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Some identities on k-power complement
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Abstract The main purpose of this paper is to calculate the value of the series

+∞∑
n=1

(−1)n

nα · aβ
k(n)

,

where ak(n) is the k-power complement number of any positive number n, and α, β are two

complex numbers with Re(α) ≥ 1, Re(β) ≥ 1. Several interesting identities are given.
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§1. Introduction

For any given natural number k ≥ 2 and any positive integer n, we call ak(n) as a k-
power complement number if ak(n) denotes the smallest positive integer such that n · ak(n) is
a perfect k-power. Especially, we call a2(n), a3(n), a4(n) as the square complement number,
cubic complement number, quartic complement number respectively. In reference [1], Professor
F.Smarandache asked us to study the properties of the k-power complement number sequence.
About this problem, there are many authors had studied it, and obtained many results. For
example, in reference [2], Professor Wenpeng Zhang calculated the value of the series

+∞∑
n=1

1
(n · ak(n))s

,

where s is a complex number with Re(α) ≥ 1, k=2, 3, 4. Maohua Le [3] discussed the conver-
gence of the series

s1 =
+∞∑
n=1

1
am
2 (n)

and

s2 =
+∞∑
n=2

(−1)n

a2(n)
,

where m ≤ 1 is a positive number, and proved that they are both divergence.
But about the properties of the k-power complement number, we still know very little at

present. This paper, as a note of [2], we shall give a general calculate formula for

+∞∑
n=1

(−1)n

nα · aβ
k(n)

.
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That is, we shall prove the following:

Theorem 1. For any complex numbers α, β with Re(α) ≥ 1, Re(β) ≥ 1, we have

+∞∑
n=1

1

nα · aβ
k(n)

= ζ(kα)
∏
p

(
1 +

1− 1
p(k−1)α+(k−1)2β

pα+(k−1)β − 1

)
,

where ζ(α) is the Riemann zeta-function,
∏
p

denotes the product over all prime p.

Theorem 2. For any complex numbers α, β with Re(α) ≥ 1, Re(β) ≥ 1, we have

+∞∑
n=1

(−1)n

nα · aβ
k(n)

=
(

1− 2(2kα − 1)(2α+(k+1)β − 1)
2(k+1)α+(k−1)β − 2α−(k−1)2β

)
ζ(kα)

∏
p

(
1 +

1− 1
p(k−1)α+(k−1)2β

pα+(k−1)β − 1

)
.

Note that ζ(2) = π2

6 , ζ(4) = π4

90 and ζ(8) = π8

9450 . From our Theorems we may immediately
obtain the following two corollaries:

Corollary 1. Taking α = β, k = 2 in above Theorems, then we have

+∞∑
n=1

1
(n · a2(n))α

=
ζ2(2α)
ζ(4α)

;

+∞∑
n=1
2-n

1
(n · a2(n))α

=
ζ2(2α)
ζ(4α)

· 4α − 1
4α + 1

;

+∞∑
n=1

(−1)n

(n · a2(n))α
=

ζ2(2α)
ζ(4α)

· 3− 4α

1 + 4α
.

Corollary 2. Taking α = β = 1, 2, k = 2 in Corollary 1, we have

+∞∑
n=1

1
n · a2(n)

=
5
2
,

+∞∑
n=1

1
(n · a2(n))2

=
7
6
;

+∞∑
n=1
2-n

1
n · a2(n)

=
3
2
,

+∞∑
n=1
2-n

1
(n · a2(n))2

=
35
34

;

+∞∑
n=1

(−1)n

n · a2(n)
= −1

2
,

+∞∑
n=1

(−1)n

(n · a2(n))2
= − 91

102
.
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§2. Proof of the theorem

In this section, we will complete the proof of the theorems. For any positive integer n, we
can write it as n = mk · l, where l is a k-free number, then from the definition of ak(n) we have

+∞∑
n=1

1

nα · aβ
k(n)

=
+∞∑
m=1

+∞∑

l=1

∑

dk|l
µ(d)

mkαlαl(k−1)β

= ζ(kα)
+∞∑

l=1

∑

dk|l
µ(d)

lα+(k−1)β

= ζ(kα)
∏
p

(
1 +

1
pα+(k−1)β

+
1

p2(α+(k−1)β)
+ · · ·+ 1

p(k−1)(α+(k−1)β)

)

= ζ(kα)
∏
p

(
1 +

1
pα+(k−1)β

1− 1
p(k−1)(α+(k−1)β)

1− 1
pα+(k−1)β

)

= ζ(kα)
∏
p

(
1 +

1− 1
p(k−1)α+(k−1)2β

pα+(k−1)β − 1

)
,

where µ(n) denotes the Möbius function. This completes the proof of Theorem 1.
Now we come to prove Theorem 2. First we shall prove the following identity

+∞∑
n=1
2-n

1

nα · aβ
k(n)

=
+∞∑
m=1
2-mkl

+∞∑

l=1

∑

dk|l
µ(d)

mkαlαl(k−1)

=
+∞∑
m=1
2-m

1
mkα

+∞∑

l=1
2-l

∑

dk|l
µ(d)

lα+(k−1)

=
2kα − 1

2kα
· ζ(kα)(2α+(k−1)β − 1)
2α+(k−1)β − 2(k−1)(α+(k−1)β)

∏
p

(
1 +

1− 1
p(k−1)α+(k−1)2β

pα+(k−1)β − 1

)

=
ζ(kα)(2kα − 1)(2α+(k−1)β)

2(k+1)α+(k−1)β − 2α−(k−1)2β

∏
p

(
1 +

1− 1
p(k−1)α+(k−1)2β

pα+(k−1)β − 1

)
.

Then use this identity and Theorem 1 we have

+∞∑
n=1

(−1)n

nα · aβ
k(n)

=
+∞∑
n=1

1

nα · aβ
k(n)

− 2
+∞∑
n=1
2-n

1

nα · aβ
k(n)

=
(

1− 2(2kα − 1)(2α+(k−1)β − 1)
2(k+1)α+(k−1)β − 2(k−1)2β−α

)
ζ(kα)

∏
p

(
1 +

1− 1
p(k−1)α+(k−1)2β

pα+(k−1)β − 1

)
.
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This completes the proof of Theorem 2.
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