On the mean value of the F.Smarandache simple divisor function

Yang Qianli

Department of Mathematics, Weinan Teacher's College Weinan, Shaanxi, P.R.China

Abstract In this paper, we introduce a new arithmetic function $\tau_{sp}(n)$ which we called the simple divisor function. The main purpose of this paper is to study the asymptotic properties of the mean value of $\tau_{sp}(n)$ by using the elementary methods, and obtain an interesting asymptotic formula for it.

Keywords Smarandache simple number divisor; Simple divisor function; Asymptotic formula.

§1. Introduction

A positive integer n is called simple number if the product of its all proper divisors is less than or equal to n. In problem 23 of [1], Professor F.Smarandache asked us to study the properties of the sequence of the simple numbers. About this problem, many scholars have studied it before. For example, in [2], Liu Hongyan and Zhang Wenpeng studied the mean value properties of 1/n and $1/\phi(n)$ (where n is a simple number), and obtained two asymptotic formulae for them. For convenient, let \mathcal{A} denotes the set of all simple numbers, they proved that

$$\sum_{\substack{n \in \mathcal{A} \\ n \le x}} \frac{1}{n} = (\ln \ln x)^2 + B_1 \ln \ln x + B_2 + O\left(\frac{\ln \ln x}{\ln x}\right)$$

and

$$\sum_{\substack{n \in \mathcal{A} \\ n \le x}} \frac{1}{\phi(n)} = (\ln \ln x)^2 + C_1 \ln \ln x + C_2 + O\left(\frac{\ln \ln x}{\ln x}\right),$$

where B_1, B_2, C_1, C_2 are constants, and $\phi(n)$ is the Euler function.

For n > 1, let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ denotes the factorization of n into prime powers. If one of the divisor d of n satisfing $\tau(d) \leq 4$ (where $\tau(n)$ denotes the numbers of all divisors of n), then we call d as a simple number divisor. In this paper, we introduce a new arithmetic function

$$\tau_{sp}(n) = \sum_{\substack{d|n\\ \tau(d) \le 4}} 1,$$

which we called the simple divisor function. The main purpose of this paper is to study the asymptotic property of the mean value of $\tau_{sp}(n)$ by using the elementary methods, and obtain an interesting asymptotic formula for it. That is, we will prove the following:

36 Yang Qianli No. 1

Theorem. For any real number $x \geq 1$, we have the asymptotic formula

$$\sum_{n \le x} \tau_{sp}(n) = \frac{1}{2} x (\log \log x)^2 + \frac{1}{2} (a+1) x \log \log x + \left(\frac{b+A}{2} + B + C\right) x + O\left(\frac{x \log \log x}{\log x}\right),$$

where a and b are two computable constants, $A = \gamma + \sum_{p} (\log(1 - 1/p) + 1/p)$, γ is the Euler

constant,
$$B = \sum_{p} \frac{1}{p^2}$$
 and $C = \sum_{p} \frac{1}{p^3}$.

§2. Two Lemmas

Before the proof of Theorem, two useful Lemmas will be introduced which we will use subsequently.

Lemma 1. For any real number $x \ge 1$, we have the asymptotic formula

(a)
$$\sum_{n \le x} \omega(n) = x \log \log x + Ax + O\left(\frac{x}{\log x}\right),$$

(b)
$$\sum_{n \le x} \omega^2(n) = x(\log\log x)^2 + ax\log\log x + bx + O\left(\frac{x\log\log x}{\log x}\right),$$

where $A = \gamma + \sum_{p} (\log(1 - 1/p) + 1/p)$, γ is the Euler constant, a and b are two computable constants.

Proof. See references [3] and [4].

Lemma 2. For any positive integer $n \geq 1$, we have

$$\tau_{sp}(n) = \frac{1}{2}\omega^{2}(n) + \frac{1}{2}\omega(n) + \sum_{p^{2}|n} 1 + \sum_{p^{3}|n} 1,$$

where $\omega(n)$ denotes the number of all different prime divisors of n, $\sum_{p^2|n} 1$ denotes the number

of all primes such that $p^2 \mid n, \sum_{p^3 \mid n} 1$ denotes the number of all primes such that $p^3 \mid n$.

Proof. Let n > 1, we can write $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, then from the definition of $\tau_{sp}(n)$ we know that there are only four kinds of divisors d such that the number of the divisors of d less or equal to 4. That is $p \mid n$, $p_i p_j \mid n$, $p^2 \mid n$ and $p^3 \mid n$, where $p_i \neq p_j$.

Hence, we have

$$\tau_{sp}(n) = \sum_{p|n} 1 + \sum_{\substack{p_i p_j \mid n \\ p_i \neq p_j}} 1 + \sum_{p^2 \mid n} 1 + \sum_{p^3 \mid n} 1$$

$$= \omega(n) + \frac{1}{2}\omega(n)(\omega(n) - 1) + \sum_{p^2 \mid n} 1 + \sum_{p^3 \mid n} 1$$

$$= \frac{1}{2}\omega^2(n) + \frac{1}{2}\omega(n) + \sum_{p^2 \mid n} 1 + \sum_{p^3 \mid n} 1$$

This proves Lemma 2.

§3. Proof of the theorem

Now we completes the proof of Theorem. From the definition of the simple divisor function, Lemma 1 and Lemma 2, we can write

$$\begin{split} \sum_{n \leq x} \tau_{sp}(n) &= \sum_{n \leq x} \left(\frac{1}{2} \omega^2(n) + \frac{1}{2} \omega(n) + \sum_{p^2 \mid n} 1 + \sum_{p^3 \mid n} 1 \right) \\ &= \frac{1}{2} \sum_{n \leq x} \omega^2(n) + \frac{1}{2} \sum_{n \leq x} \omega(n) + \sum_{n \leq x} \sum_{p^3 \mid n} 1 + \sum_{n \leq x} \sum_{p^3 \mid n} 1 \\ &= \frac{1}{2} \left(x(\log \log x)^2 + ax \log \log x + bx + O\left(\frac{x \log \log x}{\log x}\right) \right) \\ &+ \frac{1}{2} \left(x \log \log x + Ax + O\left(\frac{x}{\log x}\right) \right) + \sum_{p \leq x} \left[\frac{x}{p^2} \right] + \sum_{p \leq x} \left[\frac{x}{p^3} \right] \\ &= \frac{1}{2} \left(x(\log \log x)^2 + (a+1)x \log \log x + (b+A)x + O\left(\frac{x \log \log x}{\log x}\right) \right) \\ &+ x \sum_{p \leq x} \frac{1}{p^2} + O\left(\frac{x}{\log x}\right) + x \sum_{p \leq x} \frac{1}{p^3} + O\left(\frac{x}{\log x}\right) \\ &= \frac{1}{2} \left(x(\log \log x)^2 + (a+1)x \log \log x + (b+A)x + O\left(\frac{x \log \log x}{\log x}\right) \right) \\ &+ (B+C)x + O\left(\frac{x}{\log x}\right) \\ &= \frac{1}{2} x(\log \log x)^2 + \frac{1}{2} (a+1)x \log \log x + \left(\frac{b+A}{2} + B + C\right)x + O\left(\frac{x \log \log x}{\log x}\right). \end{split}$$

where
$$B = \sum_{p} \frac{1}{p^2}$$
 and $C = \sum_{p} \frac{1}{p^3}$.

This completes the proof of Theorem.

References

- [1] F. Smarandache, Only problems, not Solutions, Xiquan Publ. House, Chicago, 1993, pp. 23.
- [2] Liu Hongyan and Zhang Wenpeng, On the simple numbers and the mean value properties, Smarandache Notions Journal, **14**(2004), pp. 171.
- [3] G.H.Hardy and S.Ramanujan, The normal number of prime factors of a number n, Quart. J. Math., 48(1917), pp. 76-92.
- [4] H.N.Shapiro, Introduction to the theory of numbers, John Wiley and Sons, 1983, pp. 347.