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Abstract: The aim oj this article is to study the convergence oj the Euler 
harmonic series. Firstly, the results concerning the convergence oj the 
Smaralldache and Erdos harmonic junctions are reviewed Secondly, the Euler 
harmonic series is proved to be convergent jor a> I, and divergent otherwise. 
Finally, the slims of the Euler harmonic series are given 
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The purpose of this article is to introduce the Euler harmonic series and to study its 
convergence. This problem belongs to a new research direction in Number Theory that is 
represented by convergence properties of series made with the most used Number Theory 
functions. 

1. Introduction 

In this section, the important results concerning the hannonic series for the Smarandache and 
Erdos function are reviewed. 

• ~ 1 
Definition 1. If f: N ~ N is a function, then the series ~--- is the harmonic series 

n<!! JQ(n) 

associated to f and is shortly named the /harmonic series. 

The convergence of this sort of series has been studied for the Smarandache and Erdos 
functions so far. Both are important functions in Number Theory being intensely studied. The 
defInitions and main properties of these two important functions are presented in the 
following: 
• The Smarandache function is S: N* ~ N defIned by 
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Sen) = min~k E: ly';k' =Mn } ('itn EN *). 
• The Erdos fWlction is P : :.V* ~ i'i defmed by 

(1) 

pen) = max~pE Ni n =Mp A pisprim}('itnE: /'i*' [I}), P(l) = O. (2) 
TIle main propel1ies of them are: 

('-i a,b E N *) (a,b) = l~S(a· b) = max ~S(a ),5(b)}, P(a· b) = max {P(a),P(b)} . 

('ita E N *) P(a) ~ Sea) ~ a and the equalities occur iifa is prim. 

Erdos [1995] found the relationship between these 1:\'';0 fWlctions that is given by 

. tv = l,n j P(i) < S(i)} 
lim = O. 

n 

1 1 
The series I-- and I-- are obviously divergent from Equation (4). 

n~2 Sen) n~2 pen) 

(3) 

(4) 

(5) 

1 
The divergence of the series I-,- was an open problem for more than ten years. Tabirca 

n~2 S-(n) 

[1998J proved the its divergence using an analytical technique. Luca [1999] was able to prove 
1 

the divergence of the series I-- refming Tabirca's technique. TIlllS, the Smarandache 
n~2 SG(n) 

1 
hannonic series I-a-" a E R is divergent. Based on this result and on Equation (5), 

n~2 S (n) 

1 
Tabirca [1999] showed t.ltat the Erdos hannonic series I--, a E R is divergent too. 

n~2 pU(n) 

Unfortunately, this convergence property has not been studied for the Euler function. This 

function is defmed as follow: rp:N ~ N, ('lin EN) rp(n) = i{k = 1,2, ... ,ni (k,n) = I}I. 
The main properties [Hardy & Wright, 1979] of this function are enumerated in the followmg: 

('v' a,b E N)(a,b) = 1 ~ rp(a' b) = rp(a)· rp(b) - the multiplicative property (6) 

a=p~' .p';' ..... p;' ~rp(a)=a-(l- fpJ-(l- fpJ .... -(l- fpJ (7) 

('v'aEN)Irp(d)=a. (8) 
dla 

More properties concerning this function can be found in [Hardy & Wright, 1979], [Jones & 
Jones, 1998] or [Rosen, 1993] 

2. The Convergence of the Euler Harmonic Series 
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In this section, the problem of the convergence for the Euler harmonic series is totally solved. 

The Euler harmonic series I_I_, (J EO R is proved to have the same behavior as the 
n:!l rpLl(n) 

1 
harmonic series I -;-, a E R. 

n~1 n 

1 
Proposition 1. The series )' -- is divergent for a ~ 1 . 

~ rp"(n) 

Proof 
The proof is based on the equation 

rp( n) ~ n (vr n ~ 1). (9) 

1 1 1 1 
Since -a- ~ -;; (~ n ~ 1) and I -;; is divergent, it follows that I-- is divergent 

rp (n) n ,,~I n n~1 rp"(n) 

too . 

• 
The convergence of the series for a> 1 is more difficult than the previous and is studied in the 
following. 

Let us defme the function d: N* ~ N by d(n) = 1{P prime: n ==Afp}. The main properties of 

this function are given by the next proposition. 

Proposition 2. The function d satisfies the following equation: 
a) d(l)=O. 

b) ('it a,b E N*)(a,b) = 1 => d(a·b) = d(a)+d(b). 

c) ('it n E N *) den) ~ log2(n). 
Proof 
Equation (lOa.) is obvious. 

(lOa.) 

(lOb.) 

(lOc.) 

L m, m~ "', d b k, k, k, b th' b d . . f et a=PI 'pz ·····Ps an =ql' 'q2' ·····qt e epnmenwn er ecomposlllono 

I · . b Th b m, m. M ", k, k· th two re atlve pnme num ers. us, a· = PI . P2' ..... Ps ' . ql . q2' ..... qr' gIves e 

prime number decomposition for abo Since the equation d (a . b) = s + t, d (a) = s and 

d (b) = t hold in the above hypothesises, Equation (lOb) is true. 

Let n = P;"" . P;~ ..... p;. be the prime nwnber decomposition of n. Equation (lOb) gives 

the following inequality 

den) = d(p~l . P;~ ..... p;') = d(P,m,) + d(p;~) + ... + d(p;') = 1 + 1 + ... + 1 ~ 

~ logz (elM, )+ log2 (p;~ ) + ... + log2 (p~, ) = log2 (p~l . p;~ ..... P;' ) = logz (n) 

that proves Equation (lOc). 

The following proposition proposes a new inequality concerning the Euler fWICtiOIl. 
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Proposition 3. ('\1' n ~ l)cp(n) ~ n . 
1 + logz n 

Proof 

Let n = p;" . P;' ..... P;' be the prime nwnber decomposition of n such that 

PI <P2 <···<Ps· Thus, cp(n)=n.(I- 1/ ).(1- 1/ ) ..... (1- 1/ I holds. Using 
/ PI / P2 \ / Ps) 

the order PI <pz <···<Ps, it follows that 2~PI,3~p2,.··,d(n)+I<ps. These 

inequalities are used as follows: 

cp(n)=nJll--liJll-_l J ..... [I--1 J~ 
PI) P2 . Ps 

;, n (l-H( I-H(l- d(n~+ 1) ~ d(:;+ 1 
n 

Equation (lOc) used in the last inequality gives cp(n) ~ ----
1+ log2 n 

(1+10 0 n)a 
Proposition 4. If a> 1, then the series II ~2 is convergent. 

n2!1 \ n 
Proof 

• 

The proof uses the following convergence test: "if (an )n>O is a decreasing sequence, then the 

series Ian and I2" ·a
2
" have the same convergence". 

n>O n>O 

Because the sequence (C + 1:g2 n J) is decreasing, the above test can be applied. The 

n>O 

I 2n [ 1 + 10g2 2" Ja I (1 + n t - 2a - 1 I n
a 

condensed series is . " - that is obviously 
2 - ?".(a-I) 2,,·(a-l) 

n2!1 n2!! - n2!2 

convergent. 

Th eorem 5. If a> 1, then the series I. _1_ is convergent. 
n~! cpa(n) 

Proof 

• 

d· .. 4 th . ,(1+IOg2 n)a. p ....... Accor mg to PropOSItIon , e senes L.. IS convergent. roposioon.J gIVes the 
nd n 

inequality thus the series is convergent too. 

• 

199 



The interesting fact is that the Euler harmonic series has the same beha\iour as the classical 
harmonic series. Therefore, both are convergent for a> 1 and both are divergent for a~ 1. The 
right question is to fInd information about the sum of the series in the convergence case. Let 

1 
us denote £ (a) = I -- the sum of the Euler harmonic series for a> 1. These constants 

n"j rpG(n) 

can be computed by using a simple computation. They are presented in Table 1 for a=2,3, 
... ,7. 

a E(a) a E(a) 
2 3.39049431 5 2.09837919 
3 2.47619474 6 2.04796102 
4 ! 2.20815078 7 I 2.02369872 

Table 1. The values for E(a). 

Unfortunately, none of the above constants are known. Moreover, a relationship 
between the classical constants (n; e, .) and them are not obvious. Finding 
properties concerning the constants £(a) still remains an open research problem. 
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