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Abstract: A simple path cover of a graph G is a collection 1) of paths in G such that every
edge of GG is in exactly one path in ¢ and any two paths in 1 have at most one vertex in
common. More generally, for any integer k£ > 1, a Smarandache path k-cover of a graph G
is a collection v of paths in G such that each edge of GG is in at least one path of 1 and
two paths of ¢ have at most k vertices in common. Thus if £ = 1 and every edge of G is
in exactly one path in v, then a Smarandache path k-cover of GG is a simple path cover of
G. The minimum cardinality of a simple path cover of GG is called the simple path covering

number of G and is denoted by 7s(G). In this paper we initiate a study of this parameter.
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§81. Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple edges.
The order and size of G are denoted by p and g respectively. For graph theoretic terminology

we refer to Harary [5]. All graphs in this paper are assumed to be connected and non-trivial.

If P = (vg,v1,v2,...,0,) is a path or a cycle in a graph G, then vy, va,...,v,_1 are called
internal vertices of P and vy, v,, are called external vertices of P. If P = (vg, v1,ve,...,v,) and
Q = (vy, = wo, w1, Wa, ..., W,) are two paths in G, then the walk obtained by concatenating P

and Q at v, is denoted by Po@Q and the path (v, vn_1,...,v2,v1,70) is denoted by P~!. For a
unicyclic graph G with cycle C, if w is a vertex of degree greater than 2 on C with deg w = k,
let e1,ea,...,ex_2 be the edges of E(G) — E(C) incident with w. Let T;,1 <i < k — 2, be the
maximal subtree of G such that T; contains the edge e; and w is a pendant vertex of T;. Then
T1,T5,...,Tk_o are called the branches of G at w. Also the maximal subtree T" of G such that
V(T)NV(C) = {w} is called the subtree rooted at w.

The concept of path cover and path covering number of a graph was introduced by Harary
[6]. Preliminary results on this parameter were obtained by Harary and Schwenk [7], Peroche
[9] and Stanton et al. [10], [11].
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Definition 1.1([6]) A path cover of a graph G is a collection ¢ of paths in G such that every
edge of G is in exactly one path in . The minimum cardinality of a path cover of G is called
the path covering number of G and is denoted by 7(G) or simply w.

Theorem 1.2([10]) For any tree T with k vertices of odd degree, m(T) =

[SIE

Theorem 1.3([7]) The path covering number of the complete graph K, is given by w(K,) = |

NS

].

(For any real number x, [x] denotes the least positive integer > x.)

Theorem 1.4([4]) Let G be a unicyclic graph with unique cycle C. Let m denote the number
of vertices of degree greater than 2 on C. Let k denote the number of vertices of odd degree.
Then

2 ifm=0
nG)={ 5+1 ifm=1
% otherwise

Theorem 1.5([4]) For any graph G, ©(G) > (%W

The concepts of graphoidal cover and acyclic graphoidal cover were introduced by Acharya
et al. [1] and Arumugam et al. [4].

Definition 1.6([1]) A graphoidal cover of a graph G is a collection 1) of (not necessarily open)
paths in G satisfying the following conditions.

(1) Ewvery path in 1 has at least two vertices.

(ii) Every vertex of G is an internal vertex of at most one path in 1.

(ii1) Fvery edge of G is in exactly one path in .

If further no member of v is a cycle in G, then v is called an acyclic graphoidal cover of G.
The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of

G and is denoted by n(G). Similarly we define the acyclic graphoidal covering number n4(G).

An elaborate review of results in graphoidal covers with several interesting applications
and a large collection of unsolved problems is given in Arumugam et al.[2].

For any graph G = (V, E), v = E is trivially an acyclic graphoidal cover and has the
interesting property that any two paths in ¢ have at most one vertex in common. Motivated
by this observation we introduced the concept of simple acyclic graphoidal covers in graphs [3].

Definition 1.7([3]) A simple acyclic graphoidal cover of a graph G is an acyclic graphoidal
cover ¢ of G such that any two paths in 1 have at most one vertex in common. The minimum
cardinality of a simple acyclic graphoidal cover of G is called the simple acyclic graphoidal

covering number of G and is denoted by 1n,s(G) or simply 1qs.

Definition 1.8 Let ¥ be a collection of internally disjoint paths in G. A vertex of G is said to

be an interior vertex of v if it is an internal vertex of some path in 1, otherwise it is said to
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be an exterior vertex of 1.

Theorem 1.9([3]) For any simple acyclic graphoidal cover v of a graph G, let ty denote the
number of exterior vertices of 1. Let t = min ty, where the minimum is taken over all simple

acyclic graphoidal covers ¢ of G. Then n.s(G) = q—p+t.

Theorem 1.10([3]) Let G be a unicyclic graph with n pendant vertices. Let C' be the unique

cycle in G and let m denote the number of vertices of degree greater than 2 on C. Then

3 ifm=0

n+2 ifm=1
Nas(G) = .

n+1 ifm=2

n ifm>3

Theorem 1.11([3]) Let m and n be integers with n > m > 4. Then

mn—m-—n zfng(g‘)
nas(Km,n) -

mn—m-—mn-+r ifn=_3)+rr>0.

In this paper we introduce the concept of simple path cover and simple path covering
number 7, of a graph G and initiate a study of this parameter. We observe that the concept
of simple path cover is a special case of Smarandache path k-cover [8]. For any integer k > 1,
a Smarandache path k-cover of a graph G is a collection ¥ of paths in G such that each edge
of G is in at least one path of 1) and two paths of ¥ have at most k vertices in common. Thus
if K =1 and every edge of GG is in exactly one path in 1, then a Smarandache path k-cover of
G is a simple path cover of G.

82. Main results

Definition 2.1 A simple path cover of a graph G is a path cover v of G such that any two
paths in 1 have at most one vertex in common. The minimum cardinality of a simple path
cover of G is called the simple path covering number of G and is denoted by 74(G). Any simple
path cover ¥ of G for which |¢| = ws(G) is called a minimum simple path cover of G.

Example 2.2 Consider the graph G given in Fig.2.1.
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(%1 V2 V3

V4

Fig. 2.1
Then ¢ = {(v1, v4, v7,v8), (U3, V4, V5, V6), (V2,v4), (v7,v5)} is & minimum simple path cover of G
so that 75(G) = 4.

Remark 2.3 Every path in a simple path cover of a graph G is an induced path.

Theorem 2.4 For any simple path cover ¢ of a graph G, let ty, = > t(P), where t(P) denotes
Pey
the number of internal vertices of P and let t = max ty, where the mazimum is taken over all

sitmple path covers 1 of G. Then ws(G) = q — t.

Proof Let i be any simple path cover of G. Then

q= > |E(P)]

Pevy

> (t(P) +1)

Pey

I+ > H(P)

Pey

=[] +ty
Hence |¢| = ¢ — ty so that 7,(G) = ¢ — t. O

Corollary 2.5 For any graph G with k vertices of odd degree 75(G) = % + > Lde—g”J —t.
veV(G)

Proof Since q = % + > {de—g”J the result follows. O
veV(G)

Corollary 2.6 For any graph G, 75(G) > % where k is the number of vertices of odd degree in

G. Further, the following are equivalent.

. k
(l) Ts (G) =3-
(i) There exists a simple path cover 1 of G such that every vertex v in G is an internal

vertex of L%J paths in 1.

(i) There ezists a simple path cover ¥ of G such that every vertex of odd degree is an
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external vertex of exactly one path in v and no verter of even degree is an external vertex of

any path in .

Remark 2.7 For any (p,q)-graph G, 75(G) < q. Further, equality holds if and only if G is
complete. Hence it follows from Theorem 1.3 that 7, (K,,) = 7(K,,) if and only if n = 2.

Remark 2.8 Since any path cover of a tree T' is a simple path cover of T, it follows from
Theorem 1.2 that my(T) = 7(T') = £, where k is the number of vertices of odd degree in 7.

We now proceed to determine the value of my for unicyclic graphs and wheels.

Theorem 2.9 Let G be a unicyclic graph with cycle C. Let m denote the number of vertices

of degree greater than 2 on C. Let k be the number of vertices of odd degree. Then
3 ifm=0

Eio  ifm=1

2

E41 ifm=2

k ifm>3

Proof Let C = (vy,va,...,0,,01).
Case 1. m=0.

Then G = C' so that m4(G) = 3.
Case 2. m=1.

Let v; be the unique vertex of degree greater than 2 on C. Let G be the tree rooted at
v1. Then Gy has k vertices of odd degree and hence 74 (G1) = % Let ¢1 be a minimum simple
path cover of G.

If deg vy is odd, then dega, v1 is odd. Let P be the path in 11 having v; as a terminal
vertex. Now, let

Py = Po(vy,v9)

Py, = (vg,vs3,...,v,) and

P3 = (UT,’Ul).

If deg vy is even, then degg, vy is even. Let P = (21, 232,..., %y, U1, Tyr41,...,Ts) be a path
in 91 having v; as an internal vertex. Now, let

Pl = ($1,$2,...,£L‘T7’U1,’U2)

Py = (x5, Z5-1,...,Tr41,01,0,) and

P3 = (’1}2,’03, . ,UT).

Then ¢ = {¢1 — {P}} U {Pi, P, Ps} is a simple path cover of G and hence 74(G) <
|1+ 2 = % + 2. Further, for any simple path cover ¢ of G, all the k vertices of odd degree
and at least two vertices on C' are terminal vertices of paths in 1. Hence t < g — g — 2, so that
ms(G)=q—t>%+2. Thus n,(G) = £ +2.
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Case 3. m =2.

Let v; and v;, where 2 < i < r, be the vertices of degree greater than 2 on C'. Let P and
(@ denote respectively the (v1,v;)-section and (v;, vi)-section of C. Let v; be an internal vertex
of P(say). Let Ry and Ry be the (v, v;)-section of P and (vj,v;)-section P respectively. Let
(1 be the graph obtained by deleting all the internal vertices of P.

Subcase 3.1 Both deg v; and deg v; are odd.

Then both dega, v1 and degq, v; are even. Hence G is a tree with £ — 2 odd vertices so
that 75(G1) = % — 1. Let 1 be a minimum simple path cover of G; . Then ¥ = ) U{R1, R2}
is a simple path cover of G and [¢| = § + 1.Hence m,(G) < & + 1.

Subcase 3.2 Both deg v1 and deg v; are even.

Then degg, v1 and degq, v; are odd. Hence G is a tree with k + 2 vertices of odd degree
so that 75(Gy) = % + 1. Let 97 be a minimum simple path cover of G1.

Suppose v; and v; are terminal vertices of two different paths in v, say P, and P respec-
tively. Now, let

Qr=PioR

Qs = P,o Ry! and

Y = {1 —{P1, P2} } U{Q1,Q2}.

Suppose there exists a path P; in 1 having both v; and v; as its end vertices. Then let
P, = Q. Let P; be an uj-w; path in ¢ having v as an internal vertex and P3 be an us-w- path
in 41 having v; as an internal vertex. Let S; and Sy be the (uy,v;)-section of Ps and (w1, v1)-
section of Ps respectively. Let S and Sy be the (ug,v;)-section of Ps and (we, v;)-section of Ps
respectively. Now, let

Q1 =S10P 055"

Q2 = S20 Ry

Q3:S4OR2_1 and

¥ = {1 —{P1, P, P3}} U{Q1,Q2,Qs}.

Then v is a simple path cover of G and |[¢| = |[¢1] = g + 1 and hence 74(G) <

ST

+ 1.
Subcase 3.3 deg v is odd and deg v; is even.

Then dega, v1 is even and degq, v; is odd. Hence G is a tree with k vertices of odd degree
so that 7m4(G1) = % Let ¥1 be a minimum simple path cover of G1. Let P; be the path in 1
having v; as a terminal vertex.

If E(P)NEQ) =9, let

Q1 =PioRy"
Q2 = Ry and
¥ ={1 — {P1}}U{Q1,Q2}

Suppose E(P1) N E(Q) # ¢. Since dega, v; > 3, there exists an uj-w; path in ¢y, say Pa,
having v; as an internal vertex. Let S; and S2 be the (w1, v;)-section of Py and (u1, v;)-section
of Py respectively. Now, let

Q=P o Sfl

Q2 =550 R;l
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Qg = Rl and

Y ={1 — {1, R}} U{Q1,Q2,Qs}.

Then ¢ is a simple path cover of G and |¢| = [¢h;| + 1 = £ + 1. Hence m,(G) < & + 1.

Thus in either of the above subcases, we have 75(G) < % + 1. Also, for any simple path
cover 1 of G all the k vertices of odd degree and at least one vertex on C' are terminal vertices
of paths in t. Hence t < q — g — 1, so that 7,(G) =q—t > %—I—l.

Hence 75(G) = g + 1

Case 4. m > 3.

Let v, vig,...,vi., where 1 <143 <ig < --- <ig <rand s > 3, be the vertices of degree
greater than 2 on C. Let v;;, 1 < j < s, be a minimum simple path cover of the tree rooted
at vy, . Consider the vertices v;,,v;, and v;,. For each j, where 1 < j < 3, let P; be the
path in +;; in which v;; is a terminal vertex if deg v;; is odd, otherwise let P; be an u;-w;
path in ¢;, in which v;; is an internal vertex and R; and S; be the (uj,v;;) and (wj,v;;)-
sections of P; respectively. Further, let P = (vi,, i, 41, ..,Viy), @ = (Vig,Vig41,-..,0iy) and
R = (’UZ‘S,’UZ'3+1, e 7”1’1)-

If deg v;,,deg v;, and deg v;, are even, let )1 = Ry o Po R;l, Q2= S20Q0 Rgl and
Q3=S30R051_1.

If deg vi,,deg v;, and deg v;, are odd, let Q1 = Py o P, Qa = Py0(Q and Q3 = P30 R.

If deg vi, , deg vi, are odd and deg v;, is even, let Q1 = Pyo Po P2_1 , Q2 =R30Q ! and
Qs = S30R.

If deg v;,,deg v;, are even and deg v;, is odd, let Q1 = Ry o Po R;l, Q2 =50Q0 P?jl
and Q3 = Ro S %

Then ¢ = ( LSJ i, — {P1, P2, P3}) U{Q1,Q2,Q3} is a simple path cover of G such that

j=1

every vertex of odd degree is an external vertex of exactly one path in ¢ and no vertex of even

degree is an external vertex of any path in . Hence m4(G) = % O

Corollary 2.10 Let G be as in Theorem 2.9. Then 7s(G) = n(G) if and only if m > 3.

Proof The proof follows from Theorem 2.9 and Theorem 1.4. O
We observe that there are infinite families of graphs such as trees and unicyclic graphs
having at least three vertices of degree greater than 2 on C for which 7, = 7 and so the

following problem arises naturally.
Problem 2.11 Characterize graphs for which wg = 7.
Theorem 2.12 For a wheel W,, = K1 + C,,_1, we have

6 ifn=4

ms(Wh) = ‘
[%J +3 ifn>5

Proof Let V(W,,) = {vg,v1,...,0n—1} and E(W,,) = {vov; : 1 <i <m—1}U{vv;41:1 <
i<n—2}U{vivp_1}.
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If n = 4, then W,, = K, and hence m4(W,,) = 6.

Now, suppose n > 5. Let r = [ %]
If n is odd, let

Pi = (’Ui,’l}o,’l}r_ﬂ‘), 1= 1,2,...,7‘.
P’r+1 - (1}1,’(}2,...,’(}7«),
Pryo = (v1,v2,, V201, ..,Vry2) and

Pr+3 = (Ura Ur+41, Ur+2)-
If n is even, let

P; = (vi,v0,Vp_144), 1= 1,2,...,7 — 1.
P = (vo,v2r—1),

Py = (v1,v2,...,0.21),

Pryo = (v1,v20-1,...,Up41) and

P’r‘+3 - (v’r‘flv’UTv’UTJrl)-

Then ) = {Py, P, ..., P43} is asimple path cover of W,,. Hence ws(W,,) < r+3 = {%J +3.

Further, for any simple path cover ¥ of W, at least three vertices on C = (v1,va,...,v,_1) are
terminal vertices of paths in . Hence t < ¢ — % —3, so that 7, (W,,) = ¢—t > % +3=|2]+3.
Thus ms(W,) = [ 2] + 3. O

Remark 2.13 Since every simple acyclic graphoidal cover of a graph G is a simple path cover
of G and every simple path cover of GG is a path cover of G, we have 7,s > 75 > w. These
parameters may be either equal or all distinct as shown below. For the graph G; given in
Figure 2, 1,5(G1) = 7,75(G1) = 6,7(G1) = 5 and for the graph G2 given in Fig.2.2, we have
Nas(G2) = m5(Ga) = w(Ga) = 3.

Gh Go
Fig.2.2

Problem 2.14 Characterize graphs for which n.,s = 75 = .

We now proceed to obtain some bounds for 7.

Theorem 2.15 For any graph G, ws(G) > (%W Further, the following are equivalent.
(i) 7s(G) = [2]-
(”) nas(G) =A-1.

(i4t) G is homeomorphic to a star.
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Proof Since mg > 7, the inequality follows from Theorem 1.5.

Suppose 7s(G) = [%w Let v = {Py, Ps,...,P.}, where r = [%w be a minimum simple
path cover of G. Let v be a vertex of G with deg v = A. Then v lies on each P; and
v is an internal vertex of all the paths in ¢ except possibly for at most one path. Hence
V(P) NV (P;) = {v}, for all i # j, so that G is homeomorphic to a star. Obviously, if G is

A

homeomorphic to a star, then 7,(G) = [£]. Thus (i) and (iii) are equivalent. Similarly the

equivalence of (ii) and (iii) can be proved. O
Theorem 2.16 For any graph G, ms(G) > (‘2”), where w is the clique number of G.

Proof Let H be a maximum clique in G so that |E(H)| = (). Let ¢ be a simple path
cover of G. Since any path in ¢ covers at most one edge of H, it follows that 7s(G) > (“2’) O

In the following theorem we characterize cubic graphs for which 7, = (“2’)

Theorem 2.17 Let G be a cubic graph. Then 7,(G) = (%) if and only if G = K.

Proof Let G be a cubic graph with m,(G) = (%). Clearly w = 3 or 4. Suppose w = 3.
Then it follows from Corollary 2.6 that 74(G) > & so that p = 6. Hence G is isomorphic to the
cartesian product K3 X Ks and it can be shown that 7s(K5 x K3) = 6 # (‘2”) Thus w = 4 and

consequently G = K. O

Problem 2.18 Characterize graphs for which m,(G) = ().

If A < 3, then every simple path cover of G is a simple acyclic graphoidal cover of G and
hence 1,5(G) = m5(G). However, the converse is not true. For the complete graph K,(p > 5),

Ts = Nas Whereas A > 4. We now prove that the converse is true for trees and unicyclic graphs.
Theorem 2.19 Let G be a tree. Then 1n45(G) = 7s(G) if and only if A < 3.

Proof Let G be a tree with 1,5(G) = m4(G).

Suppose A > 4. Let v be a vertex of G with deg v > 4.

Let 1) be a minimum simple acyclic graphoidal cover of GG. Let P, and P» be two paths in
1 having v as a terminal vertex. Let Q = P; o P{l. Since G is a tree, @ is an induced path
and hence ¢ = (p — {P1, P2}) U{Q} is a simple path cover of G with |¢1] = [¢)] — 1 = 14s — 1
so that 75(G) < 14s(G) — 1, which is a contradiction. Hence A < 3. O

Theorem 2.20 Let G be a unicyclic graph. Then 1,5(G) = 75(G) if and only if A < 3.

Proof Let G be a unicyclic graph with 7,5(G) = 7s(G). Let k denote the number of
vertices of odd degree and n be the number of pendant vertices of G.
It follows from Theorem 1.10 and Theorem 2.9 that k = 2n. Now, suppose A > 3. Then

2g= 5. degv+ >, degv+ > degvw

vEV(G) vEV(G) vEV(G)
deg v=1 deg v>1 deg v>1
and is odd and is even

>n+3(k—n)+2(p—k)
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which is a contradiction. Hence A < 3. O

The above results lead to the following problem.

Problem 2.21 Characterize graphs for which 14s(G) = ms(G).

In the following theorem we establish a relation connecting the parameters 7,5 and 7.

Theorem 2.22 For any (p, q)-graph G, nqs(G) < WS(G)+q—p+n—§, where n and k respectively
denote the number of pendant vertices and the number of odd vertices of G. Further, equality

holds if and only if m4(G) = %

Proof Let ¢ be a minimum simple path cover of G. Let i(v) denote the number of paths in
1 having v € V' as an internal vertex. If i(v) > 2, let P;, where 1 <i <i(v), be the u;-w; path
in ¢ having v as an internal vertex and let @; and R;, where 2 < i < i(v), respectively denote
the (v, w;)-section and (v, u;)-section of P;. Let 11 be the collection of paths obtained from 1)
by replacing Ps, Ps, ..., P,y by Q2,Q3,...,Q4w) and Ra, Rs, ..., Ry, for every v € V with
i(v) > 2. Then 1)y is a simple acyclic graphoidal cover of G with |11| = 74 (G)+ > (i(v)—1).

eV
i(v)>2

Since i(v) < Ldeg UJ, it follows that

(@) < (@) + 5 (|22 ] 1)

veV
deg v>4

—rio s 3 (4]
deg v>2

=m(@ + T |- -n)

veV
deg v>2

deg v—1 deg v
—m(Q) + T fapl g Tl
vEV vev
deg v>2 deg v>2
and is odd and is even

_ deg v k—n deg v
Sm(@) 4 N dgrokmo s durogag
vEV veV
deg v>2 deg v>2
and is odd and is even

=m(@) + Y -kt r-pin
deg 052

=m,(G) + X vk _pin
veV

=7,(G)+q—p+n-— %
Thus 74s(G) < 7s(G)+q—p+n—~%. Further, it is clear that 1,,(G) = 7,(G)+¢—p+n—4%
if and only if there exist a minimum simple path cover 1 of G such that i(v) = Ve‘—g”J for all

v € V. Hence it follows from Corollary 2.6 that 1,s(G) = 75(G) + g —p+n — % if and only if
0

[SIE

Tg =

Corollary 2.23 If m4(G) = %, then 1,5(G) =q—p+n.
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Proof Suppose 75(G) = g By Theorem 2.22, we have 1,5(G) < ¢—p+n. Hence it follows

from Theorem 1.9 that 7,s(G) = ¢ —p + n. O

Remark 2.24 The converse of Corollary 2.23 is not true. For example, 74s(K45) = g—p = 11,
whereas 7s(Kq5) > 2 = %
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