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1 Introduction 

In paper [3] we have defined certain generalizations and extensions of the Smaran­

dache function. Let f : N* -+ N* be an arithmetic function with the following property: 

for each n E N* there exists at least a k E N* such that nlf(k). Let 

FJ : N* -+ N* defined by FJ(n) = min{k E N*: nlf(k)}. (1) 

This function generalizes many particular functions. For f( k) = k! one gets the 

Smarandache function, while for f(k) = k(k: 1) one has the Pseudo-Smarandache func­

tion Z (see [1], [4-5]). In the above paper [3] we have defined also dual arithmetic functions 

as follows: Let 9 : N* -+ N* be a function having the property that for each n 2:: 1 there 

exists at least a k 2:: 1 such that g(k)ln. 

Let 

Gin) = max{k E N*: g(k)ln}. (2) 

For g(k) = k! we obtain a dual of the Smarandache function. This particular function, 

denoted by us as S* has been studied in the above paper. By putting g(k) = k(k: 1) 

one obtains a dual of the Pseudo-Smarandache function. Let us denote this function, 

by analogy by Z •. Our aim is to study certain elementary properties of this arithmetic 

function. 
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2 The dual of yhe Pseudo-Smarandache function 

Let 

Recall that 

First remark that 

. { k(k + I)} Z( n) = mm k E N*: nl 2 . 

{ 

2, p = 3 
Z.(I) = 1 and Z.(p) = 

1, Pi: 3 

(3) 

(4) 

(5) 

h . b· . Id __ .J 2 . 3 13b m(m+l)l£ ....t. were P IS an ar Itrary prIme. n =-u, 2 = 3 ut 2 P or P T 3 is possible 

only for m = L More generally, let s ~ 1 be an integer, and p a prime. Then: 

Proposition 1. 

Z.(p3) = { 2, P = 3 
1, P# 3 

(6) 

Proof. Let me"; + 1) lp3. If m = 2M then k!(2At[ + 1)lp3 is i~possible for M > 1 

since M and 2k! + 1 are relatively prime. For M = 1. one has m = 2 and 31p3 only if 

p = 3. For m = 2M -1 we get (2.M -1)Mjpk, where for At! > 1 we have (M, 2kf -1) = 1 

as ahove, while for k! = 1 we have m = l. 
The function Z. can take large values too, since remark that for e.g. n = O(mod6) we 

have 3 ~ 4 
= 61n, so Z.( n) ~ 3. More generally, let a be a given positive integer and n 

selected such that n == O(moda(2a + 1». Then 

Z.(n) ~ 2a. 

Indeed, 2a(2~ + 1) = a(2a + 1)ln implies Z.(n) ~ 2a.' 

A similar situation is in 

Proposition 2. Let q be a prime such that p = 2q - 1 is a prime, too. Then 

Z.(pq) = p. 
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PCP + 1) Proof. 2 = pq so dearly Z.(pq) = p. 

Remark. Examples are Z.(5·3) = 5, Z.(13· 7) = 13, etc. It is a difficult open problem 
that for infinitely many q, the number p is prime, too (see e.g. [2]). 

Proposition 3. For all n ~ lone has 

1 ~ Z.(n) ~ Zen). (9) , 
. . m(m+1) k(k+1) Proof.By(3)and(4)w~canwrlte 2 Inl 2 ,thereforem(m+1)lk(k+1). 

If m > k then dearly m(m + 1) > k(k + 1), a. contradiction. 

Corollary. One has the following limits: 

lim Z.(n) = 0, lim Z.(n).= 1 
n~ Zen) n-+<lO Zen) . (10) 

Proof. Put n = p (prime) in the first relation. The first result follows by (6) for s = 1 

( ) a(a+1) - Z.(n) and the well-known fact that Z p = p. Then put n = 2 ,wh~n Zen) = 1 and let 
a --t 00. 

As we have seen, 

Z ( a( a; 1») = Z. (a( a: 1») = a. 

a (4 + 1) I k( k + 1) . . Indeed, 2 2 IS true for k = a and IS not true for any k < 4. In the same 
manner, me"; + 1) I a(a; 1) is valied for m = a but not for any m > a. The following 
problem arises: Wha.t are the solutions of the equation Zen) = Z.(n)? 

Proposition 4. All solutions of equation Zen) = Z.(n) can be written in the form 
n = r( r + 1) (r E N*). . 

2 
t(t+l) t(t+1) .. Proof. Let Z.(n) = Zen) = t. Then n/ 2 In so 2 = n. ThIS gIVes t 2 + t -

2n = 0 or (2t + 1)2 = 8n + 1, implying t = v8n ~ 1 -1, where 8n + 1 = m 2 • Here m 
(m -l)(m + 1) m-1 must be odd, let m = 2r + 1, so n = 8 and t = -2-' Then m - 1 = 2r, 

r(r + 1) m + 1 = 2( r + 1) and n = 2 . 

Proposition 5. One has the following limits: 

lim y'Z.(n) = lim y'Z(n) = 1. n-+oo n-+oo (ll) 
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Proof. It is known that Zen) :5 2n - 1 with equality only for n = 2k (see e.g. [.5]). 

Therefore, from (9) we have 

1 :5 y'Z*(n) :5 y'Z(n) :5 V'2n -1", 

and by taking n -7 00 since V'2n - 1 -7 1, the above simple result follows. 

As we have seen in (9), upper bounds for Zen) give also upper bounds for Z.(n). E.g. 

for n = odd, since Zen) :5 n -1, we get also Z.(n) :5 n -1. However, this upper bound 

is too large. The optimal one is given by: 

Proposition 6. 
. yfSn + 1-1 

Z*(n) :5 2 for all n. (12) 

Proof. The definition (3) implies with Z .. ( n) = m that m( n; + 1) In, so m( n; + 1) :5 n, 

i.e. m 2 + m - 2n :5 O. Resolving this inequality in the unknown m, easily follows (12). 

Inequality (12) cannot be improved since for n = P(P: 1) (thus for infinitely many n) 

we have t>quality. Indeed, 

(VS(P; l)p + 1-1) /2 = (y'4p{p +1)+ 1-1) /2 = [(2p+ 1) -lJ/2 = p. 

Corollary. 

lim Z.(n) = 0, 
n~ Vn 

(13) 

Proof. While the first Iimit is trivial (e.g. for n = prime), the second one is a 

consequence of (12). Indeed, (12) implies Z.(n)/.,fii :S ../'i (VI + 8~ -If), i.e. 

-Ii Z.(n) In B h' Ii . . r p(p+ 1) ( ) m r.:::5 v 2. ut t IS upper mIt IS exact lor n = 2 p -+ 00 . 
n~ yn 

Similar and other relations on the functions Sand Z can be found in [4-5}. 

An inequality connecting S .. (ab) with S .. (a) and S .. (b) appears in [3]. A similar result 

holds for the functions Z and Z •. 

Proposition 7. For all a, b 2:: lone has 

Z.(ab) 2:: max{Z .. (a) , Z.(b)}, (14) 
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Z(ab) ~ ma.x{Z(a), Z(b)} ~ max{Z.(a), Z.(b)}. (15) 
m(m+ 1). . m(m + 1) Proof. If m = Z.(a), then 2 lao Smce alab for all b ~ 1, clearly 2 lab, 

implying Z.(ab) ~ m = Z.(a). In the same manner, Z.(ab) ~. Z.(b), giving (14). 
Let now k = Z(ab). Then, by (4) we can write ab,k(k: 1). By alab it results 

a/k(k: 1), implying Z(a) :5 k = Z(ab). Analogously, Z(b):5 Z(ab), which via. (9) gives 
(15). ' 

Corollary. Z.(3S 
• p) ~ 2 for any integer s ~ 1 and any prime p. (16) 

Indeed, by (14), Z.(3S 
• p) ~ niax{Z.(3S

), Z(p)} = max{2, I} = 2, by (6). 
We now consider two irrational series. 

P . . Th . ~ Z.(n) d ~ (_I)n:-1Z.(n) . . at ropositlOn 8. e senes L.J -,- an L.J , are lrratJOn . 
n=1 n. =1 n. 

Proof. For the first series we apply the following irrationality criterion ([6]). Let (un) 
be a. sequence of nonnegative integers such that 

(i) Vn < n for all large nj 

(ii) Vn < n - 1 for infinitely many n; 

(iii) Un > 0 for infinitely many n. 
00 

Th ~ Un.. t' al en L.J ,. IS lrra Ion • n. 
==1 

.-' J8n + 1-1 Let Un = Z.(n). Then, by (12) Z.(n) < n - 1 follows from 2 < n - 1, 
i.e. (after some elementary fact, which we omit here) n > 3. Since Z.(n) ~ 1, conditions 
(i)- (iii) are tri vi ally satisfied. 

For the SE'Cond series we will apply a criterion from [7]: 

Let (ak), (bk ) be sequences of positive integers such that 

(i) k/ala2'" ak; 

(ii) bk
+! < bk < ak (k 2: ko). Then f( _1)k-l bk is irrational. ak+! k=1 al a2 ••• ak 

Let ak = k, bk = Z.(k). Then (i) is trivial, while (ii) is Z.~k + 1) < Z .. (k) < k. . +1 
Here Z.(k) < k for k 2: 2. Further Z.(k + 1) < (k + l)Z.(k) follows by 1 :s; Z .. (k) and 
Z. (k + 1) < k + 1. 
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