THE 57-TH SMARANDACHE'S PROBLEM II *

Liu Huaning

Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China hnliu@nwu.edu.cn

Gao Jing

School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R.China

 \dots, r can be partitioned into n classes such that no class contains integers x, y, z with $x^y = z$. In this paper, we use the elementary methods to give a sharp

lower bound estimate for r.

Keywords: Smarandache-type multiplicative functions; Mangoldt function; Hybrid mean

value

§1. Introduction

For any positive integer n, let r be a positive integer such that: the set $\{1,2,\cdots,r\}$ can be partitioned into n classes such that no class contains integers x,y,z with $x^y=z$. In [1], Schur asks us to find the maximum r. About this problem, Liu Hongyan [2] obtained that $r\geq n^{m+1}$, where m is any integer with $m\leq n+1$.

In this paper, we use the elementary methods to improve Liu Hongyan's result. That is, we shall prove the following:

Theorem. For sufficiently large integer n, let r be a positive integer such that: the set $\{1, 2, \dots, r\}$ can be partitioned into n classes such that no class contains integers x, y, z with $x^y = z$. Then we have

$$r \ge \left(n^{n!} + 2\right)^{n^{n!} + 1} - 1.$$

 $^{^{*}}$ This work is supported by the N.S.F.(60472068) and the P.N.S.F. of P.R.China.

§2. Proof of the Theorem

In this section, we complete the proof of the theorem. Let $r=\left(n^{n!}+2\right)^{n^{n!}+1}-1$ and partition the set $\{1,2,\cdots,\left(n^{n!}+2\right)^{n^{n!}+1}-1$ 1} into n classes as follows:

Class 1: 1,
$$n^{n!} + 1$$
, $n^{n!} + 2$, \cdots , $(n^{n!} + 2)^{n^{n!} + 1} - 1$.

Class 2: 2,
$$n+1$$
, $n+2$, ..., n^2 .

Class k: k, $n^{(k-1)!} + 1$, $n^{(k-1)!} + 2$, ..., $n^{k!}$.

Class n: n, $n^{(n-1)!} + 1$, $n^{(n-1)!} + 2$, ..., $n^{n!}$.

It is obvious that Class $k(k \ge 2)$ contains no integers x, y, z with $x^y = z$. In fact for any integers $x, y, z \in \text{Class k}, k = 2, 3, \dots, n$, we have

$$x^y \ge \left(n^{(k-1)!} + 1\right)^k > n^{k!} \ge z.$$

Similarly, Class 1 also contains no integers x, y, z with $x^y = z$. This completes the proof of the theorem.

Reference

- [1] F. Smarandache, Only Problems, Not Solutions, Xiquan Publishing House, Chicago, 1993.
- [2] Liu Hongyan and Zhang Wenpeng. A note on the 57-th Smarandache's problem. Smarandache Notions Journal 14 (2004), 164-165.