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Some identities on k-power complement
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Abstract The main purpose of this paper is to calculate the value of the series
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where ay(n) is the k-power complement number of any positive number n, and «, 8 are two

complex numbers with Re(a) > 1, Re(8) > 1. Several interesting identities are given.

Keywords k-power complement number, identities, Riemann zeta-function.

§1. Introduction

For any given natural number k > 2 and any positive integer n, we call ar(n) as a k-
power complement number if ai(n) denotes the smallest positive integer such that n - ax(n) is
a perfect k-power. Especially, we call as(n),as(n),as(n) as the square complement number,
cubic complement number, quartic complement number respectively. In reference [1], Professor
F.Smarandache asked us to study the properties of the k-power complement number sequence.
About this problem, there are many authors had studied it, and obtained many results. For
example, in reference [2], Professor Wenpeng Zhang calculated the value of the series
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where s is a complex number with Re(a) > 1, k=2, 3, 4. Maohua Le [3] discussed the conver-

gence of the series
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where m < 1 is a positive number, and proved that they are both divergence.
But about the properties of the k-power complement number, we still know very little at

present. This paper, as a note of [2], we shall give a general calculate formula for
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That is, we shall prove the following:

Theorem 1. For any complex numbers «, 3 with Re(a) > 1, Re(3) > 1, we have
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where ((«) is the Riemann zeta-function, H denotes the product over all prime p.
P

Theorem 2. For any complex numbers «, 3 with Re(a) > 1, Re(8) > 1, we have
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Note that {(2) = %2, ¢4) = g—é and ((8) = %. From our Theorems we may immediately

obtain the following two corollaries:

Corollary 1. Taking a = (3, k = 2 in above Theorems, then we have
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Corollary 2. Taking a = =1, 2, k = 2 in Corollary 1, we have
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§2. Proof of the theorem

In this section, we will complete the proof of the theorems. For any positive integer n, we
can write it as n = m¥ - [, where [ is a k-free number, then from the definition of a;(n) we have
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where p(n) denotes the Mobius function. This completes the proof of Theorem 1.

Now we come to prove Theorem 2. First we shall prove the following identity
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Then use this identity and Theorem 1 we have
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This completes the proof of Theorem 2.
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