache function for prime powers. This paper will be 

considering that process. We will give an upper and lower bound for S(pQ) in Theorem 

1.4. A recursive procedure of calculating S(pQ) is then given in Proposition 1.8. Before 

preceeding we offer these trivial observations: 

Observation 1. Jfp is prime, then S(P) = p. 

Observation 2. Ifp is prime, then S(Pk) ~ kp. 

Observation 3. p divides S(pk) 

Observation 4. If p is prime and k < p, then S(;f) = kp. 

To see that observation 4 holds, one need only consider the sequence 

2,3,4 ... ,p -1,p,p+ 1, ... , 2p,2p+ 1, ... ,3p, ... , kp 

and count the elements which have a factor of p. 

Define Tp(n) = L~l[~J, where [.J represents the greatest integer function. The func­

tion Tp counts the number of powers of pin n!. To relate Tp(n) and Sen) note that SCpO<) 

is the smallest n such that Tp(n) 2:: a. In other words SCpO<) is characterized by 

(*) Tp(S(pO<» 2:: a and Tp(S(PIl:) - 1) ~ a - 1. 
1 
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Lemma 1.0. Forn ~ 1, Tp(n) < ~l 

Corollary 1.1. (p - l)a < Scpo:) ::; pa 

Recall this basic fact about the p-adic representation of a number n. Given n, p E Z and 

p ~ 2, n ~ 0, we can uniquely represent n = Lfr"O aj(n)pi, where each aj E {O, 1, 2, ... ,p-

I}. 

Lemma 1.2. Tp(n) = P~l (n - L;:o aj(n» 

Proof· 

Tp(n) = f[;] = f[L~Oaj(n)piJ 
k=l k=l pk 

= f Lfr"k aj(n)pi = f f aj(n)pi-k 
k=l pk k=1 j=k 

00 j 00 j 

= E L aj(n)pi-k = L aj(n) Epi-k 
j=lk=l j=l k=l 

00 k . 1 CXl 

= E ak(n) Lpk-1 = -=1 L ak(n)(pk - 1) 
k=l j=l P k=l 

1 00 

= -=1 L(ak(n)pk - ak(n» 
p k=l 

1 00 

= p_1 (n- Lak(n» 0 
k=O 

Lemma 1.3. If n ~ 1 then 

00 

1::; L aj(n) ::; (p - 1)[[logp(n)] + I]. 
j=O 

Proof. For each aj we have aj ::; p - 1. Note that in the p-adic expansion of n, aj(n) = 0 

for all j > [logp(n)}. Thus we have 1 ::; L;:o aj(n) ~ (p - l)([logp(n)] + 1). 
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Now using the characterization * and Lemma 1.2, we get the following 
00 

ScpO<) - L aAS(pct)) ~ (p - l)a and 
j=O 

00 

(**) ScpO<) - 1 - L aj(S(pct) - 1) ::; (a - 1)(P - 1). 
j=O 

Applying Lemma 1.3 to the first inequality for S(pct), yields a lower bound of 

This lower bound cannot be improved since we obtain equality when a = p + 1, in fact 

we achieve equality whenever a = pt + pt-l + ... + p + 1 for t ~ 1. Now S(pct) is clearly 

integer valued, so one may choose to write the lower bound as S(pct) > (p - l)a. 

From the latter inequality (**), we get the following. 
00 

ScpO<) ::; (p -l)(a -1) + 1 + :L aj(S(pO<) - 1) 
j=O 

::; (p - l)(a - 1) + 1 + (p - l)([logp(S(pct) - 1)] + 1) 

= (p - l)(a -1) + 1 + (p - l)[lo~(S(pO<) -1)] + (p - 1) 

= a(p -1) + (p - I)Vogp (S(pa) -1)] + 1 

::; a(p -1) + (p - 1)[lo~(pa - 1)] + 1 

::; a(p - 1) + (p - l)~ogp(pa)l + 1 

= a(p - 1) + (p - l)[lo~(a) + 1] + 1 

= a(p -1) + (p - l)[lo~(a)] + (p - 1) + 1 

= (p -l)[a + 1 + logp(a)] + 1 

Theorem 1.4. For any prime p and any integer a, we have 

(p - l)a + 1::; ScpO<) ::; (p - l)[a + 1 + logp(a)] + 1. 

We now consider the sharpness of this upper bound. Note that when a = pk - k the 

upper bound yields the value (p - l)pk + 1. As it turns out S(pPk-k) is one less than this 

yield. 
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Proof. Consider 
(Xl k+1 k 

Tp(pk+l - pk) = L:[p pl- p ] 
l=1 

= (pk _ pk-l) + (pk-l _ pk-2) + ... + (p2 _ p) + (p _ 1) = pk _ 1 

and 

(Xl k+1 pk 1 
Tp(pk+1 - pk -1) = L:[p -, - ] 

1=1 P 

= [pk _ pk-l _~] + [pk-1 _ pk-2 _~] + ... + [1- ~ __ 1_] 
p r p pk+l 

= (pk _ pk-l _ 1) + (pk-1 _ pk-2 _ 1) + ... + (p -1- 1) + 0 

= pk _ (k + 1). 

Thus we have produced infinitely many values that are within one of the upper bound. 

If we recall Observation 3, the upper bound should be congruent to 0 mod p. So one could 

subtract the remainder of the upper bound when dividing by p from the upper bound and 

make it sharp. We shall omit that task in this paper. 

We now turn our attention to answering the question when is S(pOl) = pfl. Consider the 

following calculations, verification is left for the reader. 

Tp(pP+l) = pP + pP-l + _. -+ p+ 1 

Tp(pP+1 - 1) = pP + pP-l + ... + p - {3 

Tp(rf3) = pP-l + [13-2 + ... + p + 1 

Tp(rf3 - 1) = pP-l + [13-2 +". + p + 1 - f3 

Thus we have S(pQ) = pf3+l if pfl +pfl-1 +". +p+ 1- f3 ~ a ~ pi' + pfl-l + -" +p+ 1. If 

pfl-l+pfl-2+ __ '+p+1 ~ a < pf3+pfl-1+" ,+p+1-{3, then we havepi' ~ S(pOl) < pP+l, 

We now offer a recursive procedure for calculating S(pQ), The following is a technical 

lemma that will be used in proving the recursion formula, 

40 



BOUNDING THE SMARANDACHE FUNCTION 

Lemma 1.6. Suppose we have pf3 ~ r < pf3+1, for some [3 2: 0, then 

Proof· 

Lemma 1.7. Ifpf3-1 + pP-2 + ... + p + 1 ~ a < pP + pP-l + ... + p + 1, then S(pC<) = 

pf3 + S(pc<-(pJ3-1+~-2+ .. +p+1)). 

Proof. Case 1: Assume that pP-1 + pf3-2 + ... + p + 1 ~ a < pP + pf3-1 + ... + p + 1- [3. 

S(pC<) = min{rITp(r) 2: a} 

= min{rITp(r) 2: a and rI ~ r < rI+1} 

= min{rITpr,pl3) + Tp(r - rI) 2: a and rf3 ~ r < ~+1} 

=;1 + min{r - rllTp(r - rI) 2: a - Tp(pf3) and 0 ~ r - rf3 < rf3+1 - rI} 

=;1 + min{rITp(r) 2: a - Tp(pP) and 0 ~ r < ;1+1 - rf3 = pf3(p - 1)} 

=;1 + S(pa-T,,(pD) 

=;1 + S(pQ-(pi'-1+~-2+ .. +p-tl) 

Case 2: Assume that pf3 + pf3-1 + ... + p + 1 - [3 ~ a < pf3 + pf3-1 + ... + p + 1. From the 

prior calculations of Tp(p/3+1) and Tp(]f'+1 -1) we have the S(pQ) = pf3+1 for any a in this 

range. Now consider the right hand side of the equation, pf3 + S(pc<-(~-1+pJ3-2+ .. +P+l». 

We can restate this expression as rf3 + sept), where pf3 - {3 ~ t < rf3. From the proof of 

Lemma 1.4 we see that Tp(pf3+1 - pf3) = pf3 - 1 and Tp(p/3+1 - pP - 1) = pf3 - {3 - 1, thus 

it must be that sept) = pf3+1 - pf3. Therefore the right hand side is rf3+1. 0 
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Clearly this lemma can he repeated as long as a - (pI3-I + ... 1) ~ pf3-1 + ... 1, so we 

can strengthen Lemma 1.6. 

Proposition 1.8. If d = V-I +pf3-2 + ... + p + 1 :::; a < pf3 + pi3-1 + ... + p + 1, write 

a = qd + r with 0 $ r < d, then S(pCL) = q']13 + S(pr). 

Now pf3 + pP-l + ... + P + 1 = ']13(1 + ~ + ... + ~) $ V;':ll. Therefore we get logp a < 

logp(PP + ... + 1) =.B + 1 -logp(P - 1) < .B + 1, and similarly {3 - 1 < (3 -logp(p - 1) < 

logp(a) < (3 + 1, or logp a - 1 < .B < logp a + 1. Hence the exact value of S(pCL) can be 

obtained by applying the proposition on the order of logp a times. 
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