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Abstract In this paper, the concept of Smarandache cyclic geometric determinant sequence
was introduced and a formula for its n** term was obtained using the concept of right and
left circulant matrices.
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§1. Introduction and preliminaries

Majumdar ) gave the formula for n*" term of the following sequences: Smarandache cyclic
natural determinant sequence, Smarandache cyclic arithmetic determinant sequence, Smaran-
dache bisymmetric natural determinant sequence and Smarandache bisymmetric arithmetic
determinant sequence.

Definition 1.1. A Smarandache cyclic geometric determinant sequence {SCGDS(n)} is

a sequence of the form

a ar
{SCGDS(n)} =< |al, | ar ar? a |,
ar a

Definition 1.2. A matrix RCIRC,,(¢) € M,.,(R) is said to be a right circulant matrix

if it is of the form

Co C1 C2 Cn—2 Cp—1
Cp—1 Co 1 ... Cp—3 Cp—2
Cp—2 Cp—-1 Co Cpn—4 Cp—3
RCIRCn(0) = | S : s
Co C3 Cy Co C1
C1 Co c3 ... Cp-—1 Co

where & = (cp, ¢1,¢2, ..., Cn—2,Cn—1) is the circulant vector.
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Definition 1.3. A matrix LCIRC,,(¢) € My, (R) is said to be a leftt circulant matrix if

it is of the form

Co C1 C2 Cn—2 Cp—1
C1 Co C3 ... Cp—1 co
Co C3 Cy4 Co C1
Lemrc,@= | T T T
Cp—2 Cpn—-1 Co Cn—4 Cp-—3
Cp—1 Co €1 .. Cn-4 Cp-2

where &= (cp, ¢1,¢2, ..., Cn—2,Cn—1) is the circulant vector.

Definition 1.4. A right circulant matrix RCIRC,,(§) with geometric sequence is a matrix

of the form
a ar ar? ... ar™? g
arn~1 a ar .. ar™ 3% a2
ar™? qrn—1 a e ar™t g3
RCIRC,(9) =
ar? ard  art .. a ar
ar ar>  ar® .. ar™?! a.

Definition 1.5. A left circulant matrix LCIRC,,(g) with geometric sequence is a matrix

of the form
a ar ar? ar"™2 qrn!
ar ar?  ard ... ar™! a
ar? ar®  art .. a ar
LCIRC,(§) =
ar™? gl g v ar™?t g3
ar™1 a ar ... ar"* arm 2

The right and left circulant matrices has the following relationship:

LCIRC, (&) = IRCIRC,(?).

0 0 0 1
0 0 10
I O I . .o
where II = B with I,_; = s 1,0, =000 ..0) and
02 Infl
0 1 0 0
1 0 0 0

0, =O7.
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Clearly, the terms of {SCGDS(n)} are just the determinants of LCTRC,,(g). Now, for the

rest of this paper, let |A| be the notation for the determinant of a matrix A. Hence

{SCGDS(n)} = {|LCIRC,(J)|,|LCIRC,(3)|,|ILCIRCH()|, ...} .

§2. Preliminary results

Lemma 2.1.
|RCIRC,(§)| =a"™(1 - r”)"_l.

Proof.

a ar ar? ar™? grnt
ar”1 a ar .. ar™ 3 qrv2
ar"2 grn—1 a e ar™t g3

RCIRC,(9) =

ar? ard ar® a ar
ar ar? ar3 ar™ ! a

1 r 7‘2 T"_2 ,'nn—l
7,n—l 1 r ,,,n—3 ,rn—Z
,r,n72 ,rnfl 1 Tn74 ,r,nfs

= a
r2 73 rt 1 r
r r2 s =l 1

1 r r2 rn—2 1

0 —(r"—=1) —r(m—-1) ... —r" 30" —-1) —r"2(r" -1)

0 0 (1) .. i o1) (1)
RCIRC,(5) ~ a

0 0 0 —(r"—=1) —r(r —1)

0 0 0 0 —(r — 1)

Since |cA| = ¢ |A| and its row equivalent matrix is a lower traingular matrix it follows that
|RCIRC, (§)| = a™(1 —r™)"~ L.
Lemma 2.2.

| = (-],

where |z is the floor function.
Proof. Case 1: n=1,2,
] = 1] = 1.
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Case 2: niseven and n > 2 If n is even then there will be n — 2 rows to be inverted because

n—2

5 inversions to bring back II to

there are two 1’s in the main diagonal. Hence there will be
I,, so it follows that

n—2

= (=1)"=

Case 3: n is odd and and n > 2 If n is odd then there will be n — 1 rows to be inverted
because of the 1 in the main diagonal of the frist row. Hence there will be ”Tfl inversions to
bring back II to I,, so it follows that

n—1

] = (1),

But L"T_lJ = L"gQJ , so the lemma, follows.

§3. Main results

Theorem 3.1. The nt" term of {SCGDS(n)} is given by

n—1

SCGDS(n) = (~1)L* = an(1 — rmyn—?

via the previous lemmas.
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