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Abstract For any positive integer n, let φ(n) and S(n) be the Euler function and the Smaran-

dache function respectively. In this paper, we use the properties and the curve figure of these

two functions to study the solvability of the equation
n∑

i=1

S(i) = φ(n(n+1)
2

), and prove that

this equation has only two positive integer solutions n = 1, 10.
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§1. Introduction and result

For any positive integer n, the famous F.Smarandache function S(n) is defined as the
smallest positive integer m such that n divides m!. That is, S(n) = min{m : m ∈ N, n|m!},
where N denotes the set of all positive integers. From the definition of S(n), it is easy to see
that if n = pα1

1 pα2
2 · · · pαk

k be the factorization of n into prime powers, then we have

S(n) = max
1≤i≤k

{S(pαi
i )} .

It is clear that from this properties we can calculate the value of S(n), the first few values of
S(n) are: S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4,
S(9) = 6, S(10) = 5, · · · . About the arithmetical properties of S(n), some authors had studied
it, and obtained many interesting results. For example, Lu Yaming [2] studied the solvability
of an equation involving the F.Smarandache function S(n), and proved that for any positive
integer k ≥ 2, the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinite group positive integer solutions (m1, m2, · · · , mk).
Jozsef Sandor [3] proved that for any positive integer k ≥ 2, there exist infinite group

positive integers (m1, m2, · · · , mk) satisfying the inequality:

S(m1 + m2 + · · ·+ mk) > S(m1) + S(m2) + · · ·+ S(mk).

Also, there exist infinite group positive integers (m1, m2, · · · , mk) such that

S(m1 + m2 + · · ·+ mk) < S(m1) + S(m2) + · · ·+ S(mk).
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Rongji Chen [5] studied the solutions of an equation involving the F.Smarandache function
S(n), and proved that for any fixed r ∈ N with r ≥ 3, the positive integer n is a solution of

S(n)r + S(n)r−1 + · · ·+ S(n) = n

if and only if
n = p(pr−1 + pr−2 + · · ·+ 1),

where p is an odd prime satisfying pr−1 + pr−2 + · · ·+ 1|(p− 1)!.
Xiaoyan Li and Yanrong Xue [6] proved that for any positive integer k, the equation

S(n)2 + S(n) = kn has infinite positive integer solutions, and each solution n has the form
n = pn1, where p = kn1 − 1 is a prime.

For any positive integer n, the Euler function φ(n) is defined as the number of all positive
integers not exceeding n, which are relatively prime to n. It is clear that φ(n) is a multiplicative
function.

In this paper, we shall use the elementary method and compiler program to study the
solvability of the equation:

S(1) + S(2) + · · ·+ S(n) = φ

(
n(n + 1)

2

)
, (1)

and give its all positive integer solutions. That is, we shall prove the following:
Theorem. The equation

S(1) + S(2) + · · ·+ S(n) = φ

(
n(n + 1)

2

)

has and only has two positive integer solutions n = 1, 10.

§2. Main lemmas

In this section, we shall give two simple lemmas which are necessary in the proof of our
Theorem. First we have the following:

Lemma 1. For any positive integer n > 100, we have the inequality

n∑

i=1

S(i) 6 π2

11.99
· n2

lnn
.

Proof. From the mean value formula of S(n) (See reference [7])

∑

n6x

S(n) =
π2

12
· x2

lnx
+ O

(
x2

ln2 x

)

we know that there exists one constant N > 0 such that
n∑

i=1

S(i) 6 π2

12
· n2

lnn
+

1
1199

· π2

12
· n2

lnn
6 π2

11.99
· n2

lnn

holds for all positive integer n > N . We can take N = 100 by calculation. This completes the
proof of Lemma 1.
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Lemma 2. For Euler function φ(n), we have the estimate

φ

(
n(n + 1)

2

)
>

n(n + 1)
4

· e 3
4 · 1

ln1.5 (2 ln n(n+1)
2 )

.

Proof. Let n = pα1
1 pα2

2 · · · pαk

k be the factorization of n into prime powers, then there
always exist some primes p1, p2, · · · ps such that p1p2 · · · ps > n. From [1] we have

∑

p6x

ln p = x + O
(

x

log x

)
,

by this estimate we know that

lnn <
s∑

i=1

ln pi 6
∑

pi6ps

ln pi 6 ps < 2 ln n.

Thus ∑

p|n

1
p

6
∑

pi6ps

1
pi

6 ln ln ps < ln ln(2 lnn).

Note that φ(n) = n
∏

p|n

(
1− 1

p

)
, if

n(n + 1)
2

is even, then

φ

(
n(n + 1)

2

)
=

n(n + 1)
2

∏

p|n(n+1)
2

(
1− 1

p

)

=
n(n + 1)

4
e

∑
p|n(n+1)

2 ,p 6=2

ln(1− 1
p )+ 1.5

p − 1.5
p

=
n(n + 1)

4
e

− ∑
p|n(n+1)

2 ,p 6=2

1.5
p +

∑
p|n(n+1)

2 ,p 6=2

[ln(1− 1
p )+ 1.5

p ]

> n(n + 1)
4

e

− ∑
p|n(n+1)

2 ,p 6=2

1.5
p

>
n(n + 1)

4
· e 3

4 · e−1.5 ln ln(2 ln
n(n+1)

2 )

=
n(n + 1)

4
· e 3

4 · 1

ln1.5 (2 ln n(n+1)
2 )

.

If
n(n + 1)

2
is odd, we can also get the same result. This completes the proof of Lemma 1.

§3. Proof of the theorem

In this section, we shall complete the proof of our Theorem. First we study the tendency
of the functional digraph

f(x) =
x(x + 1)

4
· e 3

4
1

ln1.5(2 ln x(x+1)
2 )

− π2

11.99
· x2

lnx
.

By use of Mathematica compiler program we find that f(x) > 0, if x > 100754.
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figure 1

From the figure 1 we know that if n > 100754, then

n∑

i=1

S(i) 6 π2

11.99
· n2

lnn
<

n(n + 1)
4

· e 3
4 · 1

ln1.5(2 ln n(n+1)
2 )

< φ

(
n(n + 1)

2

)
. (2)

If x ∈ (100754,+∞), we use Mathematica compiler program to compute f
′
(x)，then we

find that the derivative f
′
(x) is positive, so (2) is also true if x > 100754.

Now we consider the solution of (1) for all n ∈ [1, 100754]. By use of the computer
programming language, we obtain that the equation (1) has no any other positive integer
solutions except n = 1, n = 10. This completes the proof of Theorem.
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The computing programme is given as follows if n ∈ [1, 100754].
# include“stdio.h”
# include“math.h”
# define N 100754
int S(int n)
{int ret=1,num=n;
unsigned long int nn=1;
for(ret=1;ret<=n;ret++) { nn=nn∗ret;
if(nn%num==0) break;} if (ret>n) ret=n;
return ret; }
int SumS(int n)
{int ret=0,i;
for(i=1;i<=n;i++) ret+=S(i);
return ret;}
int coprime(int i,int n)
{ int a=n,b=i;
while(a!=b) { if(a==0) return b;
if(b==0) return a;
if(a>b) a=a%b;
else
b=b%a;}
return a; }
int Euler(int n)
{int ret=1,i;
for(i=2;i<n;i++) {if(coprime(i,n)==1) ret++;} return ret;}
main()
{ int kk;
for(kk=1;kk<=N;kk++) if(SumS(kk)==Euler((kk∗(kk+1)/2)))
printf(“rusult is % d\n”,kk);
getch (); }
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Abstract For orthogonal projective matrix R, i.e., R2 = R and RT = R, we say that A is

generalized Hermitian matrix, if RAR = A∗. In this paper, we investigate the least residual

problem ‖AX − B‖ = min with given X, B, and associated optimal approximation problem

in the generalized Hermitian matrix set. The general expressions of the solutions are derived

by matrix decomposition.
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§1. Introduction

Some symbols and notations: Let Cm×n
r be the set of all m×n complex matrices with rank

r, HCn×n be the set of all n×n Hermitian matrices. Denoted by A+, A∗, rank(A) the Moore-
Penrose generalized inverse, conjugate transpose, rank of matrix A, respectively. Moreover, In

represents identity matrix of order n, and J = (en, en−1, · · · , e1), ei ∈ Cn is the ith column of
In. ‖ ¦ ‖ stands for the Frobenius norm. Matrix R ∈ Cn×n

r is said to be projective (orthogonal
projective) matrix, if R2 = R (R2 = R and R∗ = R).

Definition 1.1. If A ∈ Cn×n, we say that A is centro-symmetric matrix, if JAJ = A.
The centro-symmetric matrix has important and practical applications in information the-

ory, linear system theory and numerical analysis (see [1-2]). As the extension of the centro-
symmetric matrix, we define the following conception.

Definition 1.2. For given orthogonal projective matrix R ∈ Cn×n
r , we say that A ∈ Cn×n

is generalized Hermitian matrix, if RAR = A∗. Denote the set of all generalized Hermitian
matrices by GHCn×n.

In this paper, we discuss two problems as follows:
Problem I.(Procrustes Problem): Given orthogonal projective matrix R ∈ Rn×n, and

X, B ∈ Cn×m, find A ∈ GHCn×n such that
‖AX −B‖ = min .

Problem II.(Optimal Approximation Problem): Given M ∈ Cn×n, find Â ∈ SE such
that
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‖ M − Â‖ = min
A∈SE

‖M −A‖,
where SE is the solution set of Problem I.

Obviously, when M = 0, Problem II is changed into finding the least Frobenius norm
solution of Problem I.

Many important results have been achieved about the above problems with different ma-
trix sets, such as centro-symmetric matrix[3], symmetric matrix[4−5], R-symmetric matrix[6−7]

and (R,S)-symmetric matrix[8] set. In this paper, we investigate the above problems in the
generalized Hermitian matrix set by matrix decomposition.

§2. Preliminary knowledge

In this section, we discuss the properties and structures of (orthogonal) projective matrices
R ∈ Cn×n

r and A ∈ GHCn×n.
Denote s = rank(I−R), we know that r+s = n since R2 = R. Suppose that p1, p2, . . . , pr

and q1, q2, . . . , qs are the normal orthogonal basis for range R(R) and null space N(R) of R,
respectively. Let P = (p1, p2, . . . , pr) ∈ Cn×r

r and Q = (q1, q2, . . . , qs) ∈ Cn×s
s , then

P ∗P = Ir, Q∗Q = Is, (1)
RP = P, RQ = 0. (2)

Lemma 2.1.(see [9]) Let matrix A ∈ Cn×m
r and its full-rank factorization A = FG, where

F ∈ Cn×r
r , G ∈ Cr×m

r , then A is projective matrix if and only if GF = Ir.

Lemma 2.2. R ∈Cn×n
r is projective matrix, then

R =
(
P Q

)

Ir 0

0 0





P̂

Q̂


 , (3)

where matrix
(
P Q

)
is invertible, and

(
P Q

)−1

=


P̂

Q̂


 .

If R is orthogonal projective matrix, we have

R =
(
P Q

)

Ir 0

0 0





P ∗

Q∗


 , (4)

where
(
P Q

)
is unitary matrix.

Proof. Assume that the full-rank factorization of R is R = PP̂ , we obtain from Lemma
2.1 and (1) that

P̂ = P ∗R, P̂P = Ir. (5)

Similarly, if the full-rank factorization of I −R is I −R = QQ̂, we generate
Q̂ = Q∗(I −R), Q̂Q = Is, (6)

since (I − R)2 = I − R. Connecting with (1)(2)(5) and (6), we know that (3) holds. The
equality (4) is obvious since R∗ = R.

Lemma 2.3. Given matrices R as in (4) and A ∈ GHCn×n, then
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A =
(
P Q

)

G 0

0 0





P ∗

Q∗


 , ∀ G∈HCr×r. (7)

Proof. According to Lemma 2.2 and Definition 2.1, it is clear that (7) holds.

Lemma 2.3 indicates that arbitrary matrix M ∈ Cn×n can be written as

M =
(
P Q

)

M1 M2

M3 M4





P ∗

Q∗


 .

§3. The solutions of Problem I and II

Given matrices X, B ∈ Cn×m, partition

P ∗

Q∗


 X =


X1

X2


 and


P ∗

Q∗


 B =


B1

B2


, (8)

where X1, B1 ∈ Cr×m and X2, B2 ∈ Cs×m.
We need the following two lemmas derived from References [7] and [8], respectively.

Lemma 3.1. Suppose that matrices X1, B1 in (8), then matrix equation A1X1 = B1 is
consistent for A1 ∈ HCr×r, if and only if B1X

+
1 X1 = B1 and X∗

1B1 = B∗
1X1, the general

solution is
A1 = Ã1 + (Ir −X1X

+
1 )K1(Ir −X1X

+
1 ),

where Ã1 = (Ir − X1X+
1

2 )B1X
+
1 + (B1X

+
1 )
∗
(Ir − X1X+

1
2 ), ∀K1 ∈ HCr×r.

Lemma 3.2. Given matrices X1, B1 in (8), then
min

G∈Cr×r
‖ GX1 −B1 ‖=‖ B1(Ir −X+

1 X1) ‖
if and only if G = B1X

+
1 + K2(Ir −X1X

+
1 ), ∀K2 ∈ Cr×r.

According to Lemmas 3.1 and 3.2, we obtain

Lemma 3.3. For the above given matrices X1, B1,
min

A1∈HCr×r
‖ A1X1 −B1 ‖=‖ B1(Ir −X+

1 X1) ‖
if and only if

X∗
1B1X

+
1 = X+

1 X1B
∗
1X1X

+
1 , (9)

and the expression of A1 is the same as that in Lemma 3.1.

Proof. ‖ A1X1 −B1 ‖2 =‖ B1 −B1X
+
1 X1 + B1X

+
1 X1 −A1X1 ‖2

=‖ B1(Ir −X+
1 X1) ‖2 + ‖ B1X

+
1 X1 −A1X1 ‖2

Hence, the least residual can be attained only if B1X
+
1 X1 = A1X1, which is consistent for

A1 ∈ HCr×r under condition (9) by Lemma 3.3. The proof is completed.

Based on the previous analysis, Problem I can be solved in the following Theorem.

Theorem 3.1. Given matrix R as in (4), X, B ∈ Cn×m and the partition (8), then
min

A∈GHCn×n
‖AX −B‖2 = ‖B1(Ir −X+

1 X1)‖2 + ‖B2‖2, (10)

if and only if (9) holds, at this time
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A =
(
P Q

)

Ĝ + (Ir −X1X

+
1 )K(Ir −X1X

+
1 ) 0

0 0





P ∗

Q∗


 , (11)

where G̃ = (Ir − X1X+
1

2 )B1X
+
1 + (B1X

+
1 )
∗
(Ir − X1X+

1
2 ), ∀K ∈ HCr×r.

Proof. According to the unitary invariance of Frobenius norm, formulas (4) and (7), we
obtain

‖AX −B‖ 2

=

∣∣∣∣∣∣

∣∣∣∣∣∣
(
P Q

)

G 0

0 0





P ∗

Q∗


 X −B

∣∣∣∣∣∣

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∣∣∣∣∣∣


G 0

0 0





X1

X2


−


B1

B2




∣∣∣∣∣∣

∣∣∣∣∣∣

2

= ||GX1 −B1|| 2 + ‖B2‖ 2.
Therefore, the problem (10) is equivalent to the following least residual problem

min
G∈HCr×r

‖ GX1 −B1 ‖ .

From Lemma 3.3, we know that the minimum can be attained if and only if (9), and
G = G̃ + (Ir −X1X

+
1 )K(Ir −X1X

+
1 ),

where K ∈ HCr×r is arbitrary. Submitting G into (7), then (11) holds.

The following lemma stated from [6].

Lemma 3.4. Let L ∈ Cq×m,∆ ∈ Cq×q, Γ ∈ Cm×m, and ∆2 = ∆ = ∆∗, Γ2 = Γ = Γ∗,
then ‖ L−∆LΓ ‖= min

N∈Cq×m
‖ L−∆NΓ ‖ if and only if ∆(L−N)Γ = 0.

Let SE be the solution set of Problem I. We can easily verify from its definition that SE is a
closed convex subsets in matrix space Cn×n under Frobenius norm. The optimal approximation
theorem[10] reveals that Problem II has unique solution, which can be expressed in the next
theorem.

Theorem 3.2. Suppose that the given matrix in Problem II is

M =
(
P Q

)

M1 M2

M3 M4





P ∗

Q∗


 ∈ Cn×n

then
min

A∈SE

‖ M −A ‖ (12)

if and only if

A =
(
P Q

)

Ĝ + (Ir −X1X

+
1 )M1+M∗

1
2 (Ir −X1X

+
1 ) 0

0 0





P ∗

Q∗


 , (13)

where Ĝ is the same as that in Theorem 3.1.

Proof. By using the unitary invariance of Frobenius norm and Theorem 3.1, we obtain

‖ M −A ‖2=
∣∣∣∣∣∣

∣∣∣∣∣∣


M1 M2

M3 M4


−


Ĝ + (Ir −X1X

+
1 )K(Ir −X1X

+
1 ) 0

0 0




∣∣∣∣∣∣

∣∣∣∣∣∣

2

= ‖ (M1 − Ĝ)− (Ir −X1X
+
1 )K(Ir −X1X

+
1 ) ‖2

+ ‖ M2 ‖2 + ‖ M3 ‖2 + ‖ M4 ‖2,
then the problem (12) equals to solve the minimum problem
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min
K∈HCr×r

‖ (M1 − Ĝ)− (Ir −X1X
+
1 )K(Ir −X1X

+
1 ) ‖ .

Moreover, since ‖M1‖2 = ‖M1+M∗
1

2 ‖2 + ‖M1−M∗
1

2 ‖2, hence the above minimum problem can be
transformed equivalently as

min
K∈HCr×r

‖ (
M1 + M∗

1

2
− Ĝ1)− (Ir −X1X

+
1 )K(Ir −X1X

+
1 ) ‖ .

We further deduce from Lemma 3.4 that
(Ir −X1X

+
1 )K(Ir −X1X

+
1 ) = (Ir −X1X

+
1 )M1+M∗

1
2 (Ir −X1X

+
1 ), (14)

submitting (14) into (11), we obtain (13).
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