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Abstract: A simple graph G = (V, E) admits an H-covering if every edge in E belongs to

a subgraph of G isomorphic to H . We say that G is Smarandachely pair {s, l} H-magic if

there is a total labeling f : V ∪ E → {1, 2, 3, · · · , |V | + |E|} such that there are subgraphs

H1 = (V1, E1) and H2 = (V2, E2) of G isomorphic to H , the sum
∑

v∈V1

f(v) +
∑

e∈E1

f(e) = s

and
∑

v∈V2

f(v)+
∑

e∈E2

f(e) = l. Particularly, if s = l, such a Smarandachely pair {s, l} H-magic

is called H-magic and if f(V ) = {1, 2, · · · , |V |}, G is said to be a H-supermagic. In this

paper we show that edge amalgamation of a finite collection of graphs isomorphic to any

2-connected simple graph H is H-supermagic.
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§1. Introduction

The concept of H-magic graphs was introduced in [3]. An edge-covering of a graph G is a family

of different subgraphs H1, H2, . . . , Hk such that each edge of E belongs to at least one of the

subgraphs Hi, 1 ≤ i ≤ k. Then, it is said that G admits an (H1, H2, . . . , Hk) - edge covering.

If every Hi is isomorphic to a given graph H , then we say that G admits an H-covering.

Suppose that G = (V, E) admits an H-covering. We say that a bijective function f :

V ∪E → {1, 2, 3, · · · , |V |+ |E|} is an H-magic labeling of G if there is a positive integer m(f),

which we call magic sum, such that for each subgraph H ′ = (V ′, E′) of G isomorphic to H ,

we have,f(H ′) =
∑

v∈V ′ f(v) +
∑

e∈E′ f(e) = m(f). In this case we say that the graph G

is H-magic. When f(V ) = {1, 2, |V |}, we say that G is H-supermagic and we denote its

supermagic-sum by s(f).

We use the following notations. For any two integers n < m, we denote by [n, m], the set

of all consecutive integers from n to m. For any set I ⊂ N we write,
∑

I =
∑
x∈I

x and for any

integers k, I+k = {x+k : x ∈ I}. Thus k+[n, m] is the set of consecutive integers from k+n to
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k+m. It can be easily verified that
∑

(I+k) =
∑

I+k|I|. If P = {X1, X2, · · · , Xn} is a partition

of a set X of integers with the same cardinality then we say P is an n-equipartition of X . Also

we denote the set of subsets sums of the parts of P by
∑

P = {∑X1,
∑

X2, · · · ,
∑

Xn}.Finally,

given a graph G = (V, E) and a total labeling f on it we denote by f(G) =
∑

f(V ) +
∑

f(E).

§2. Preliminary Results

In this section we give some lemmas which are used to prove the main results in Section 3.

Lemma 2.1 Let h and k be two positive integers and h is odd. Then there exists a k-

equipartition P = {X1, X2, · · · , Xk} of X = [1, hk] such that
∑

Xr =
(h − 1)(hk + k + 1)

2
+ r

for 1 ≤ r ≤ k. Thus,
∑

P is a set of consecutive integers given by
∑

P =
(h − 1)(hk + k + 1)

2
+

[1, k].

Proof Let us arrange the set of integers X = [1, hk] in a h × k matrix A as given below.

A =




1 2 · · · k − 1 k

n + 1 n + 2 · · · 2k − 1 2k

2n + 1 2n + 2 · · · 3k − 1 3k
...

...
...

...
...

(h − 1)k + 1 (h − 1)k + 2 · · · hk − 1 hk




h×k

That is, A = (ai,j)h×k where ai,j = (i − 1)k + j for 1 ≤ i ≤ h and 1 ≤ j ≤ k. For 1 ≤ r ≤ k,

define Xr = {ai,r/1 ≤ i ≤ h+1
2 } ∪ {ai,k−r+1/

h+3
2 ≤ i ≤ h}. Then

∑
Xr =

h+1

2∑

i=1

ai,r +

h∑

i= h+3

2

ai,k−r+1

=

h+1

2∑

i=1

(i − 1)k + r

h∑

i= h+3

2

(i − 1)k + k − r + 1

=
h2k + h − k − 1

2
+ r

=
(h − 1)(hk + k + 1)

2
+ r for 1 ≤ r ≤ k.

Hence,
∑

P =
(h − 1)(hk + k + 1)

2
+ [1, k]. �

Example 2.2 Let h = 9, k = 6 and X = [1, 54]. Then the partition subsets are X1 =

{1, 7, 13, 19, 25, 36, 42, 48, 54}, X2 = {2, 8, 14, 20, 26, 35, 41, 47, 53}, X3 = {3, 9, 15, 21, 27, 34,

40, 46, 52}, X4 = {4, 10, 16, 22, 28, 33, 39, 45, 51}, X5 = {5, 11, 17, 23, 29, 32, 38, 44, 50} and X6 =

{6, 12, 18, 24, 30, 31, 37, 43, 49}. ∑Xr =
(h − 1)(hk + k + 1)

2
+ r = 244 + r for 1 ≤ r ≤ 6.
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Lemma 2.3 Let h and k be two positive integers such that h is even and k ≥ 3 is odd.

Then there exists a k-equipartition P = {X1, X2, · · · , Xk} of X = [1, hk] such that
∑

Xr =
(h − 1)(hk + k + 1)

2
+ r for 1 ≤ r ≤ k. Thus,

∑
P is a set of consecutive integers given by

∑
P =

(h − 1)(hk + k + 1)

2
+ [1, k].

Proof Let us arrange the set of integers X = {1, 2, 3, · · · , hk}in a h× k matrix A as given

below.

A =




1 2 · · · k − 1 k

n + 1 n + 2 · · · 2k − 1 2k

2n + 1 2n + 2 · · · 3k − 1 3k
...

...
...

...
...

(h − 1)k + 1 (h − 1)k + 2 · · · hk − 1 hk




h×k

That is, A = (ai,j)h×k where ai,j = (i − 1)k + j for 1 ≤ i ≤ h and 1 ≤ j ≤ k. For 1 ≤ r ≤ k,

define Yr = {ai,r/1 ≤ i ≤ h

2
} ∪ {ai,k−r+1/

h

2
+ 1 ≤ i ≤ h − 1}. Then

∑
Yr =

h
2∑

i=1

ai,r +

h−1∑

i= h
2
+1

ai,k−r+1

=

h
2∑

i=1

{(i − 1)k + r} +

h−1∑

i= h
2
+1

{(i − 1)k + k − r + 1}

=
k(h − 1)2 + h − k − 2

2
+ r

For 1 ≤ r ≤ k, define Xr = Yσ(r) ∪ {(h − 1)k + π(r)}, where σ and π denote the per-

mutations of {1, 2, · · · , k} given by σ(r) =






k − 2r + 1

2
for 1 ≤ r ≤ k − 1

2
3k − 2r + 1

2
for

k + 1

2
≤ r ≤ k

and π(r) =






2r for 1 ≤ r ≤ k − 1

2

2r − k for
k + 1

2
≤ r ≤ k

. Then

∑
Xr =

∑
Yσ(r) + (h − 1)k + π(r)

=
k(h − 1)2 + h − k − 2

2
+ σ(r) + (h − 1)k + π(r)

∑
Xr =





k(h − 1)2 + h − k − 2

2
+

k − 2r + 1

2
+ (h − 1)k + 2r for 1 ≤ r ≤ k−1

2

k(h − 1)2 + h − k − 2

2
+

3k − 2r + 1

2
+ (h − 1)k + 2r − k for k+1

2 ≤ r ≤ k
. On

simplification we get
∑

Xr =
(h − 1)(hk + k + 1)

2
+ r for 1 ≤ r ≤ k. Hence,

∑
P =

(h − 1)(hk + k + 1)

2
+ [1, k]. �
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Example 2.4 Let h = 6,k = 5 and X = [1, 30]. Y1 = {1, 6, 11, 20, 25}, Y2 = {2, 7, 12, 19, 24},
Y3 = {3, 8, 13, 18, 23}, Y4 = {4, 9, 14, 17, 22}and Y5 = {5, 10, 15, 16, 21}. By definition the parti-

tion subsets are, Xr = Yσ(r) ∪ {(h − 1)k + π(r) for 1 ≤ r ≤ 5. X1 = {2, 7, 12, 19, 24, 27}, X2 =

{1, 6, 11, 20, 25, 29}, X3 = {5, 10, 15, 16, 21, 26}X4 = {4, 9, 14, 17, 22, 28}X5 = {3, 8, 13, 18, 23, 30},
Now,

∑
Xr =

(h − 1)(hk + k + 1)

2
+ r = 90 + r for 1 ≤ r ≤ 5.

Lemma 2.5 If h is even, then there exists a k-equipartition P = {X1, X2, · · · , Xk} of X =

[1, hk] such that
∑

Xr =
h(hk + 1)

2
for 1 ≤ r ≤ k. Thus, the subsets sum are equal and is

equal to
h(hk + 1)

2
.

Proof Let us arrange the set of integers X = {1, 2, 3, · · · , hk}in a h× k matrix A as given

below.

A =




1 2 · · · k − 1 k

n + 1 n + 2 · · · 2k − 1 2k

2n + 1 2n + 2 · · · 3k − 1 3k
...

...
...

...
...

(h − 1)k + 1 (h − 1)k + 2 · · · hk − 1 hk




h×k

That is, A = (ai,j)h×k where ai,j = (i − 1)k + j for 1 ≤ i ≤ h and 1 ≤ j ≤ k. For 1 ≤ r ≤ k,

define Xr = {ai,r/1 ≤ i ≤ h
2 } ∪ {ai,k−r+1/

h
2 + 1 ≤ i ≤ h − 1}. Then

∑
Xr =

h
2∑

i=1

ai,r +

h∑

i= h
2
+1

ai,k−r+1

=

h
2∑

i=1

{(i − 1)k + r} +

h∑

i= h
2
+1

{(i − 1)k + k − r + 1} =
h(hk + 1)

2

Thus, the subsets sum are equal and is equal to
h(hk + 1)

2
. �

Example 2.6 Let h = 6, k = 5 and X = [1, 30]. Then the partition subsets are X1 =

{1, 6, 11, 20, 25, 30}, X2 = {2, 7, 12, 19, 24, 29}, X3 = {3, 8, 13, 18, 23, 28}, X4 = {4, 9, 14, 17,

22, 27} and X5 = {5, 10, 15, 16, 21, 26}. Now,
∑

Xr =
h(hk + 1)

2
= 93 for 1 ≤ r ≤ 5.

Lemma 2.7 Let h and k be two even positive integers and h ≥ 4. If X = [1, hk+1]−{k

2
+1} ,

there exists a k-equipartition P = {X1, X2, · · · , Xk} of X such that
∑

Xr =
h2k + 3h − k − 2

2
+r

for 1 ≤ r ≤ k. Thus
∑

P is a set of consecutive integers
h2k + 3h − k − 2

2
+ [1, k].

Proof First we prove this lemma for h = 2 and we generalize for any even integer h ≥ 4.

Case 1: h = 2.
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X = [1, 2k + 1] − {k
2 + 1}. For 1 ≤ r ≤ k, define

Xr =




{k

2 + 1 − r, k + 1 + 2r} for 1 ≤ r ≤ k
2

{ 3k
2 + 2 − r, 2r} for k

2 + 1 ≤ r ≤ k
.

Hence,
∑

Xr = 3k
2 + 2 + r for 1 ≤ r ≤ k.

Case 2: h ≥ 4

Let Y = [1, 2k + 1]−{k

2
+ 1} and Z = [2k + 2, hk+ 1]. Then X = Y ∪Z. By Case 1, there

exists a k-equipartition P1 = {Y1, Y2, · · · , Yk} of Y such that

∑
Yr =

3k

2
+ 2 + r for 1 ≤ r ≤ k (1)

Since h − 2 is even, by Lemma 2.5, there exists a k-equipartition

P′
2 = {Z ′

1, Z
′
2, · · · , Z ′

k} of [1, (h − 2)k] such that
∑

Z ′
r =

(h − 2)(hk − 2k + 1)

2
for 1 ≤ r ≤ k.

Adding 2k+1 to [1, (h−2)k], we get a k-equipartition P2 = {Z1, Z2, · · · , Zk} of Z = [2k+2, hk+

1] such that
∑

Zr = (h − 2)(2k + 1) +
(h − 2)(hk − 2k + 1)

2
for 1 ≤ r ≤ k. Let Xr = Yr ∪ Zr

for 1 ≤ r ≤ k. Then,
∑

Xr =
∑

Yr ∪
∑

Zr

=
h2k + 3h − k − 2

2
+ r for 1 ≤ r ≤ k.

Hence,
∑

P is a set of consecutive integers
h2k + 3h − k − 2

2
+ [1, k]. �

Example 2.8 Let h = 6, k = 6 and X = [1, 37] − {4}.Then the partition subsets are X1 =

{3, 9, 14, 20, 31, 37}, X2 = {2, 11, 15, 21, 30, 36}, X3 = {1, 13, 16, 22, 29, 35}, X4 = {7, 8, 17, 23,

28, 34}, X5 = {6, 10, 18, 24, 27, 33} and X6 = {5, 12, 19, 25, 26, 32}. Now,

∑
Xr =

h2k + 3h − k − 2

2
+ r = 113 + r

for 1 ≤ r ≤ 6.

Lemma 2.9 Let h and k be two even positive integers. If X = [1, hk + 2] − {1,
k

2
+ 2} , there

exists a k-equipartition P = {X1, X2, · · · , Xk} of X such that
∑

Xr =
h2k + 5h− k − 2

2
+ r for

1 ≤ r ≤ k. Thus
∑

P is a set of consecutive integers
h2k + 5h − k − 2

2
+ [1, k].

Proof First we prove this lemma for h = 2 and we generalize for any even integer h ≥ 4.

Case 1: h = 2

X = [1, 2k + 2] − {1,
k

2
+ 2}. For 1 ≤ r ≤ k, define

Xr =






{k

2
+ 1 − r, k + 2 + 2r} for 1 ≤ r ≤ k

2
,

{3k

2
+ 3 − r, 2r + 1} for

k

2
+ 1 ≤ r ≤ k.
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Hence,
∑

Xr =
3k

2
+ 4 + r for 1 ≤ r ≤ k.

Case 2: h ≥ 4

Let Y = [1, 2k + 2] − {1,
k

2
+ 2} and Z = [2k + 3, hk + 2]. Then X = Y ∪ Z. By Case 1,

there exists a k-equipartition P1 = {Y1, Y2, · · · , Yk} of Y such that

∑
Yr =

3k

2
+ 4 + r for 1 ≤ r ≤ k (2)

Since h − 2 is even, by Lemma 2.5, there exists a k-equipartition

P′
2 = {Z ′

1, Z
′
2, · · · , Z ′

k} of [1, (h − 2)k] such that
∑

Z ′
r =

(h − 2)(hk − 2k + 1)

2
for 1 ≤ r ≤ k.

Adding 2k+2 to [1, (h−2)k], we get a k-equipartition P2 = {Z1, Z2, · · · , Zk} of Z = [2k+3, hk+

2] such that
∑

Zr = (h − 2)(2k + 2) +
(h − 2)(hk − 2k + 1)

2
for 1 ≤ r ≤ k. Let Xr = Yr ∪ Zr

for 1 ≤ r ≤ k. Then,

∑
Xr =

∑
Yr ∪

∑
Zr

=
h2k + 5h − k − 2

2
+ r for 1 ≤ r ≤ k.

Hence,
∑

P is a set of consecutive integers
h2k + 5h − k − 2

2
+ [1, k]. �

Example 2.10 Let h = 6, k = 6 and X = [1, 38] − {1, 5}.Then the partition subsets

are X1 = {4, 10, 15, 21, 32, 38}, X2 = {3, 12, 16, 22, 31, 37}, X3 = {2, 14, 17, 23, 30, 36}, X4 =

{8, 9, 18, 24, 29, 35}, X5 = {7, 11, 19, 25, 28, 34} and X6 = {6, 13, 20, 26, 27, 33}. Now,
∑

Xr =
h2k + 5h − k − 2

2
+ r = 119 + r for 1 ≤ r ≤ 6.

§3. Main Results

Definition 3.1(Edge amalgamation of a finite collection of graphs, [1]) For any finite collection

(Gi, uivi) of graphs Gi, each with a fixed edge uivi, Carlson [1] defined the edge amalgamation

Edgeamal{(Gi, uivi)} as the graph obtained by taking the union of all the Gi’s and identifying

their fixed edges.

Definition 3.2( Generalized Book) If all the Gi’s are cycles then Edgeamal{(Gi, uivi)} is

called a generalized book.

Theorem 3.3 Let H be a 2-connected (p, q) simple graph. Then the edge amalgamation

Edgeamal{(Hi, uivi)} of any finite collection {Hi, uivi} of graphs Hi, each with a fixed edge

uivi isomorphic to H is H-supermagic for all values of p and q.

Proof Let {Hi, uivi} be a collection of n graphs Hi, each with a fixed edge uivi and

isomorphic to a 2-connected simple graph H .

Let G = Edgeamal{(Hi, uivi)} with vertex set V and edge set E. Note that |V | = n(p− 2) + 2

and |E| = n(q − 1) + 1. Let Hi = (Vi, Ei) for 1 ≤ i ≤ n. Label the common edge of G as

e = w1w2. Let V ′
i = Vi − {w1, w2} and E′

i = E − {e} for 1 ≤ i ≤ n.
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Case 1: n is odd

Subcase (i): p is even and q is odd

Since p − 2 and q − 1 are even by Lemma 2.5 there exists n-equipartitions P′
1 = {X ′

1, X
′
2,

· · · , X ′
n} of [1, (p − 2)n] and P′

2 = {Y ′
1 , Y ′

2 , · · · , Y ′
n} of [1, (q − 1)n] such that

∑
X ′

i =
(p − 2)(pn − 2n + 1)

2
,
∑

Y ′
i =

(q − 1)(qn − n + 1)

2
.

Add 2 to each element of the set [1, (p−2)n] and (p−2)n+3 to each element of the set [1, (q−1)n].

We get n-equipartitions P1 = {X1, X2, · · · , Xn} of [3, pn − 2n + 3] and P2 = {Y1, Y2, · · · , Yn}
of [pn − 2n + 4, (p + q − 3)n + 3] such that

∑
Xi = (p−2)2+

(p − 2)(pn − 2n + 1)

2
,
∑

Yi = (q−1)(pn−2n+3)+
(q − 1)(qn − n + 1)

2
.

Define a total labeling f : V ∪ E → [1, (p + q − 3)n + 3] as follows:

f(w1) = 1 and f(w2) = 2.

f(e) = pn − 2n + 3.

f(V ′
i ) = Xi for 1 ≤ i ≤ n.

f(E′
i) = Yn−i+1 for 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n,

f(Hi) = f(w1) + f(w2) + f(e) +
∑

f(V ′
i ) +

∑
f(E′

i)

= f(w1) + f(w2) + f(e) +
∑

X ′
i +
∑

Y ′
n−i+1

=
n(p + q)2 + p + q + 5(n − 1)

2
− (n − 1)(2p + 3q)

= constant.

Since Hi
∼= H for 1 ≤ i ≤ n, G is H-supermagic.

Subcase (ii): p is odd and q is even

Since p−2 and q−1 are odd, by Lemma 2.1 there exists n-equipartitions P′
1 = {X ′

1, X
′
2, · · · ,

X ′
n} of [1, (p − 2)n] and P′

2 = {Y ′
1 , Y ′

2 , · · · , Y ′
n} of [1, (q − 1)n] such that

∑
X ′

i =
(p − 3)(pn − n + 1)

2
+ i,

∑
Y ′

i =
(q − 2)(qn + 1)

2
+ i

for 1 ≤ i ≤ n. Add 2 to each element of the set [1, (p − 2)n] and (p − 2)n + 3 to each element

of the set [1, (q − 1)n]. We get n-equipartitions P1 = {X1, X2, · · · , Xn} of [3, pn − 2n + 3] and

P2 = {Y1, Y2, · · · , Yn} of [pn − 2n + 4, (p + q − 3)n + 3] such that

∑
Xi = (p−2)2+

(p − 3)(pn − n + 1)

2
+ i,

∑
Yi = (q−1)(pn−2n+3)+

(q − 2)(nq + 1)

2
+ i

for 1 ≤ i ≤ n. Define a total labeling f : V ∪ E → [1, (p + q − 3)n + 3] as follows:

f(w1) = 1 and f(w2) = 2.

f(e) = pn − 2n + 3.

f(V ′
i ) = Xi for 1 ≤ i ≤ n.

f(E′
i) = Yn−i+1 for 1 ≤ i ≤ n.
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Then for 1 ≤ i ≤ n,

f(Hi) = f(w1) + f(w2) + f(e) +
∑

f(V ′
i ) +

∑
f(E′

i)

= f(w1) + f(w2) + f(e) +
∑

X ′
i +
∑

Y ′
n−i+1

=
n(p + q)2 + p + q + 5(n − 1)

2
− (n − 1)(2p + 3q)

= constant.

Since Hi
∼= H for 1 ≤ i ≤ n, G is H-supermagic.

Subcase (iii): p and q are odd

Since p − 2 is odd, by Lemma 2.1 there exists an n-equipartition P′
1 = {X ′

1, X
′
2, · · · , X ′

n}
of [1, (p− 2)n] such that

∑
X ′

i =
(p − 3)(pn − n + 1)

2
+ i for 1 ≤ i ≤ n. Since q − 1 is even and

n is odd, by Lemma 2.3 there exists an n-equipartition P′
2 = {Y ′

1 , Y ′
2 , · · · , Y ′

n} of [1, (q − 1)n]

such that
∑

Y ′
i =

(q − 2)(qn + 1)

2
+ i for 1 ≤ i ≤ n. Add 2 to each element of the set

[1, (p − 2)n] and (p − 2)n + 3 to each element of the set [1, (q − 1)n]. We get n-equipartitions

P1 = {X1, X2, · · · , Xn} of [3, pn−2n+3] and P2 = {Y1, Y2, · · · , Yn} of [pn−2n+4, (p+q−3)n+3]

such that

∑
Xi = (p − 2)2 +

(p − 3)(np − n + 1)

2
+ i,

∑
Yi = (q − 1)(pn − 2n + 3) +

(q − 2)(qn + 1)

2
+ i

for 1 ≤ i ≤ n. Define a total labeling f : V ∪ E → [1, (p + q − 3)n + 3] as follows:

f(w1) = 1 and f(w2) = 2.

f(e) = pn − 2n + 3.

f(V ′
i ) = Xi for 1 ≤ i ≤ n.

f(E′
i) = Yn−i+1 for 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n,

f(Hi) = f(w1) + f(w2) + f(e) +
∑

f(V ′
i ) +

∑
f(E′

i)

= f(w1) + f(w2) + f(e) +
∑

X ′
i +
∑

Y ′
n−i+1

=
n(p + q)2 + p + q + 5(n − 1)

2
− (n − 1)(2p + 3q)

= constant.

Since Hi
∼= H for 1 ≤ i ≤ n, G is H-supermagic.

Subcase (iv): p and q are even

Since p − 2 is even and n is odd, by Lemma 2.3 there exists an n-equipartition P′
1 =

{X ′
1, X

′
2, · · · , X ′

n} of [1, (p − 2)n] such that
∑

X ′
i =

(p − 3)(pn − n + 1)

2
+ i for 1 ≤ i ≤ n.

Since q − 1 is odd, by Lemma 2.1 there exists an n-equipartition P′
2 = {Y ′

1 , Y ′
2 , · · · , Y ′

n} of
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[1, (q − 1)n] such that
∑

Y ′
i =

(q − 2)(qn + 1)

2
+ i for 1 ≤ i ≤ n. Add 2 to each element of the

set [1, (p−2)n] and (p−2)n+3 to each element of the set [1, (q−1)n]. We get n-equipartitions

P1 = {X1, X2, · · · , Xn} of [3, pn−2n+3] and P2 = {Y1, Y2, · · · , Yn} of [pn−2n+4, (p+q−3)n+3]

such that

∑
Xi = (p−2)2+

(p − 3)(pn − n + 1)

2
+ i,

∑
Yi = (q−1)(pn−2n+3)+

(q − 2)(qn + 1)

2
+ i

for 1 ≤ i ≤ n. Define a total labeling f : V ∪ E → [1, (p + q − 3)n + 3] as follows:

f(w1) = 1 and f(w2) = 2.

f(e) = pn − 2n + 3.

f(V ′
i ) = Xi for 1 ≤ i ≤ n.

f(E′
i) = Yn−i+1 for 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n,

f(Hi) = f(w1) + f(w2) + f(e) +
∑

f(V ′
i ) +

∑
f(E′

i)

= f(w1) + f(w2) + f(e) +
∑

X ′
i +
∑

Y ′
n−i+1

=
n(p + q)2 + p + q + 5(n − 1)

2
− (n − 1)(2p + 3q)

= constant.

Since Hi
∼= H for 1 ≤ i ≤ n, G is H-supermagic.

Case 2: n is even

Subcase (i): p is even and q is odd

The argument in Subcase(i) of Case (1) is independent of the nature of n. Hence we get

G is H-supermagic.

Subcase (ii): p is odd and q is even

The argument in Subcase(ii) of Case (1) is independent of the nature of n. Hence we get

G is H-supermagic.

Subcase (iii): p and q are odd

Since p − 2 is odd, by Lemma 2.1 there exists an n-equipartition P′
1 = {X ′

1, X
′
2, · · · , X ′

n}
of [1, (p − 2)n] such that

∑
X ′

i =
(p − 3)(pn − n + 1)

2
+ i for 1 ≤ i ≤ n. Since q − 1 and n

are even, by Lemma 2.7 there exists an n-equipartition P′
2 = {Y ′

1 , Y ′
2 , · · · , Y ′

n} of [1, (q − 1)n +

1] − {n

2
+ 1} such that

∑
Y ′

i =
(q − 1)2n + 3(q − 1) − n − 2

2
+ i for 1 ≤ i ≤ n. Add 2 to each

element of the set [1, (p − 2)n] and (p − 2)n + 2 to each element of the set [1, (q − 1)n]. We

get n-equipartitions P1 = {X1, X2, · · · , Xn} of [3, pn − 2n + 3] and P2 = {Y1, Y2, · · · , Yn} of

[pn − 2n + 3, (p + q − 3)n + 3] − {(p − 2)n +
n

2
+ 3} such that

∑
Xi = (p − 2)2 +

(p − 3)(pn − n + 1)

2
+ i,
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∑
Yi = (q − 1)(pn − 2n + 2) +

(q − 1)2n + 3(q − 1) − n − 2

2
+ i

for 1 ≤ i ≤ n. Define a total labeling f : V ∪ E → [1, (p + q − 3)n + 3] as follows:

f(w1) = 1 and f(w2) = 2.

f(e) = (p − 2)n +
n

2
+ 3.

f(V ′
i ) = Xi for 1 ≤ i ≤ n.

f(E′
i) = Yn−i+1 for 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n,

f(Hi) = f(w1) + f(w2) + f(e) +
∑

f(V ′
i ) +

∑
f(E′

i)

= f(w1) + f(w2) + f(e) +
∑

X ′
i +
∑

Y ′
n−i+1

=
n(p + q)2 + p + q

2
− (n − 1)(2p + 3q − 3)

= constant.

Since Hi
∼= H for 1 ≤ i ≤ n, G is H-supermagic.

Subcase (iv): p and q are even

Since p − 2 and n are even, by Lemma 2.9 there exists an n-equipartition P1 = {X1, X2,

· · · , Xn} of [1, (p− 2)n +2]−{1,
n

2
+2} such that

∑
Xi =

(p − 2)2n + 5(p − 2) − n − 2

2
+ i for

1 ≤ i ≤ n.

Since q − 1 is odd, by Lemma 2.1 there exists an n-equipartition P′
2 = {Y ′

1 , Y ′
2 , · · · , Y ′

n} of

[1, (q − 1)n] and
∑

Y ′
i = (q−2)(qn+1)

2 + i for 1 ≤ i ≤ n. Add (p− 2)n + 3 to each element of the

set [1, (q−1)n]. We get an n-equipartition P2 = {Y1, Y2, · · · , Yn} of [pn−2n+4, (p+q−3)n+3]

such that
∑

Yi = (q − 1)(pn − 2n + 3) + (q−2)(qn+1)
2 + i for 1 ≤ i ≤ n. Define a total labeling

f : V ∪ E → [1, (p + q − 3)n + 3] as follows:

f(w1) = 1 and f(w2) =
n

2
+ 2.

f(e) = pn − 2n + 3.

f(V ′
i ) = Xi for 1 ≤ i ≤ n.

f(E′
i) = Yn−i+1 for 1 ≤ i ≤ n.

Then for 1 ≤ i ≤ n,

f(Hi) = f(w1) + f(w2) + f(e) +
∑

f(V ′
i ) +

∑
f(E′

i)

= f(w1) + f(w2) + f(e) +
∑

X ′
i +
∑

Y ′
n−i+1

=
n(p + q)2 + p + q

2
− (n − 1)(2p + 3q − 3)

= constant.

Since Hi
∼= H for 1 ≤ i ≤ n, G is H-supermagic.



Supermagic Coverings of Some Simple Graphs 43

Hence, the edge amalgamation Edgeamal{(Hi, uivi)} of any finite collection {Hi, uivi} of

graphs Hi, each with a fixed edge uivi and isomorphic to H is H-supermagic for all values of

p and q. �

Illustration 3.4 Let H1,H2,H3,H4 and H5 be five graphs isomorphic to the wheel W4 =

C4 + K1 and their fixed edges given by dotted lines. Then the Edge amalgamation graph

Edgeamal{(Hi, uivi)} of the given collection is W4-supermagic with supermagic sum 303.
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Illustration 3.5 Let H1,H2,H3 and H4 be four graphs isomorphic to H and their fixed edges

given by dotted lines. Then the Edge amalgamation graph Edgeamal{(Hi, uivi)} of the given

collection is H-supermagic with supermagic sum 300.
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Definition 3.6(Book with m-gon pages) Let n and m be any positive integers with n ≥ 1 and

m ≥ 3 . Then, n copies of the cycle Cm with an edge in common is called a book with n m-gon

pages. That is, if {Gi, uivi} is a collection of n copies of the cycle Cm each with a fixed edge

uivi then Edgeamal{(Gi, uivi)} is called a book with n m-gon pages.

A book with 3 pentagon pages is given below.

Fig.3

Corollary 3.7 Books with n m-gon pages are Cm -supermagic for every positive integers

n ≥ 1and m ≥ 3.

Illustration 3.8 C5-supermagic covering of a book with 3 hexagon pages is given below. The

supermagic sum is 167.
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Theorem 3.9 Let Hi = K1,k with vertex set V (Hi) = {vi, vir : 1 ≤ r ≤ k} and the edge set

E(Hi) = {vivir : 1 ≤ r ≤ k} where 1 ≤ i ≤ k and G be a graph obtained by joining a new vertex

w with v11, v21, · · · , vk1. Then G is K1,k-supermagic.

Proof Let Vi = {vi, vir : 1 ≤ r ≤ k} and Ei = {Vivjr : 1 ≤ r ≤ k} for 1 ≤ i ≤ k.

Then the vertex and edge set of G = (V, E) are given by V = ∪k
i=1Vi ∪ {v} and E = ∪k

i=1Ei ∪
{vv1, vv2, · · · , vvk}. Also |V | = k2 + k + 1 and |E| = k2 + k. Let Vk+1 = {w, v1, v2, · · · , vk}
and Ek+1 = {wv1, wv2, · · · , wvk} and Hk+1 = (Vk+1, Ek+1) be the graph with vertex set Vk+1

and edge set Ek+1. Note that any edge of E belongs to at least one of the subgraphs Hi for

1 ≤ i ≤ k + 1. Since Hi
∼= K1,k for 1 ≤ i ≤ k + 1, G admits a K1,k-covering.
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Case 1: k is odd

Since k + 1 is even, by Lemma 2.3, there exists a k-equipartition P = {X1, X2, · · · , Xk} of

X = [1, (k + 1)k] such that

∑
Xi =

k(k + 1)2

2
+ i for 1 ≤ i ≤ k (3)

It can be easily verified from the definition of Xr in Lemma 2.3 that

(
k + 1

2
− 1

)
k+σ(r) ∈ Xr

for 1 ≤ r ≤ k, where σ denotes the permutation of {1, 2, · · · , k} given by

σ(r) =





k − 2r + 1

2
for 1 ≤ r ≤ k − 1

2
3k − 2r + 1

2
for

k + 1

2
≤ r ≤ k

.

Construct Xk+1 = {
(

k + 1

2
− 1

)
k + σ(r) : 1 ≤ r ≤ k} ∪ {k2 + k + 1}.

∑
Xk+1 =

k∑

r=1

[(
k + 1

2
− 1

)
k + σ(r)

]
+ k2 + k + 1

=
k2(k − 1)

2
+

k(k + 1)

2
+ k2 + k + 1

=
k(k + 1)2

2
+ k + 1 (4)

From (1) and (2) we have

∑
Xi =

k(k + 1)2

2
+ i for 1 ≤ i ≤ k + 1 (5)

As k is odd, by Lemma 1, there exists a k +1-equipartition Q′ = {Y ′
1 , Y ′

2 , · · · , Y ′
k+1} of the

set Y = [1, k(k + 1)] such that
∑

Y ′
i =

(k − 1)[(k + 1)2 + 1]

2
+ i for 1 ≤ i ≤ k + 1.

Adding k2 + k + 1 to [1, k(k + 1)], we get a k + 1-equipartition Q = {Y1, Y2, · · · , Yk+1} of

the set Y = [k2 + k + 2, 2k2 + 2k + 1] such that

∑
Yi = k(k2 + k + 1) +

(k − 1)[(k + 1)2 + 1]

2
+ i for 1 ≤ i ≤ k + 1 (6)

Define a total labeling f : V ∪ E → [1, 2k2 + 2k + 1] as follows:

(i) f(w) = k2 + k + 1.

(ii) f(Vi) = Xi with f(vi1) =

(
k + 1

2
− 1

)
k + σ(r) for 1 ≤ i ≤ k + 1.

(iii) f(Ei) = Yk+2−i for 1 ≤ i ≤ k + 1.

Then for 1 ≤ i ≤ k + 1,

f(Hi) =
∑

f(Vi) +
∑

f(Ei) =
∑

Xi +
∑

Yk+2−i

=
4k3 + 5k2 + 5k + 2

2
,
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which is a constant. Since Hi
∼= K1,k for 1 ≤ i ≤ k + 1, G is K1,k-supermagic.

Case 2: k is even

Since k + 1 is odd, by Lemma 1,there exists a k-equipartition P = {X1, X2, · · · , Xk} of

X = [1, (k + 1)k] such that

∑
Xi =

k(k + 1)2

2
+ i for 1 ≤ i ≤ k (7)

It can be easily verified from the definition of Xr in Lemma 2.3 that

(
k + 2

2
− 1

)
k+r ∈ Xr for

1 ≤ r ≤ k

2
, and

(
k

2
− 1

)
k+r ∈ Xr for

k

2
+1 ≤ r ≤ k. Construct Xk+1 = {

(
k + 2

2
− 1

)
k+r :

1 ≤ r ≤ k

2
} ∪ {

(
k

2
− 1

)
k + r :

k

2
+ 1 ≤ r ≤ k} ∪ {k2 + k + 1}.

∑
Xk+1 =

k
2∑

r=1

[(
k + 2

2
− 1

)
k + r

]
+

k∑

k
2
+1

[(
k

2
− 1

)
k + r

]
+ k2 + k + 1

=
k2(k − 1)

2
+

k(k + 1)

2
+ k2 + k + 1

=
k(k + 1)2

2
+ k + 1 (8)

From (5) and (6) we have

∑
Xi =

k(k + 1)2

2
+ i for 1 ≤ i ≤ k + 1 (9)

As k is even, by Lemma 2.3, there exists a k + 1-equipartition Q′ = {Y ′
1 , Y ′

2 , · · · , Y ′
k+1} of

the set Y = [1, k(k + 1)] such that
∑

Y ′
i = (k−1)[(k+1)2+1]

2 + i for 1 ≤ i ≤ k + 1. Adding

k2 + k + 1 to [1, k(k + 1)], we get a k + 1-equipartition Q = {Y1, Y2, · · · , Yk+1} of the set

Y = [k2 + k + 2, 2k2 + 2k + 1] such that

∑
Yi = k(k2 + k + 1) +

(k − 1)[(k + 1)2 + 1]

2
+ i for 1 ≤ i ≤ k + 1 (10)

Define a total labeling f : V ∪ E → [1, 2k2 + 2k + 1] as follows:

(i) f(w) = k2 + k + 1.

(ii) f(Vi) = Xi with f(vi1) =

(
k + 2

2
− 1

)
k + r for 1 ≤ i ≤ k

2
and f(vi1) =

(
k

2
− 1

)
k + r

for
k

2
+ 1 ≤ i ≤ k.

(iii) f(Ei) = Yk+2−i for 1 ≤ i ≤ k + 1.

Then for 1 ≤ i ≤ k + 1,

f(Hi) =
∑

f(Vi) +
∑

f(Ei)

=
∑

Xi +
∑

Yk+2−i

=
4k3 + 5k2 + 5k + 2

2
,
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which is a constant. Since Hi
∼= K1,k for 1 ≤ i ≤ k + 1, G is K1,k-supermagic. Thus, in both

the cases G is K1,k-supermagic with supermagic sum s(f) =
4k3 + 5k2 + 5k + 2

2
. �

Illustration 3.10
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Fig.1. G- is K1,5-supermagic with supermagic sum 236.
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Fig.2. G- is K1,6-supermagic with supermagic sum 538.
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