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1 Introduction

In paper [3] we have defined certain generalizations and extensions of the Smaran-
dache function. Let f : N* — N* be an arithmetic function with the following property:
for each n € N* there exists at least a k¥ € N* such that n|f(k). Let

Fy: N" — N° defined by Fy(n) = min{k € N*: n|f(k)}. (1)

This function generalizes many particular functions. For f(k) = k! one gets the

k(k 2+ 1) one has the Pseudo-Smarandache func-

Smarandache function, while for f(k) =
tion Z (see [1], [4-5]). In the above paper [3] we have defined also dual arithmetic functions
as follows: Let g : N* — N* be a function hz;ving the property that for each n > 1 there
exists at least a k > 1 such that g(k)|n.
Let
Gy(n) = max{k € N*: g(k)|n}. . (2)
For g(k) = k! we obtain a dual of the Smarandache function. This particular function,
denoted by us as S. has been studied in the above paper. By putting g(k) = k—(k;—l)
one obtains a dual of the Pseudo-Smarandache function. Let us denote this function,

by analogy by Z.. Our aim is to study certain elementary properties of this arithmetic

function.
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2 The dual of yhe Pseudo-Smarandache function

Let

Z.(n)=max{mEN’: ﬂ";Llhn} 3)

Recall that

Z(n)=min{keN": fdﬁ;—ll}. (4)

First remark that

Z.(1)=1 and Z,.(p)={ 5 op=3 (5)
-l L p#3

where p is an arbitrary prime. Indeed, 2—§ = 3|3 but %m(n;—l- 1)

only for m = 1. More generally, let s > 1 be an integer, and p a prime. Then:

|p for p # 3 is possible

Proposition 1.

s 2, p=3
Z.(p") = _ (6)
1, p#3
m(m+1), i :
Proof. Let ———=|p’. If m = 2M then M(2M + 1)|p® is impossible for M > 1

2
since M and 2M + 1 are relatively prime. For M = 1 one has m = 2 and 3|p® only if

= 3. For m = 2M — 1 we get (2M — 1)M|p*, where for M > 1 we have (M, Q.M— )=1
as above, whxle for M =1 we have m = 1.
The function Z. can take large values too, since remark that for e. g- n = 0(mod6) we
have 32—4 = 6|n, so Z.(n) > 3. More generally, let a be a given positive integer and n
selected such that n = 0(moda(2a + 1)). Then

Z.(n) > 2a. (7)

= a(2a + 1)|n implies Z.(n) > 2a.

f)
Indeed, 23(“;—'*'1)

A similar situation is in

Proposition 2. Let ¢ be a prime such that p=2¢—1isa prime, too. Then

Z.(pq) = p. (8)
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= pq so clearly Z.(pg) = p.

Proof. g(pT-i-ll '
Remark. Examples are Z,(5-3) = 5, Z.(13-7) = 13, etc. It is a difficult open problem

that for infinitely many g, the number p is prime, too (see e.g. [2]).
Proposition 3. For all n > 1 one has

1< Z.(n) < Z(n). (9)

Proof. By (3) and (4) we can write m(m + l)l | (k + 1) » therefore m(m+1)|k(k+1).
If m > k then clearly m(m + 1) > k{k + 1), a contradxctxon
Corollary. One has the following limits:

A0 p—

27w % m =t (10)

Proof. Put n = p (prime) in the first relation. The first result follows by (6) for s = 1
and the well-known fact that Z (p) = p. Then put n = M when Zx(n) =1 and let

2 7 Z(m)

(5 -2 () -

a(a+1)[k(k+1) .

a — oo.

As we have seen,

Indeed, is true for k = a and is not true for any k < a. In the same

m(m + 1),a(a+ Y is valied for m = a but not for any m > a. The following

manner,
problem arises: Wha.t are the solutions of the equation Z(n) = Z, (n)?

Proposition 4. All solutions of equation Z (n) = Z.(n) can be written in the form

1
( 2-!- ) ( E N.)-
t(t
Proof. Let Z,(n) = Z(n) = t. Then n| ( ;- 1 [n so (t+1) = n. This gives 2 + ¢t —
2n=0o0r (2t +12=8n+1, implying t = ______,811-{-1—1, where 8n + 1 = m2. Here m
(m —1)(m +1) m—1
must be odd, let m =2r +1,son = 3 andt=T.Thenm—l=2r,
m+1=2(r+1) andn:@.
Proposition 5. One has the following limits:
lim {/Z.(n) = lim {/Z(n) = 1. (11)
n—+co n—oo
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Proof. It is known that Z(n) < 2n — 1 with equahty only for n = 2* (see e.g. [5]).

Therefore, from (9) we have

1< Y/Z.(n) < /Z(r) < ¥2n -1,

and by taking n — oo since \7211—-1 —+ 1, the above simple result follows.

As we have seen in (9), uppér bounds for Z(r) give also upper bounds for Z.(n). E.g.
for n = odd, since Z(n) < n — 1, we get aiso Z,.(n) < n — 1. However, this upper bound
is too large. The optimal one is given by:

Proposition 6.
| . Z.(n) < -@l for all n. (12)

m(m+ 1) m(m+ 1)
3 2, so 3
ieem?+m—2n<0. Resolvmg this inequality in the unknown m, easily follows (12).

<n,

Proof. The definition (3) implies with Z,(n) = m that

Inequality (12) cannot be improved since for n = & (p ; 1 (thus for infinitely many n)
we have equality. Indeed,

(,/__Sv’;ﬂm _1) 1= (VEGFDFI-1) /2= 2o+ 1)~ 1)/2 =

Corollary.
. Z,..(Tl) _ - Z‘(n) —_ -
nhm Jn =0, nhm T V2. (13)

Proof. While the first limit is trivial (e.g. for n = prime), the second one is a

consequence of (12). Indeed, (12) implies Z,.(n)/\/ﬁ < \/5(‘ 1+ SLn_ /SL)’ ie
n

Jim Z\/(_) < V2. But this upper limit is exact for n = p_(£2+_1) (p = ).
Similar and other relations on the functions § and Z can be found in [4-5].
An inequality connecting S.(ab) with S.(a) and S.(b) appears in [3]. A similar result
holds for the functions Z and Z,.

Proposition 7. For all a,b > 1 one has

Z.(ab) > max{Z.(a), Z.(b)}, (14)
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Z(ab) 2 max{Z(a), Z(b)} > max{Z. (a) Z.(b)}. (15)

’

Proof. If m = Z,(a), then y]a Since a|ab for a.ll b2 1, clearly w]
implymg Z.(ab) > m = Z,(a). In the same manner, Z, (ab) > Z.,(b), giving (14).

Let now k = Z(ab). Then, by (4) we can write ab| (k+ 1
k(k+1

. By alab it results

) , implying Z(a) < k = Z(ab). Analogously, Z(b) < Z(ab), which via (9) gives

?

a|
(15).
Corollary. Z,(3° - p) > 2 for any integer s > 1 and any prime p. (16)
Indeed, by (14), Z.(3" - p) > max{Z.(3%), Z(p)} = ma.x{2 1} = 2, by (6).
We now consider two 1rra.tlona.l series.

X 1\n-1
Proposition 8. The series Z 2 (n) and Z w are irrational.
n=1 :

Proof. For the first series we a.pply the following irrationality criterion ([6]). Let (va)
be a sequence of nonnegative integers such that

(i) va < n for all large n;

(i) vn < n — 1 for infinitely many n;

(iii) v, > 0 for infinitely many n.

Then Z — is irrational.

n=1
Let v, = Z.(n). Then, by (12) Z.(r) < n — 1 follows from @ <n-1,
i.e. (after some elementary fact, which we omit here) n > 3. Since Z.(n) > 1, conditions
(i)-(iii) are trivially satisfied. |
For the second series we will apply a criterion from [7]:
Let (ax), (be) be sequences of positive integers such that
(1) klalaz ag;
(u) < br < ax (k> k). Then Z( —1)k-t

k=1
Let ax = k, by = Z.(k). Then (i) is trivial, while (i) is é}i_’:%l) < Z.(k) < k.

Here Z.(k) < k for k > 2. Further Z,(k + 1) < (k+1)Z.(k) follows by 1 < Z.(k) and

bx

a;as...ax

is irrational.

Z(k+1)<k+1.
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