SOME ELEMENTARY ALGEBRAIC CONSIDERATIONS INSPIRED BY SMARANDACHE'S FUNCTION (II)

E. RĂDESCU, N. RĂDESCU AND C. DUMITRESCU

In this paper we continue the algebraic consideration begun in [2]. As it was sun, two of the proprieties of Smarandache's function are hold:

- (1) S is a surjective function;
- (2) $S([m,n]) = \max \{S(m), S(n)\}$, where [m,n] is the smallest common multiple of m and n.

That is on \aleph there are considered both of the divisibility order " \preceq_d " having the known properties and the total order with the usual order \leq with all its properties. \aleph has also the algebric usual operations "+" and ".". For instance:

$$a < b \iff (\exists) \ u \in \aleph \text{ so that } b = a + u.$$

Here we can stand out:

: the universal algebra (\aleph^*, Ω) , the set of operations is $\Omega = \{ \vee_d, \varphi_0 \}$ where $\vee_d : (\aleph^*)^2 \to \aleph^*$ is given by $m \vee_d n = [m, n]$, and $\varphi_0 : (\aleph^*)^0 \to \aleph^*$ the null operation that fixes 1-unique particular element with the role of neutral element for " \vee_d "-that means $\varphi_0 (\{\emptyset\}) = 1$ and $1 = e_{\vee_d}$;

: the universal algebra (\aleph^*, Ω') , the set of operations is $\Omega' = \{ \vee, \psi_0 \}$ where $\vee : \aleph^2 \to \aleph$ is given by $x \vee y = \sup \{ x, y \}$ and $\psi_0 : \aleph^0 \to \aleph$ a null operation with $\psi_0 (\{\emptyset\}) = 0$ the unique particular element with the role of neutral element for \vee , so $0 = e_{\vee}$.

We observe that the universal algebras (\aleph^*, Ω) and (\aleph^*, Ω') are of the same type:

$$\begin{pmatrix} \bigvee_d & \varphi_0 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} \bigvee_d & \psi_0 \\ 2 & 0 \end{pmatrix}$$

and with the similarity (bijective) $\forall_d \iff \forall$ and $\varphi_0 \iff \psi_0$, Smarandache's function $S: \aleph^* \to \aleph$ is a morphism surjective between them

$$S(x \vee_d y) = S(x) \vee S(y), \forall x, y \in \aleph^* \text{ from (2) and } S(\varphi_0(\{\emptyset\})) = \psi_0(\{\emptyset\}) \iff S(1) = 0.$$

E. RĂDESCU, N. RĂDESCU AND C. DUMITRESCU

Problem 3. If $S: \aleph^* \to \aleph$ is Smarandache's function defined as we know by

$$S(n) = m \iff m = \min \{k : n \text{ divides } k!\}$$

and I is a some set, then there exists an unique $s:(\aleph^*)^I\to\aleph^I$ a surjective morphisme between the universal algebras $(\aleph^*)^I$, Ω and (\aleph^I, Ω') so that $p_i \circ s = \S \circ \tilde{p_i}$, for $i \in I$, where $p_j: \aleph^I \to \aleph$ defined by $a = \{a_i\}_{i \in I} \in \aleph^I$, $p_j(a) = a_j$, for each $j \in I$, p_i are the canonical projections, morphismes between (\aleph^I, Ω') and (\aleph, Ω') -universal algebras of the same kind and $\tilde{p}_i:(\aleph^*)^I\to\aleph^*$ analogously between $((\aleph^*)^I,\Omega)$ and (\aleph^*,Ω) . We shall go over the following three steps in order to justify the assumption:

Theorem 0.1. Let by (\aleph, Ω) is an universal algebra more complexe with

$$\Omega = \{ \vee_d, \wedge_d, \varphi_0, \overline{\varphi}_0 \}$$

of the kind $\tau:\Omega\to\aleph$ given by

$$\tau = \left(\begin{array}{ccc} \vee_d & \wedge_d & \varphi_0 & \overline{\varphi}_0 \\ 2 & 2 & 0 & 0 \end{array}\right)$$

where \vee_d and φ_0 are defined as above and $\wedge_d: \aleph^2 \to \aleph$, for each $x, y \in \aleph, x \wedge_d y =$ (x,y) where (x,y) is the biggest common divisor of x and y and $\overline{\varphi}_0: \aleph^0 \to \aleph$ is the null operation that fixes 0-an unique particular element having the role of the neutral element for " \wedge_d " i.e. $\overline{\varphi}_0(\{\emptyset\}) = 0$ so $0 = e_{\wedge_d}$ and I a set. Then $(\aleph', \widetilde{\Omega})$ with $\tilde{\Omega}=\{\omega_1,\omega_2,\omega_0,\overline{\omega}_0\}$ becomes an universal algebra of the same kind as (\aleph,Ω) and the canonical projections become surjective morphismes between $(\aleph^I, \bar{\Omega})$ and (\aleph, Ω) , an universal algebra that satisfies the following property of universality:

 $(\mathcal{U}): for\ every\ \left(A,\overline{\Omega}\right)\ with\ \overline{\Omega}=\{\top,\bot,\sigma_0,\overline{\sigma}_0\}\ an\ universal\ algebra\ of\ the\ same\ kind$

$$\tau = \left(\begin{array}{ccc} \top & \bot & \sigma_0 & \overline{\sigma}_0 \\ 2 & 2 & 0 & 0 \end{array}\right)$$

and $u_i: A \to \aleph$, for each $i \in I$, morphismes between $(A, \overline{\Omega})$ and (\aleph, Ω) , exists an unique $u:A \to \aleph^I$ morphism between the universal algebras $\left(A,\overline{\Omega}\right)$ and $\left(\aleph^I,\widetilde{\Omega}\right)$ so that $p_j \circ u = u_j$, for each $j \in I$, where $p_j : \aleph^I \to \aleph$ with each $a = \{a_i\}_{i \in I} \in I$ $\aleph^{I}, p_{j}(a) = a_{j}, \text{ for each } j \in I \text{ are the canonical projections morphismes between }$ $(\aleph^I, \widetilde{\Omega})$ and (\aleph, Ω) .

SMARANDACHE'S FUNCTION

Proof. Indeed $(\aleph^I, \widetilde{\Omega})$ with $\widetilde{\Omega} = \{\omega_1, \omega_2, \omega_0, \overline{\omega}_0\}$ becomes an universal algebra because we can well define:

 $\omega_1 : (\aleph^I)^2 \to \aleph^I \text{ by each } a = \left\{a_i\right\}_{i \in I}, b = \left\{b_i\right\}_{i \in I} \in \aleph; \omega_1\left(a,b\right) = \left\{a_i \vee_d b_i\right\}_{i \in I} \in \aleph^I$ and

 ω_2 : $(\aleph^I)^2 \to \aleph^I$ by $\omega_2(a, b) = \{a_i \wedge_d b_i\}_{i \in I} \aleph^I$ and also

 $\omega_0 : (\aleph^I)^0 \to \aleph^I \text{ with } \omega_0(\{\emptyset\}) = \{e_i = 1\}_{i \in I} \in \aleph^I$

an unique particular element (the family with all the components equal with 1) fixed by ω_0 and having the role of neutral for the operation ω_1 noted with e_{ω_1} and then $\overline{\omega}_0: (\aleph^I)^0 \to \aleph^I$ with $\overline{\omega}_0(\{\emptyset\}) = \{\overline{e}_i = 0\}_{i \in I}$ an unique particular element fixed by $\overline{\omega}_0$ but having the role of neutral for the operation ω_2 noted \overline{e}_{ω_2} (the verifies are imediate).

The canonical projections $p_j: \aleph^I \to \aleph$, defined as above, become morphismes between $(\aleph^I, \tilde{\Omega})$ and (\aleph, Ω) . Indeed the two universal algebras are of the same kind

$$\left(\begin{array}{ccc} \omega_1 & \omega_2 & \omega_0 & \overline{\omega}_0 \\ 2 & 2 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} \bigvee_d & \bigwedge_d & \varphi_0 & \overline{\varphi}_0 \\ 2 & 2 & 0 & 0 \end{array}\right)$$

and with the similarity (bijective) $\omega_1 \iff \bigvee_d; \omega_2 \iff \wedge_d; \omega_0 \iff \varphi_0; \overline{\omega}_0 \iff \overline{\varphi}_0$ we observe first that for each $a, b \in \mathbb{N}^I$, $p_j(\omega_1(a, b)) = p_j(a) \vee_d p_j(b)$, for each $j \in I$ because $a = \{a_i\}_{i \in I}, b = \{b_i\}_{i \in I}, p_j(\omega_1(a, b)) = p_j\left(\{a_i \vee_d b_i\}_{i \in I}\right) = a_j \vee_d b_j$ and $p_j(a) \vee_d p_j(b) = p_j(\{a_i\}_{i \in I}) \vee_d p_j\left(\{b_i\}_{i \in I}\right) = a_j \vee_d b_j$ and then $p_j(\omega_0(\{\emptyset\})) = \varphi_0(\{\emptyset\}) \iff p_j\left(\{e_i = 1\}_{i \in I}\right) = 1 \iff p_j(e_{\omega_1}) = e_{\vee_d}$; analogously we prove that p_j , for each $j \in I$ keeps the operations ω_2 and $\overline{\omega}_0$, too. So, it was built the universal algebra $(\mathbb{N}^I, \widetilde{\Omega})$ with $\widetilde{\Omega} = \{\omega_1, \omega_2, \omega_0, \overline{\omega}_0\}$ of the kind τ described above.

We prove the property of universality (\mathcal{U}) .

We observe for this purpose that the u_i morphismes for each $i \in I$, presumes the coditions: for each $x, y \in S, u_i(x \top y) = u_i(x) \vee_d u_i(y); u_i(x \bot y) = u_i(x) \wedge_d u_i(y); u_i(\sigma_0(\{\emptyset\})) = \varphi_0(\{\emptyset\}) \iff u_i(e_\top) = e_{\vee_d} = 1 \text{ and } u_i(\overline{\sigma}_0(\{\emptyset\})) = \overline{\varphi}_0(\{\emptyset\}) \iff u_i(\overline{e}_\bot) = e_{\wedge_d} = 0 \text{ which show also the similarity (bijective) between } \overline{\Omega} \text{ and } \Omega.$ We also observe that $(S, \overline{\Omega})$ and $(\mathbb{R}^I, \widetilde{\Omega})$ are of the same kind and there is a similarity (bijective) between $\overline{\Omega}$ and Ω given by $T \iff \omega_1; \bot \iff \omega_2; \sigma_0 \iff \omega_0; \overline{\sigma}_0 \iff \overline{\omega}_0$.

We define the corespondence $u: A \to \aleph^I$ by $u(x) = \{u_i(x)\}_{i \in I}$. u is the function:

• for each $x \in A$, $(\exists) u_i(x) \in \aleph$ for each $i \in I$ (u_i -functions) so $(\exists) \{u_i(x)\}_{i \in I}$ that can be imagines for x;

E. RĂDESCU, N. RĂDESCU AND C. DUMITRESCU

• $x_1 = x_2 \Longrightarrow u(x_1) = u(x_2)$ because $x_1 = x_2$ and u_i -functions lead to $u_i(x_1) = u_i(x_2)$ for each $i \in I \Longrightarrow \{u_i(x_1)\}_{i \in I} = \{u_i(x_2)\}_{i \in I} \Longrightarrow u(x_1) = u(x_2)$.

 $\begin{array}{l} \underline{u \text{ is a morphisme:}} \text{ for each } x,y \in A, u\left(x\top y\right) = \left\{u_{i}\left(x\top y\right)\right\}_{i \in I} = \left\{u_{i}(x) \vee_{d} u_{i}(y)\right\}_{i \in I} = \\ \omega_{1}\left(\left\{u_{i}(x)\right\}_{i \in I} \;,\; \left\{u_{i}(y)\right\}_{i \in I}\right) \;=\; \omega_{1}(u(x),u(y)). \text{ Then } u(\sigma_{0}\left(\left\{\emptyset\right\}\right)\right) \;=\; \omega_{0}\left(\left\{\emptyset\right\}\right) \iff \\ u(e_{\top}) = e_{\omega_{1}} \text{ because for each } \left\{a_{i}\right\}_{i \in I} \in \aleph^{I}, \omega_{1}\left(\left\{a_{i}\right\}_{i \in I}, \left\{u_{i}\left(e_{\top}\right)\right\}_{i \in I}\right) = \left\{a_{i} \vee_{d} u_{i}(e_{\top})\right\}_{i \in I} = \\ \left\{a_{i} \vee_{d} 1\right\}_{i \in I} = \left\{a_{i}\right\}_{i \in I}. \end{array}$

Analogously we prove that u keeps the operations: \perp and $\overline{\sigma}_0$.

Besides the condition $p_j \circ u = u_j$, for each $j \in I$ is verified (by the definition: for each $x \in S$, $(p_j \circ u)(x) = p_j(u(x)) = p_j(\{u_i(x)\}_{i \in I}) = u_j(x)$).

For the singleness of u we consider u and \overline{u} , two morphismes so that $p_j \circ u = u_j$ (1) and $p_j \circ \overline{u} = u_j$ (2), for every $j \in I$. Then for every $x \in A$, if $u(x) = \{u_i(x)\}_{i \in I}$ and $\overline{u}(x) = \{z_i\}_{i \in I}$ we can see that $y_j = u_j(x) = (p_j \circ \overline{u})(x) = p_j(\{z_i\}_{i \in I}) = z_j$, for every $j \in I$ i.e. $u(x) = \overline{u}(x)$, for every $x \in A \iff u = \overline{u}$.

Consequence. Particularly, taking $A = \aleph^I$ and $u_i = p_i$ we obtain: the morphisme $u : \aleph^I \to \aleph^i$ verifies the condition $p_j \circ u = p_j$, for every $j \in I$, if and only if, $u = 1_{\aleph^I}$.

The property of universality establishes the universal algebra $(\aleph^I, \tilde{\Omega})$ until an isomorphisme as it results from:

Theorem 0.2. If (P,Ω) is an universal algebra of the same kind as (\aleph,Ω) and $p_i': P \to \aleph$, $i \in I$ a family of morphismes between (P,Ω) and (\aleph,Ω) so that for every universal algebra $(A,\overline{\Omega})$ and every morphisme $u_i:A\to \aleph$, for every $i\in I$ between $(A,\overline{\Omega})$ and (\aleph,Ω) it exists an unique morphisme $u:A\to P$ with $p_i'\circ u=u_i$, for every $i\in I$, then it exists an unique isomorphisme $f:P\to \aleph^I$ with $p_i\circ f=p_i'$, for every $i\in I$.

Proof. From the property of universality of $(\aleph^I, \widetilde{\Omega})$ it results an unique $f: P \to \aleph^I$ so that for every $i \in I$, $p_i \circ f = p_i'$ with f morphisme between (P, Ω) and $(\aleph^I, \widetilde{\Omega})$. Applying now the same property of universality to (P, Ω) \Longrightarrow exists an unique $\overline{f}: \aleph^I \to P$ so that $p_i' \circ \overline{f} = p_i$, for every $i \in I$ with \overline{f} morphisme between $(\aleph^I, \widetilde{\Omega})$ and (P, Ω) . Then $p_j' \circ \overline{f} = p_j \iff p_j \circ (f \circ \overline{f}) = p_j$, using the last consequence, we get $f \circ \overline{f} = 1_{\aleph^I}$. Analogously, we prove that $f \circ \overline{f} = 1_P$ from where $\overline{f} = f^{-1}$ and the morphisme f becomes isomorphisme.

We could emphasize other properties (a family of finite support or the case I-filter) but we remain at these which are strictly necessary to prove the proposed assertion (Problem 3).

b) Firstly it was built $(\aleph^I, \tilde{\Omega})$ being an universal algebra more complexe (with four operations). We try now a similar construction starting from (\aleph, Ω^*) with $\Omega^* =$

SMARANDACHE'S FUNCTION

 (\vee, \wedge, ψ_0) with " \vee " and " ψ_0 " defined as above and $\wedge : \aleph^2 \to \aleph$ with $x \wedge y = \inf\{x, y\}$ for every $x, y \in \aleph$.

Theorem 0.3. Let by (\aleph, Ω^*) the above universal algebra and I a set. Then: (i) (\aleph^I, θ) with $\theta = \{\theta_1, \theta_2, \theta_0\}$ becomes an universal algebra of the same kind τ as (\aleph, Ω^*) so $\tau : \theta \to \aleph$ is

$$\tau = \left(\begin{array}{ccc} \theta_1 & \theta_2 & \theta_0 \\ 2 & 2 & 0 \end{array}\right);$$

(ii) For every $j \in I$ the canonical projection $p_j : \aleph^I \to \aleph$ defined by every $a = \{a_i\}_{i \in I} \in \aleph^I, p_j(a) = a_j$ is a surjective morphisme between (\aleph^I, θ) and (\aleph, Ω^*) and $\ker p_j = \{a \in \aleph^I : a = \{a_i\}_{i \in I} \text{ and } a_j = 0\}$ where by definition we have $\ker p_j = \{a \in \aleph^I : p_j(a) = e_{\vee}\}$;

(iii) For every $j \in I$ the canonical injection $q_j : \aleph \to \aleph^I$ for every $x \in \aleph, q_j(x) = \{a_i\}_{i \in I}$ where $a_i = 0$ if $i \neq j$ and $a_j = x$ is an injective morphisme between (\aleph, Ω^*) and (\aleph^I, θ) and $q_j(\aleph) = \{\{a_i\}_{i \in I} : a_i = 0, \forall i \in I - \{j\}\}$; (iv) If $j, k \in I$ then:

$$p_j \circ q_k = \begin{cases} \mathcal{O}\text{-the null morphisme} & \text{for } j \neq k, \\ 1_{\aleph}\text{-the identical morphisme} & \text{for } j = k. \end{cases}$$

Proof. (i) We well define the operations $\theta_1: \left(\aleph^I\right)^2 \to \aleph^I$ by $\forall a = \{a_i\}_{i \in I} \in \aleph^I$ and $b = \{b_i\}_{i \in I} \in \aleph^I$, $\theta_1(a,b) = \{a_i \lor b_i\}_{i \in I}$; $\theta_2: \left(\aleph^I\right)^2 \to \aleph^I$ by $\theta_2(a,b) = \{a_i \land b_i\}_{i \in I}$ and $\theta_0: \left(\aleph^I\right)^0 \to \aleph^I$ by $\theta_0(\{\emptyset\}) = \{e_i = 0\}_{i \in I}$ an unique particular element fixed by θ_0 , but with the role of neutral element for θ_1 and noted e_{θ_1} (the verifications are immediate).

(ii) The canonical projections are proved to be morphismes (see the step a)), they keep all the operations and

$$\ker p_j = \left\{ a = \left\{ a_i \right\}_{i \in I} \in \aleph^I : p_j(a) = e_{\vee} \right\} = \left\{ a \in \aleph^I : a_j = 0 \right\}.$$

(iii) For every $x,y\in\aleph,q_j(x\vee y)=\{c_i\}_{i\in I}$ where $c_i=0$ for every $i\neq j$ and $c_j=x\vee y$ and

$$\theta_1\left(\left\{\begin{array}{ll} a_i=0, & \forall i\neq j \\ a_j=x \end{array}\right\}, \left\{\begin{array}{ll} b_i=0, & \forall i\neq j \\ b_j=y \end{array}\right\}\right) = \left\{\begin{array}{ll} c_i=0 \\ c_j=x\vee y \end{array}\right\}$$

i.e. $q_{j}(x \vee y) = \theta_{1}\left(q_{j}\left(x\right), q_{j}\left(y\right)\right)$ with $j \in I$, therefore q_{j} keeps the operation " \vee " for every $j \in I$. Then $q_{j}(\psi\left(\left\{\emptyset\right\}\right)) = \theta_{0}\left(\left\{\emptyset\right\}\right) \iff q_{j}\left(e_{\vee}\right) = \left\{e_{i} = 0\right\}_{i \in I} \iff q_{j}\left(0\right) = \left\{e_{i} = 0\right\}_{i \in I} = e_{\theta_{1}}$ because $\forall a = \left\{a_{i}\right\}_{i \in I} \in \mathbb{N}^{I}, \theta_{1}\left(q_{j}\left(0\right), a\right) = \theta_{1}\left(\left\{e_{i} = 0\right\}_{i \in I}, \left\{a_{i}\right\}_{i \in I}\right) = \left\{e_{i} = 0\right\}_{i \in I}$

E. RĂDESCU, N. RĂDESCU AND C. DUMITRESCU

 $\{e_i \vee a_i\}_{i \in I} = \{a_i\}_{i \in I} = a$ enough for $q_j(0) = e_{\theta_1}$ because θ_1 is obviously comutative this observation refers to all the similar situations met before. Analogously we also prove that θ_2 is kept by q_j and this one for every $j \in I$.

(iv) For every
$$x \in \aleph$$
, $(p_j \circ q_k)(x) = p_j(q_k(x)) = p_j\left(\begin{cases} a_i = 0 & \forall i \neq k \\ a_k = x \end{cases}\right) = 0 \Longrightarrow p_j \circ q_k = \mathcal{O} \text{ for } j \neq k \text{ and } (p_j \circ q_j)(x) = p_j(q_j(x)) = p_j\left(\begin{cases} a_i = 0 & \forall i \neq j \\ a_j = x \end{cases}\right) = x \Longrightarrow p_j \circ q_k = 1_{\mathbb{N}} \text{ for } j = k. \blacksquare$

The universal algebra (\aleph^I, θ) satisfies the following property of universality:

Theorem 0.4. For every $(A, \bar{\theta})$ with $\bar{\theta} = \{\top, \bot, \theta_0\}$ an universal algebra of the some kind $\tau : \bar{\theta} \to \aleph$

$$\tau = \left(\begin{array}{ccc} \top & \bot & \theta_0 \\ 2 & 2 & 0 \end{array}\right)$$

as (\aleph^I, θ) and $u_i : A \to \aleph$ for every $i \in I$ morphismes between $(A, \overline{\theta})$ and (\aleph, Ω^*) , exists an unique $u : A \to \aleph^I$ morphisme between the universal algebras $(A, \overline{\theta})$ and (\aleph^I, θ) so that $p_j \circ u = u_j$, for every $j \in I$ with $p_j : \aleph^I \to \aleph, \forall \mathbf{a} = \{a_i\}_{i \in I} \in \aleph^I, p_j(a) = a_j$ the canonical projections morphismes between (\aleph^I, θ) and (\aleph, Ω^*) .

Proof. The proof repeats the other one from the Theorem 1, step a).

The property of universality establishes the universal algebra (\aleph^I, θ) until an isomorphisme, which we can state by:

If (P, Ω^*) it is an universal algebra of the same kind as (\aleph, Ω^*) and $p_i': P \to \aleph$ for every $i \in I$ a family of morphismes between (P, Ω^*) and (\aleph, Ω^*) so that for every universal algebra $(A, \overline{\theta})$ and every morphismes $u_i: A \to \aleph, \forall i \in I$ between $(A, \overline{\theta})$ and (\aleph, Ω^*) exists an unique morphisme $u: A \to P$ with $p_i' \circ u = u_i$, for every $i \in I$ then it exists an unique isomorphisme $f: P \to \aleph^I$ with $p_i \circ f = p_i'$, for every $i \in I$.

c) This third step contains the proof of the stated proposition (Problem 3).

As (\aleph^*, Ω) with $\Omega = (V_d, l_0)$ is an universal algebra, in accordance with step a) it exists an universal algebra $((\aleph^*)^I, \Omega)$ with $\Omega = \{\omega_1, \omega_0\}$ defined by:

$$\begin{array}{rcl} \omega_1 & : & \left((\aleph^*)^I \right)^2 \to (\aleph^*)^I \ \ \text{by every} \ a = \left\{ a_i \right\}_{i \in I} \ \text{and} \ b = \left\{ b_i \right\}_{i \in I} \in \left(\aleph^*\right)^I, \\ \omega_1 \left(a, b \right) & = & \left\{ a_i V_d b_i \right\}_{i \in I} \end{array}$$

and

$$\omega_0: ((\aleph^*)^I)^0 \to (\aleph^*)^I$$
 by $\omega_0(\{\emptyset\}) = \{e_i = 1\}_{i \in I} = e_{\omega_1}$,

the canonical projections being certainly morphismes between $(\aleph^*)^I$, Ω and (\aleph^*, Ω) . As (\aleph, Ω') with $\Omega' = \{V, \Psi_0\}$ is an universal algebra, in accordance with step b) it exists an universal algebra (\aleph^I, Ω') with $\Omega' = \{\theta_1, \theta_0\}$ defined by:

$$\theta_1: (\aleph^I)^2 \to \aleph^I \text{ by every } a = \left\{a_i\right\}_{i \in I}, b = \left\{b_i\right\}_{i \in I} \in \aleph^I, \theta_1\left(a,b\right) = \left\{a_iV_db_i\right\}_{i \in I}$$

and

$$\theta_0: (\aleph^I)^0 \to \aleph^I$$
 by $\theta_0(\{\emptyset\}) = \{e_i = 0\}_{i \in I} = e_{\theta_1}$

The universal algebras $((\aleph^*)^I, \Omega)$ and (\aleph^I, Ω') are of the same kind

$$\begin{array}{ccc} \omega_1 & \omega_2 \\ 2 & 0 \end{array} = \begin{array}{ccc} \theta_1 & \theta_0 \\ 2 & 0 \end{array}$$

We use the property of universality for universal algebra (\aleph', Ω') : an universal algebra (A, Ω) can be $((\aleph^*)^I, \Omega)$ because they are the same kind; the morphismes $u_i : A \to \aleph$ from the assumption will be $s_i : (\aleph^*)^I \to \aleph^*$ by every $a = \{a_i\}_{i \in I} \in (\aleph^*)^I, s_j(a) = s_j(\{a_i\}_{i \in I}) = s(a_j) \iff s_j = s \circ p_j \text{ for every } j \in I \text{ where } s : \aleph^* \to \aleph$ is Smarandache's function and $p_j : (\aleph^*)^I \to \aleph^*$ the canonical projections, morphismes between $((\aleph^*)^I, \Omega)$ and (\aleph^*, Ω) . As s is a morphisme between (\aleph^*, Ω) and $(\aleph, \Omega'), s_j$ are morphismes (as a composition of morphismes) for every $j \in I$. The assumptions of the property of universality being provided \Longrightarrow exists an unique $s : (\aleph^*)^I \to \aleph^I$ morphism between $((\aleph^*)^I, \Omega)$ and (\aleph^I, Ω) so that $p_j \circ s = s_j \iff p_j \circ s = S \circ p_j$, for every $j \in I$. We finish the proof noticing that s is also surjection: $p_j \circ S$ surjection (as a composition of surjections) $\Longrightarrow s$ surjection.

Remark: The proof of the step 3 can be done directly. As the universal algebras from the statement are built, we can define a correspondence $s:(\aleph^*)^I\to (\aleph^*)^I$ by every $a=\{a_i\}_{i\in I}\in (\aleph^*)^I$, $s(a)=\{S(a_i)\}_{i\in I}$, which is a function, then morphisme between the universal algebra of the same kind $((\aleph^*)^I,\Omega)$ and (\aleph^I,Ω') and is also surjective, the required conditions being satisfied evidently.

The stated Problem finds a prolongation s of the Smarandache function S to more comlexe sets (for $I = \{1\} \Rightarrow s = S$). The properties of the function s for the limitation to \aleph^* could bring new properties for the Smarandache function.

1. References

- [1] Purdea, I., Pic, Gh. (1977). Tratat de algebră modernă, vol. 1. (Ed. Academiei Române, Bucuresti)
- [2] Rădescu, E., Rădescu, N. and Dumitrescu, C. (1995) Some Elementary Algebraic Considerations Inspired by the Smarandache Function (Smarandache Function I. vol. 6, no. 1, June, p 50-54)
 - [3] Smarandache, F. (1980) A Function in the Number Theory (An. Univ. Timișoara, Ser. St. Mat., vol. XVIII, fasc. 1, p. 79-88)

DEPARTAMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA A.I.CUZA, NO. 13, CRAIOVA 1100, ROMANIA