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1. The famous Smarandache function is defined by S(n) := min{k EN: nlk~}, n ~ 1 

positive integer. This arithmetical function is connected to the number of divisors of n, 

and other important number theoretic functions (see e.g. [6], [7], [9], [10]). A very natural 

generalization is the following one: Let f : N* ~ N* be an arithmetical function which 

satisfies the following property: 

(Pd For each n E N* there exists at least a k E N* such that nlf(k). 

Let Fj : N* ~ N- defined by 

Fj(n) = min{k EN: nlf(k)}. (1) 

Since every subset of natural numbers is well-ordered, the definition (1) is correct, and 

clearly Fj ( n) ~ 1 for all n E N-. 

Examples. 1) Let id( k) = k for all k ~ 1. Then clearly (Pd is satisfied, and 

(2) 
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2) Let f(k) = kL Then F!(n) = S(n) - the Smarandache function. 

3) Let f(k) = Pk!, where Pk denotes the kth prime number. Then 

(3) 

Here (PI) is satisfied, as we can take for each n 2: 1 the least prime greater than n. 

4) Let J(k) = c.p(k), Euler's totient. First we prove that (PI) is satisfied. Let n ~ 1 

be given. By Dirichlet's theorem on arithmetical progressions ([1]) there exists a positive 

integer a SLlch that k = an + 1 is prime (in fact for infinitely many a's). Then clearly 

r.p(k) = an, which is divisible by n. 

We shall denote this function by F",. (4) 

5) Let J(k) = cr(k), the sum of divisors of k. Let k be a prime of the form an - 1, 

where n ~ 1 is given. Then clearly cr(n) = an divisible by n. Thus (Pd is satisfied. One 

obtains the arithmetical function Fa. 

2. Let A c N., A =I 0 a nonvoid subset of N, having the property: 

(P2 ) For each n 2: 1 there exists k E A such that n\k!. 

Then the following arithmetical function may be introduced: 

SA(n) = min{k E A: nlk!}. 

Examples. 1) Let A = N-. Then SN(n) == S(n) - the Smarandache function. 

(5) 

(6) 

2) Let A = Nl = set of odd positive integers. Then clearly (P2 ) is satisfied. (7) 

3) Let A = N2 = set of even positive integers. One obtains a new Smarandache-type 

function. (8) 

4) Let A = P = set of prime numbers. Then Sp(n) = min{k E P: nlk!}. We shall 
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denote this function by P( n), as we will consider more closely this function. (9) 

3. Let 9 : N* -1- N· be a given arithmetical function. Suppose that 9 satisfies the 

following assumption: 

(P3 ) For each n ~ 1 there exists k ~ 1 such that g(k)ln. 

Let the function Gg : N* -1- N· be defined as follows: 

Gg(n) = max{k E N*: g(k)ln}. 

(10) 

(11 ) 

This is not a generalization of S(n), but for g(k) = k!, in fact one obtains a "dual"­

function of 5 (n), namely 

G!(n) = max{k E N*: k!ln}. (12) 

Let us denote this function by S.(n). 

There are many other particular cases, but we stop here, and study in more detail 

some of the above stated functions. 

4. The function P( n) 

This has been defined in (9) by: the least prime P such that nip!. Some values are: 

P(l) = 1, P(2) = 2, P(3) = 3, P(4) = 5, P(5) = 5, P(6) = 3, P(7) = 7, P(8) = 5, 

P(9) = 7, P(10) = 5, P(l1) = 11, ... 

Proposition 1. For each prime p one has P(p) 

P(n) = greatest prime divisor of n. 

p, and if n is squarefree, then 

Proof. Since pip! and p f q! with q < p, clearly P(p) = p. If n = PIP2 ... pr is squarefree, 

with Pl,""P,· distinct primes, if Pr = max{Pl,···,Pr}, then Pl·.·PrIPr!. On the other 

hand, PI ... p,. t q! for q < pr, since pr f q!. Thus pr is the least prime with the required 

property. 
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The calculation of P(p2) is not so simple but we can state the following result: 

Proposition 2. One has the inequality P(p2) ~ 2p + 1. If 2p + 1 = q is prime, then 

P(p2) = q. More generally, p(pm) ~ mp + 1 for all primes p and all integers m. There is 

equality, if mp + 1 is prime. 

Proof. From p21 (1· 2 ... p )(p+ 1) ... (2p) we have p21 (2p )!. Thus P(p2) ~ 2p+ 1. One has 

equality, if 2p+ 1 is prime. By writing pmll ·2 .. . p(p + 1) ... 2p ... [(m -l)p + 1] ... mp, 
~~' v J 

where each group of p consecutive terms contains a member divisible by p, one obtains 

Remark. If 2p + 1 is not a prime, then clearly P(p2) ~ 2p + 3. 

It is not known if there exist infinitely many primes p such that 2p + 1 is prime too 

(see (4)). 

Proposition 3. The following double inequality is true: 

2p + 1 ~ p(p2) ~ 3p - 1 (13) 

mp + 1 :::; p(pm) :::; (m + l)p - 1 (14) 

if p ~ Po. 

Proof. Vie use the known fact from the prime number theory ([1], [8]) tha for all a ~ 2 

there exists at least a prime between 2a and 3a. Thus between 2p and 3p there is at least 

a prime, implying P(p2) :::; 3p - 1. On the same lines, for sufficiently large p, there is a 

prime between mp and (m + l)p. This gives the inequality (14). 

Proposition 4. For all n, m 2: lone has: 

S(n) :::; Pen) :::; 2S(n) - 1 (15) 
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and 

P(nm) ::; 2[P(n) + P(m)]- 1 (16) 

where S( n) is the Smarandache function. 

Proof. The left side of (15) is a consequence of definitions of S(n) and P(n), while the 

right-hand side follows from Chebyshev's theorem on the existence of a prime between a 

and 2a (where a = S(n), when 2a is not a prime). 

For the right side of (16) we use the inequality S(mn) ::; S(n) + S(m) (see [5]): 

P(nm) ::; 2S(nm) - 1 ::; 2[S(n) + S(m)]- 1 ::; 2[P(n) + P(m)]- 1, by (15). 

Corollary. 

lim y'P(n) = 1. 
n-+oo 

(17) 

This is an easy consequence of (15) and the fact that lim y'S(n) = 1. (For other 
n-+oo 

limits, see [6]). 

5. The function S.(n) 

As we have seen in (12), S.(n) IS m certain sense a dual of S(n), and clearly 

(S.(n))!JnJ(S(n))! which implies 

thus, as a consequence, 

1 ::; S.(n) ::; S(n) ::; n 

lim )S.(n) = 1. 
n-+oo V S(n) 

On the other hand, from known properties of S it follows that 

. . S.(n) 
Ilmmf-

S
( ) = 0, 

n-+oo n 

. S.(n) 
ltm sup -S( ) = l. 

n-+oo n 

For odd values n, we clearly have S.(n) = 1. 
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Proposition 5. For n ~ 3 one has 

S.(n! + 2) = 2 (21) 

and more generally, if p is a prime, then for n ~ p we have 

S.(n! + (p - I)!) = P - 1. (22) 

Proof. (21) is true, since 21(n! + 2) and if one assumes that k!l(n! + 2) with k 2: 3, 

then 3!(n! + 2), impossible, since for n ~ 3, 3In!. So k < 2, and remains k = 2. 

For the general case, let us remark that if n ~ k + I, then, since kl(n! + k!), we have 

S.(n! + k!) ~ k. 

On the other hand, if for some s ~ k + 1 we have s!l(n! + k!), by k + 1 ::; n we get 

(k + l)l(n! + k!) yielding (k + l)lk!, since (k + l)ln!. So, if (k + l)lk! is not true, then we 

have 

S.(n! + k!) = k. (23) 

Particularly, for k = p - 1 (p prime) we have p t (p - I)!. 

Corollary. For infinitely many m one has S.(m) = p - 1, where p is a given prime. 

Proposition 6. For all k, m 2: 1 we have 

S.(k!m) ~ k (24) 

and for all a, b 2: 1, 

S.(ab) ~ max{S.(a), S.(b)}. (25) 

Proof. (24) trivially follows from k!l(k!m), while (25) is a consequence of (S.(a))!ja ~ 

(S.(a))!I(ab) so S.(ab) 2: S.(a). This is true if a is replaced by b, so (25) follows. 
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Proposition 7. S.[x(x - 1) ... (x - a + 1)] 2: a for all x 2: a (x positive integer).(26) 

Proof. This is a consequence of the known fact that the product of Q consecutive 

integers is divisible by a!. 

We now investigate certain properties of S_(a~b~). By (24) or (2.5) we have S.(a!b~) 2: 

max{ a, b}. If the equation 

arb! = c! (27) 

is solvable, then clearly S.( arb!) = c. For example, since 3!· 5! = 6!, we have S.(3! ·5!) = 6. 

The equation (27) has a trivial solution c = k!, a = k! -1, b = k. Thus S.(k!(k! -1)!) = k. 

In general, the nontrivial solutions of (27) are not known (see e.g. [3], [1]). 

We now prove: 

Proposition 8. S.((2k)!(2k + 2)!) = 2k + 2, if 2k + 3 is a prime; 

S.((2k)!(2k + 2)!) 2: 2k + 4, if 2k + 3 is not a prime. 

(28) 

(29) 

Proof. If 2k + 3 = p is a prime, (28) is obvious, since (2k + 2)!1(2k)!(2k + 2)!, but 

(2k + 3)! f (2k)!(2k + 2)!. We shall prove first that if 2k + 3 is not prime, then 

(2k + 3)1(1 ·2 ... (2k)) 

Indeed, let 2k + 3 = ab, with a, b 2: 3 odd numbers. If a < b, then a < k, and 

2 
from 2k + 3 2: 3b we have b ::; '3k + 1 < k. So (2k)! is divisible by ab, since a,b are 

distinct numbers between 1 and k. If a = b, i.e. 2k + 3 = a2
, then (*) is equ~valent with 

a 2 J(1 ·2 ... a)(a + 1) ... (a 2 
- 3). We show that there is a positive integer k such that 

a+ 1 < ka::; a2 -3 or. Indeed, a(a-3) = a2 -3a < a2 -3 for a> 3 and a(a-3) > a+1 

by a 2 > 4a + I, valid for a 2: 5. For a = 3 we can verifiy (*) directly. :-row (*) gives 

(2k + 3)!J(2k)!(2k + 2)!, if 2k + 3 =1= prime (** ) 
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implying inequality (29). 

For consecutive odd numbers, the product of factorials gives for certain values 

5.(3! . 5!) = 6, 5.(5!· 71) = 8, 5.(7!· 9!) = 10, 

5.(9! . ll!) = 12, 5.(ll!· 13!) = 16, 5.(13!· 15!) = 16, 5.(15!· 17!) = 18, 

5.(17! ·191) = 22, 5.(19!· 211) = 22, 5.(211·231) = 28. 

The following conjecture arises: 

Conjecture. 5.((2k - 1)!(2k + 1)1) = qk - 1, where qk is the first prime following 

2k + 1. 

Corollary. From (qk - 1)!\(2k - 1)!(2k + I)! it follows that qk> 2k + 1. On the other 

hand, by (2k - 1)!(2k + 1)!j(4k)!, we get qk :S 4k - 3. Thus between 2k + 1 and 4k + 2 

there is at least a prime qk. This means that the above conjecture, if true, is stronger than 

Bertrand's postulate (Chebyshev's theorem [1), (8)). 

6. Finally, we make some remarks on the functions defined by (4), (5), other functions 

of this type, and certain other generalizations and analogous functions for further study, 

related to the Smarandache function. 

First, consider the function F.., of (4), defined by 

F.., = min{k E N* : nllP(k)}. 

First observe that if n + 1 = prime, then n = <pen + 1), so F..,(n) = n + 1. Thus 

n + 1 = prime => FAn) = n + 1. (30) 

This is somewhat converse to the <p-function property 

n + 1 = prime => <pC n + 1) = n. 
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Proposition 9. Let cPn be the nth cyclotomic polynomial. Then for each a > 2 

(integer) one has 

F",(n) ::; cPn(a) for all n. (31 ) 

Proof. The cyclotomic polynomial is the irreducible polynomial of grade cp( n) with 

integer coefficients with the primitive roots of order n as zeros. It is known (see [2]) the 

following property: 

nlcp(cPn(a)) for all n ~ 1, all a ~ 2. (32) 

The definition of F", gives immediately inequality (31). 

Remark. 'vVe note that there exist in the literature a number of congruence properties 

of the function cpo E.g. it is known that nlcp(an 
- 1) for all n ~ 1, a ~ 2. But this is a 

consequence of (32), since <Pn(a)lan - 1, and ulv =:;. cp('u)lcp(v) implies (known property 

of cp) what we have stated. 

The most famous congruence property of cp is the following 

Conjecture. (D.H. Lehmer (see [4])) If cp(n)l(n - 1), then n = prime. 

Another congruence property of cp is contained in Euler's theorem: ml(a",(m) - 1) for 

(a, m) = 1. In fact this implies 

S.[a",(m!) - 1] ~ m for (a, m!) = 1 (33) 

and by the same procedure, 

S.(cp(an! - 1)] ~ n for all n. (34) 

As a corollary of (34) we can state that 

limsupS.[cp(k)] = +00. (35) 
k~co 
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(It is sufficient to take k = an! - 1 -r 00 as n -r 00). 

7. In a completely similar way one can define Fd(n) = miu{k: nld(k)}, where d(k) is 

the number of distinct divisors of k. Since d(2n-l) = n, one has 

(36) 

Let now n = p~I ... p~r be the canonical factorization of the number n. Then Smaran-

dache ([91) proved that S(n) = max{S(p~l), ... ,S(]J~r)}. 

In the analogous way, we may define the functions S,,:-( n) = max{ r..p(p~ 1), ... , c.p(p~r)}, 

5<7 ( n) = max{ a(p~l ), ... , a(p~r)}, etc. 

But we can define S~( n) = min{ cp(p~l), . .. ,cp(p~r)}, Sl( n) = min{ c.p(p~l), ... ,<p(p~r)}, 

etc. For an arithmetical function f one can define 

~f(n) = l.c.m.{f(p~l), ... , f(p~r)} 

and 

is f( n) = g.c.d. {f(p~l ), ... , f(p~r)}. 

For the function ~<p(n) the following divisibility property is known (see [8], p.140, 

Problem 6). 

If (a, n) = 1, then 

nl[a~",(n) - 1]. (37) 

These functions and many related others may be studied in the near (or further) 

future. 
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