Supermagic Coverings of Some Simple Graphs

P.Jeyanthi

Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628 215

P.Selvagopal

Department of Mathematics, Cape Institute of Technology, Levengipuram, Tirunelveli Dist.-627 $114\,$

E-mail: jeyajeyanthi@rediffmail.com, selvagopaal@gmail.com

Abstract: A simple graph G=(V,E) admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. We say that G is Smarandachely pair $\{s,l\}$ H-magic if there is a total labeling $f:V\cup E\to \{1,2,3,\cdots,|V|+|E|\}$ such that there are subgraphs $H_1=(V_1,E_1)$ and $H_2=(V_2,E_2)$ of G isomorphic to H, the sum $\sum\limits_{v\in V_1}f(v)+\sum\limits_{e\in E_1}f(e)=s$ and $\sum\limits_{v\in V_2}f(v)+\sum\limits_{e\in E_2}f(e)=l$. Particularly, if s=l, such a Smarandachely pair $\{s,l\}$ H-magic is called H-magic and if $f(V)=\{1,2,\cdots,|V|\}$, G is said to be a H-supermagic. In this paper we show that edge amalgamation of a finite collection of graphs isomorphic to any 2-connected simple graph H is H-supermagic.

Key Words: H-covering, Smarandachely pair $\{s, l\}$ H-magic, H-magic, H-supermagic.

AMS(2010): 05C78

§1. Introduction

The concept of H-magic graphs was introduced in [3]. An edge-covering of a graph G is a family of different subgraphs H_1, H_2, \ldots, H_k such that each edge of E belongs to at least one of the subgraphs $H_i, 1 \le i \le k$. Then, it is said that G admits an (H_1, H_2, \ldots, H_k) - edge covering. If every H_i is isomorphic to a given graph H, then we say that G admits an H-covering.

Suppose that G = (V, E) admits an H-covering. We say that a bijective function $f: V \cup E \to \{1, 2, 3, \cdots, |V| + |E|\}$ is an H-magic labeling of G if there is a positive integer m(f), which we call magic sum, such that for each subgraph H' = (V', E') of G isomorphic to H, we have, $f(H') = \sum_{v \in V'} f(v) + \sum_{e \in E'} f(e) = m(f)$. In this case we say that the graph G is H-magic. When $f(V) = \{1, 2, |V|\}$, we say that G is H-supermagic and we denote its supermagic-sum by s(f).

We use the following notations. For any two integers n < m, we denote by [n, m], the set of all consecutive integers from n to m. For any set $\mathbb{I} \subset \mathbb{N}$ we write, $\sum \mathbb{I} = \sum_{x \in \mathbb{I}} x$ and for any integers k, $\mathbb{I} + k = \{x + k : x \in \mathbb{I}\}$. Thus k + [n, m] is the set of consecutive integers from k + n to

¹Received December 29, 2010. Accepted February 20, 2011.

k+m. It can be easily verified that $\sum (\mathbb{I}+k) = \sum \mathbb{I}+k|\mathbb{I}|$. If $\mathbb{P}=\{X_1,X_2,\cdots,X_n\}$ is a partition of a set X of integers with the same cardinality then we say \mathbb{P} is an n-equipartition of X. Also we denote the set of subsets sums of the parts of \mathbb{P} by $\sum \mathbb{P}=\{\sum X1,\sum X_2,\cdots,\sum X_n\}$. Finally, given a graph G=(V,E) and a total labeling f on it we denote by $f(G)=\sum f(V)+\sum f(E)$.

§2. Preliminary Results

In this section we give some lemmas which are used to prove the main results in Section 3.

Lemma 2.1 Let h and k be two positive integers and h is odd. Then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X = [1, hk] such that $\sum X_r = \frac{(h-1)(hk+k+1)}{2} + r$ for $1 \le r \le k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P} = \frac{(h-1)(hk+k+1)}{2} + [1, k]$.

Proof Let us arrange the set of integers X = [1, hk] in a $h \times k$ matrix \mathcal{A} as given below.

$$\mathcal{A} = \begin{pmatrix} 1 & 2 & \cdots & k-1 & k \\ n+1 & n+2 & \cdots & 2k-1 & 2k \\ 2n+1 & 2n+2 & \cdots & 3k-1 & 3k \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (h-1)k+1 & (h-1)k+2 & \cdots & hk-1 & hk \end{pmatrix}_{h \times k}$$

That is, $A = (a_{i,j})_{h \times k}$ where $a_{i,j} = (i-1)k + j$ for $1 \le i \le h$ and $1 \le j \le k$. For $1 \le r \le k$, define $X_r = \{a_{i,r}/1 \le i \le \frac{h+1}{2}\} \cup \{a_{i,k-r+1}/\frac{h+3}{2} \le i \le h\}$. Then

$$\sum X_r = \sum_{i=1}^{\frac{h+1}{2}} a_{i,r} + \sum_{i=\frac{h+3}{2}}^h a_{i,k-r+1}$$

$$= \sum_{i=1}^{\frac{h+1}{2}} (i-1)k + r \sum_{i=\frac{h+3}{2}}^h (i-1)k + k - r + 1$$

$$= \frac{h^2k + h - k - 1}{2} + r$$

$$= \frac{(h-1)(hk + k + 1)}{2} + r \quad \text{for} \quad 1 \le r \le k.$$

Hence,
$$\sum \mathbb{P} = \frac{(h-1)(hk+k+1)}{2} + [1,k].$$

Example 2.2 Let h = 9, k = 6 and X = [1,54]. Then the partition subsets are $X_1 = \{1,7,13,19,25,36,42,48,54\}$, $X_2 = \{2,8,14,20,26,35,41,47,53\}$, $X_3 = \{3,9,15,21,27,34,40,46,52\}$, $X_4 = \{4,10,16,22,28,33,39,45,51\}$, $X_5 = \{5,11,17,23,29,32,38,44,50\}$ and $X_6 = \{6,12,18,24,30,31,37,43,49\}$. $\sum X_r = \frac{(h-1)(hk+k+1)}{2} + r = 244 + r$ for $1 \le r \le 6$.

Lemma 2.3 Let h and k be two positive integers such that h is even and $k \geq 3$ is odd. Then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X = [1, hk] such that $\sum X_r = [1, hk]$ $\frac{(h-1)(hk+k+1)}{2}+r$ for $1\leq r\leq k$. Thus, $\sum\mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P} = \frac{(h-1)(hk+k+1)}{2} + [1,k].$

Proof Let us arrange the set of integers $X = \{1, 2, 3, \dots, hk\}$ in a $h \times k$ matrix \mathcal{A} as given below.

$$\mathcal{A} = \begin{pmatrix} 1 & 2 & \cdots & k-1 & k \\ n+1 & n+2 & \cdots & 2k-1 & 2k \\ 2n+1 & 2n+2 & \cdots & 3k-1 & 3k \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (h-1)k+1 & (h-1)k+2 & \cdots & hk-1 & hk \end{pmatrix}_{h \times k}$$

That is, $\mathcal{A} = (a_{i,j})_{h \times k}$ where $a_{i,j} = (i-1)k + j$ for $1 \le i \le h$ and $1 \le j \le k$. For $1 \le r \le k$, define $Y_r = \{a_{i,r}/1 \le i \le \frac{h}{2}\} \cup \{a_{i,k-r+1}/\frac{h}{2} + 1 \le i \le h-1\}$. Then

$$\sum Y_r = \sum_{i=1}^{\frac{h}{2}} a_{i,r} + \sum_{i=\frac{h}{2}+1}^{h-1} a_{i,k-r+1}$$

$$= \sum_{i=1}^{\frac{h}{2}} \{(i-1)k+r\} + \sum_{i=\frac{h}{2}+1}^{h-1} \{(i-1)k+k-r+1\}$$

$$= \frac{k(h-1)^2 + h - k - 2}{2} + r$$

For
$$1 \leq r \leq k$$
, define $X_r = Y_{\sigma(r)} \cup \{(h-1)k + \pi(r)\}$, where σ and π denote the permutations of $\{1, 2, \dots, k\}$ given by $\sigma(r) = \begin{cases} \frac{k-2r+1}{2} & \text{for} \quad 1 \leq r \leq \frac{k-1}{2} \\ \frac{3k-2r+1}{2} & \text{for} \quad \frac{k+1}{2} \leq r \leq k \end{cases}$ and $\pi(r) = \frac{k+1}{2}$

$$\begin{cases} 2r & \text{for } 1 \le r \le \frac{k-1}{2} \\ 2r - k & \text{for } \frac{k+1}{2} \le r \le k \end{cases}. \text{ Then }$$

$$\sum X_r = \sum Y_{\sigma(r)} + (h-1)k + \pi(r)$$

$$= \frac{k(h-1)^2 + h - k - 2}{2} + \sigma(r) + (h-1)k + \pi(r)$$

$$\sum X_r = \begin{cases} \frac{k(h-1)^2 + h - k - 2}{2} + \frac{k - 2r + 1}{2} + (h-1)k + 2r & \text{for } 1 \le r \le \frac{k-1}{2} \\ \frac{k(h-1)^2 + h - k - 2}{2} + \frac{3k - 2r + 1}{2} + (h-1)k + 2r - k & \text{for } \frac{k+1}{2} \le r \le k \end{cases}. \text{ On simplification we get } \sum X_r = \frac{(h-1)(hk + k + 1)}{2} + r \text{ for } 1 \le r \le k. \text{ Hence, } \sum \mathbb{P} = \frac{(h-1)(hk + k + 1)}{2} + r \text{ for } 1 \le r \le k. \text{ Hence, } \sum \mathbb{P} = \frac{(h-1)(hk + k + 1)}{2} + r \text{ for } 1 \le r \le k. \text{ Hence, } \sum \mathbb{P} = \frac{(h-1)(hk + k + 1)}{2} + r \text{ for } 1 \le r \le k. \end{cases}$$

simplification we get
$$\sum X_r = \frac{(h-1)(hk+k+1)}{2} + r$$
 for $1 \le r \le k$. Hence, $\sum \mathbb{P} = \frac{(h-1)(hk+k+1)}{2} + [1,k]$.

Example 2.4 Let h = 6, k = 5 and X = [1, 30]. $Y_1 = \{1, 6, 11, 20, 25\}$, $Y_2 = \{2, 7, 12, 19, 24\}$, $Y_3 = \{3, 8, 13, 18, 23\}$, $Y_4 = \{4, 9, 14, 17, 22\}$ and $Y_5 = \{5, 10, 15, 16, 21\}$. By definition the partition subsets are, $X_r = Y_{\sigma(r)} \cup \{(h-1)k + \pi(r) \text{ for } 1 \le r \le 5$. $X_1 = \{2, 7, 12, 19, 24, 27\}$, $X_2 = \{1, 6, 11, 20, 25, 29\}$, $X_3 = \{5, 10, 15, 16, 21, 26\}$ $X_4 = \{4, 9, 14, 17, 22, 28\}$ $X_5 = \{3, 8, 13, 18, 23, 30\}$, Now, $\sum X_r = \frac{(h-1)(hk+k+1)}{2} + r = 90 + r$ for $1 \le r \le 5$.

Lemma 2.5 If h is even, then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \dots, X_k\}$ of X = [1, hk] such that $\sum X_r = \frac{h(hk+1)}{2}$ for $1 \leq r \leq k$. Thus, the subsets sum are equal and is equal to $\frac{h(hk+1)}{2}$.

Proof Let us arrange the set of integers $X = \{1, 2, 3, \dots, hk\}$ in a $h \times k$ matrix \mathcal{A} as given below.

$$\mathcal{A} = \begin{pmatrix} 1 & 2 & \cdots & k-1 & k \\ n+1 & n+2 & \cdots & 2k-1 & 2k \\ 2n+1 & 2n+2 & \cdots & 3k-1 & 3k \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (h-1)k+1 & (h-1)k+2 & \cdots & hk-1 & hk \end{pmatrix}_{h \times k}$$

That is, $\mathcal{A} = (a_{i,j})_{h \times k}$ where $a_{i,j} = (i-1)k + j$ for $1 \le i \le h$ and $1 \le j \le k$. For $1 \le r \le k$, define $X_r = \{a_{i,r}/1 \le i \le \frac{h}{2}\} \cup \{a_{i,k-r+1}/\frac{h}{2} + 1 \le i \le h-1\}$. Then

$$\sum X_r = \sum_{i=1}^{\frac{h}{2}} a_{i,r} + \sum_{i=\frac{h}{2}+1}^{h} a_{i,k-r+1}$$

$$= \sum_{i=1}^{\frac{h}{2}} \{(i-1)k + r\} + \sum_{i=\frac{h}{2}+1}^{h} \{(i-1)k + k - r + 1\} = \frac{h(hk+1)}{2}$$

Thus, the subsets sum are equal and is equal to $\frac{h(hk+1)}{2}$.

Example 2.6 Let h = 6, k = 5 and X = [1,30]. Then the partition subsets are $X_1 = \{1,6,11,20,25,30\}$, $X_2 = \{2,7,12,19,24,29\}$, $X_3 = \{3,8,13,18,23,28\}$, $X_4 = \{4,9,14,17,22,27\}$ and $X_5 = \{5,10,15,16,21,26\}$. Now, $\sum X_r = \frac{h(hk+1)}{2} = 93$ for $1 \le r \le 5$.

Lemma 2.7 Let h and k be two even positive integers and $h \ge 4$. If $X = [1, hk+1] - \{\frac{k}{2}+1\}$, there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X such that $\sum X_r = \frac{h^2k + 3h - k - 2}{2} + r$ for $1 \le r \le k$. Thus $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^2k + 3h - k - 2}{2} + [1, k]$.

Proof First we prove this lemma for h=2 and we generalize for any even integer $h\geq 4$. Case 1: h=2. $X = [1, 2k + 1] - \{\frac{k}{2} + 1\}$. For $1 \le r \le k$, define

$$X_r = \begin{cases} \{\frac{k}{2} + 1 - r, k + 1 + 2r\} & \text{for} \quad 1 \le r \le \frac{k}{2} \\ \{\frac{3k}{2} + 2 - r, 2r\} & \text{for} \quad \frac{k}{2} + 1 \le r \le k \end{cases}.$$

Hence, $\sum X_r = \frac{3k}{2} + 2 + r$ for $1 \le r \le k$.

Case 2: $h \ge 4$

Let $Y=[1,2k+1]-\{\frac{k}{2}+1\}$ and Z=[2k+2,hk+1]. Then $X=Y\cup Z$. By Case 1, there exists a k-equipartition $\mathbb{P}_1=\{Y_1,Y_2,\cdots,Y_k\}$ of Y such that

$$\sum Y_r = \frac{3k}{2} + 2 + r \quad \text{for} \quad 1 \le r \le k \tag{1}$$

Since h-2 is even, by Lemma 2.5, there exists a k-equipartition

 $\mathbb{P}'_2 = \{Z'_1, Z'_2, \cdots, Z'_k\}$ of [1, (h-2)k] such that $\sum Z'_r = \frac{(h-2)(hk-2k+1)}{2}$ for $1 \le r \le k$. Adding 2k+1 to [1, (h-2)k], we get a k-equipartition $\mathbb{P}_2 = \{Z_1, Z_2, \cdots, Z_k\}$ of Z = [2k+2, hk+1] such that $\sum Z_r = (h-2)(2k+1) + \frac{(h-2)(hk-2k+1)}{2}$ for $1 \le r \le k$. Let $X_r = Y_r \cup Z_r$ for $1 \le r \le k$. Then,

$$\sum X_r = \sum Y_r \cup \sum Z_r$$

$$= \frac{h^2k + 3h - k - 2}{2} + r \quad \text{for} \quad 1 \le r \le k.$$

Hence, $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^2k + 3h - k - 2}{2} + [1, k]$.

Example 2.8 Let h = 6, k = 6 and $X = [1,37] - \{4\}$. Then the partition subsets are $X_1 = \{3,9,14,20,31,37\}$, $X_2 = \{2,11,15,21,30,36\}$, $X_3 = \{1,13,16,22,29,35\}$, $X_4 = \{7,8,17,23,28,34\}$, $X_5 = \{6,10,18,24,27,33\}$ and $X_6 = \{5,12,19,25,26,32\}$. Now,

$$\sum X_r = \frac{h^2k + 3h - k - 2}{2} + r = 113 + r$$

for $1 \le r \le 6$.

Lemma 2.9 Let h and k be two even positive integers. If $X = [1, hk + 2] - \{1, \frac{k}{2} + 2\}$, there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \dots, X_k\}$ of X such that $\sum X_r = \frac{h^2k + 5h - k - 2}{2} + r$ for $1 \le r \le k$. Thus $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^2k + 5h - k - 2}{2} + [1, k]$.

Proof First we prove this lemma for h=2 and we generalize for any even integer $h\geq 4$.

Case 1: h = 2

$$X = [1, 2k + 2] - \{1, \frac{k}{2} + 2\}$$
. For $1 \le r \le k$, define

$$X_r = \begin{cases} \{\frac{k}{2} + 1 - r, k + 2 + 2r\} & \text{for } 1 \le r \le \frac{k}{2}, \\ \{\frac{3k}{2} + 3 - r, 2r + 1\} & \text{for } \frac{k}{2} + 1 \le r \le k. \end{cases}$$

Hence, $\sum X_r = \frac{3k}{2} + 4 + r$ for $1 \le r \le k$.

Case 2: $h \ge 4$

Let $Y=[1,2k+2]-\{1,\frac{k}{2}+2\}$ and Z=[2k+3,hk+2]. Then $X=Y\cup Z$. By Case 1, there exists a k-equipartition $\mathbb{P}_1=\{Y_1,Y_2,\cdots,Y_k\}$ of Y such that

$$\sum Y_r = \frac{3k}{2} + 4 + r \quad \text{for} \quad 1 \le r \le k$$
 (2)

Since h-2 is even, by Lemma 2.5, there exists a k-equipartition $\mathbb{P}_2'=\{Z_1',Z_2',\cdots,Z_k'\}$ of [1,(h-2)k] such that $\sum Z_r'=\frac{(h-2)(hk-2k+1)}{2}$ for $1\leq r\leq k$. Adding 2k+2 to [1,(h-2)k], we get a k-equipartition $\mathbb{P}_2=\{Z_1,Z_2,\cdots,Z_k\}$ of Z=[2k+3,hk+2] such that $\sum Z_r=(h-2)(2k+2)+\frac{(h-2)(hk-2k+1)}{2}$ for $1\leq r\leq k$. Let $X_r=Y_r\cup Z_r$ for $1 \le r \le k$. Then,

$$\sum X_r = \sum Y_r \cup \sum Z_r$$

$$= \frac{h^2k + 5h - k - 2}{2} + r \quad \text{for} \quad 1 \le r \le k.$$

Hence, $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^2k + 5h - k - 2}{2} + [1, k]$.

Example 2.10 Let h = 6, k = 6 and $X = [1,38] - \{1,5\}$. Then the partition subsets $\{8,9,18,24,29,35\},\,X_5=\{7,11,19,25,28,34\}$ and $X_6=\{6,13,20,26,27,33\}.$ Now, $\sum X_r=\{8,9,18,24,29,35\}$ $\frac{h^2k + 5h - k - 2}{2} + r = 119 + r \text{ for } 1 \le r \le 6.$

§3. Main Results

Definition 3.1(Edge amalgamation of a finite collection of graphs, [1]) For any finite collection $(G_i, u_i v_i)$ of graphs G_i , each with a fixed edge $u_i v_i$, Carlson [1] defined the edge amalgamation $\mathcal{E}dgeamal\{(G_i, u_i v_i)\}\$ as the graph obtained by taking the union of all the G_i 's and identifying their fixed edges.

Definition 3.2(Generalized Book) If all the G_i 's are cycles then $\mathcal{E}dgeamal\{(G_i, u_i v_i)\}$ is called a generalized book.

Theorem 3.3 Let H be a 2-connected (p,q) simple graph. Then the edge amalgamation $\mathcal{E}dgeamal\{(H_i, u_iv_i)\}\ of\ any\ finite\ collection\ \{H_i, u_iv_i\}\ of\ graphs\ H_i,\ each\ with\ a\ fixed\ edgeamal\{(H_i, u_iv_i)\}\ of\ graphs\ H_i,\ each\ with\ a\ fixed\ edgeamal\{(H_i, u_iv_i)\}\ of\ graphs\ H_i,\ each\ with\ a\ fixed\ edgeamal\{(H_i, u_iv_i)\}\ of\ graphs\ H_i,\ each\ with\ a\ fixed\ edgeamal\ edgeama$ u_iv_i isomorphic to H is H-supermagic for all values of p and q.

Proof Let $\{H_i, u_i v_i\}$ be a collection of n graphs H_i , each with a fixed edge $u_i v_i$ and isomorphic to a 2-connected simple graph H.

Let $G = \mathcal{E}dgeamal\{(H_i, u_iv_i)\}$ with vertex set V and edge set E. Note that |V| = n(p-2) + 2and |E| = n(q-1) + 1. Let $H_i = (V_i, E_i)$ for $1 \le i \le n$. Label the common edge of G as $e = w_1 w_2$. Let $V'_i = V_i - \{w_1, w_2\}$ and $E'_i = E - \{e\}$ for $1 \le i \le n$.

Case 1: n is odd

Subcase (i): p is even and q is odd

Since p-2 and q-1 are even by Lemma 2.5 there exists n-equipartitions $\mathbb{P}'_1 = \{X'_1, X'_2, \dots, X'_n\}$ of [1, (p-2)n] and $\mathbb{P}'_2 = \{Y'_1, Y'_2, \dots, Y'_n\}$ of [1, (q-1)n] such that

$$\sum X_i' = \frac{(p-2)(pn-2n+1)}{2}, \quad \sum Y_i' = \frac{(q-1)(qn-n+1)}{2}.$$

Add 2 to each element of the set [1, (p-2)n] and (p-2)n+3 to each element of the set [1, (q-1)n]. We get n-equipartitions $\mathbb{P}_1 = \{X_1, X_2, \cdots, X_n\}$ of [3, pn-2n+3] and $\mathbb{P}_2 = \{Y_1, Y_2, \cdots, Y_n\}$ of [pn-2n+4, (p+q-3)n+3] such that

$$\sum X_i = (p-2)2 + \frac{(p-2)(pn-2n+1)}{2}, \quad \sum Y_i = (q-1)(pn-2n+3) + \frac{(q-1)(qn-n+1)}{2}.$$

Define a total labeling $f: V \cup E \rightarrow [1, (p+q-3)n+3]$ as follows:

$$f(w_1) = 1$$
 and $f(w_2) = 2$.
 $f(e) = pn - 2n + 3$.
 $f(V'_i) = X_i$ for $1 \le i \le n$.
 $f(E'_i) = Y_{n-i+1}$ for $1 \le i \le n$.

Then for $1 \le i \le n$,

$$f(H_i) = f(w_1) + f(w_2) + f(e) + \sum f(V_i') + \sum f(E_i')$$

$$= f(w_1) + f(w_2) + f(e) + \sum X_i' + \sum Y_{n-i+1}'$$

$$= \frac{n(p+q)^2 + p + q + 5(n-1)}{2} - (n-1)(2p+3q)$$

$$= constant.$$

Since $H_i \cong H$ for $1 \leq i \leq n$, G is H-supermagic.

Subcase (ii): p is odd and q is even

Since p-2 and q-1 are odd, by Lemma 2.1 there exists n-equipartitions $\mathbb{P}_1'=\{X_1',X_2',\cdots,X_n'\}$ of [1,(p-2)n] and $\mathbb{P}_2'=\{Y_1',Y_2',\cdots,Y_n'\}$ of [1,(q-1)n] such that

$$\sum X_i' = \frac{(p-3)(pn-n+1)}{2} + i, \quad \sum Y_i' = \frac{(q-2)(qn+1)}{2} + i$$

for $1 \le i \le n$. Add 2 to each element of the set [1, (p-2)n] and (p-2)n+3 to each element of the set [1, (q-1)n]. We get n-equipartitions $\mathbb{P}_1 = \{X_1, X_2, \cdots, X_n\}$ of [3, pn-2n+3] and $\mathbb{P}_2 = \{Y_1, Y_2, \cdots, Y_n\}$ of [pn-2n+4, (p+q-3)n+3] such that

$$\sum X_i = (p-2)2 + \frac{(p-3)(pn-n+1)}{2} + i, \quad \sum Y_i = (q-1)(pn-2n+3) + \frac{(q-2)(nq+1)}{2} + i$$

for $1 \le i \le n$. Define a total labeling $f: V \cup E \to [1, (p+q-3)n+3]$ as follows:

$$f(w_1) = 1$$
 and $f(w_2) = 2$.
 $f(e) = pn - 2n + 3$.
 $f(V'_i) = X_i$ for $1 \le i \le n$.
 $f(E'_i) = Y_{n-i+1}$ for $1 \le i \le n$.

Then for $1 \leq i \leq n$,

$$f(H_i) = f(w_1) + f(w_2) + f(e) + \sum f(V_i') + \sum f(E_i')$$

$$= f(w_1) + f(w_2) + f(e) + \sum X_i' + \sum Y_{n-i+1}'$$

$$= \frac{n(p+q)^2 + p + q + 5(n-1)}{2} - (n-1)(2p+3q)$$

$$= constant.$$

Since $H_i \cong H$ for $1 \leq i \leq n$, G is H-supermagic.

Subcase (iii): p and q are odd

Since p-2 is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{P}_1'=\{X_1',X_2',\cdots,X_n'\}$ of [1,(p-2)n] such that $\sum X_i'=\frac{(p-3)(pn-n+1)}{2}+i$ for $1\leq i\leq n$. Since q-1 is even and n is odd, by Lemma 2.3 there exists an n-equipartition $\mathbb{P}_2'=\{Y_1',Y_2',\cdots,Y_n'\}$ of [1,(q-1)n] such that $\sum Y_i'=\frac{(q-2)(qn+1)}{2}+i$ for $1\leq i\leq n$. Add 2 to each element of the set [1,(p-2)n] and (p-2)n+3 to each element of the set [1,(q-1)n]. We get n-equipartitions $\mathbb{P}_1=\{X_1,X_2,\cdots,X_n\}$ of [3,pn-2n+3] and $\mathbb{P}_2=\{Y_1,Y_2,\cdots,Y_n\}$ of [pn-2n+4,(p+q-3)n+3] such that

$$\sum X_i = (p-2)2 + \frac{(p-3)(np-n+1)}{2} + i,$$

$$\sum Y_i = (q-1)(pn-2n+3) + \frac{(q-2)(qn+1)}{2} + i$$

for $1 \le i \le n$. Define a total labeling $f: V \cup E \to [1, (p+q-3)n+3]$ as follows:

$$f(w_1) = 1$$
 and $f(w_2) = 2$.
 $f(e) = pn - 2n + 3$.
 $f(V'_i) = X_i$ for $1 \le i \le n$.
 $f(E'_i) = Y_{n-i+1}$ for $1 \le i \le n$.

Then for $1 \leq i \leq n$,

$$f(H_i) = f(w_1) + f(w_2) + f(e) + \sum f(V_i') + \sum f(E_i')$$

$$= f(w_1) + f(w_2) + f(e) + \sum X_i' + \sum Y_{n-i+1}'$$

$$= \frac{n(p+q)^2 + p + q + 5(n-1)}{2} - (n-1)(2p+3q)$$

$$= constant$$

Since $H_i \cong H$ for $1 \leq i \leq n$, G is H-supermagic.

Subcase (iv): p and q are even

Since p-2 is even and n is odd, by Lemma 2.3 there exists an n-equipartition $\mathbb{P}_1'=\{X_1',X_2',\cdots,X_n'\}$ of [1,(p-2)n] such that $\sum X_i'=\frac{(p-3)(pn-n+1)}{2}+i$ for $1\leq i\leq n$. Since q-1 is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{P}_2'=\{Y_1',Y_2',\cdots,Y_n'\}$ of

 $[1,(q-1)n] \text{ such that } \sum Y_i' = \frac{(q-2)(qn+1)}{2} + i \text{ for } 1 \leq i \leq n. \text{ Add 2 to each element of the set } [1,(p-2)n] \text{ and } (p-2)n+3 \text{ to each element of the set } [1,(q-1)n]. \text{ We get n-equipartitions } \mathbb{P}_1 = \{X_1,X_2,\cdots,X_n\} \text{ of } [3,pn-2n+3] \text{ and } \mathbb{P}_2 = \{Y_1,Y_2,\cdots,Y_n\} \text{ of } [pn-2n+4,(p+q-3)n+3] \text{ such that } \mathbb{P}_1 = \{X_1,X_2,\cdots,X_n\} \text{ of } [n-2n+4,(n+q-3)n+3] \text{ such that } \mathbb{P}_2 = \{X_1,X_2,\cdots,X_n\} \text{ of } [n-2n+4,(n+q-3)n+3] \text{ such that } \mathbb{P}_2 = \{X_1,X_2,\cdots,X_n\} \text{ of } [n-2n+4,(n+q-3)n+3] \text{ such that } \mathbb{P}_2 = \{X_1,X_2,\cdots,X_n\} \text{ of } [n-2n+4,(n+q-3)n+3] \text{ such that } \mathbb{P}_2 = \{X_1,X_2,\cdots,X_n\} \text{ of } [x_1,x_2,\cdots,x_n] \text{ of } [x_1$

$$\sum X_i = (p-2)2 + \frac{(p-3)(pn-n+1)}{2} + i, \quad \sum Y_i = (q-1)(pn-2n+3) + \frac{(q-2)(qn+1)}{2} + i$$

for $1 \le i \le n$. Define a total labeling $f: V \cup E \to [1, (p+q-3)n+3]$ as follows:

$$f(w_1) = 1$$
 and $f(w_2) = 2$.
 $f(e) = pn - 2n + 3$.
 $f(V'_i) = X_i$ for $1 \le i \le n$.
 $f(E'_i) = Y_{n-i+1}$ for $1 \le i \le n$.

Then for $1 \leq i \leq n$,

$$f(H_i) = f(w_1) + f(w_2) + f(e) + \sum f(V_i') + \sum f(E_i')$$

$$= f(w_1) + f(w_2) + f(e) + \sum X_i' + \sum Y_{n-i+1}'$$

$$= \frac{n(p+q)^2 + p + q + 5(n-1)}{2} - (n-1)(2p+3q)$$

$$= constant.$$

Since $H_i \cong H$ for $1 \leq i \leq n$, G is H-supermagic.

Case 2: n is even

Subcase (i): p is even and q is odd

The argument in Subcase(i) of Case (1) is independent of the nature of n. Hence we get G is H-supermagic.

Subcase (ii): p is odd and q is even

The argument in Subcase(ii) of Case (1) is independent of the nature of n. Hence we get G is H-supermagic.

Subcase (iii): p and q are odd

Since p-2 is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{P}_1'=\{X_1',X_2',\cdots,X_n'\}$ of [1,(p-2)n] such that $\sum X_i'=\frac{(p-3)(pn-n+1)}{2}+i$ for $1\leq i\leq n$. Since q-1 and n are even, by Lemma 2.7 there exists an n-equipartition $\mathbb{P}_2'=\{Y_1',Y_2',\cdots,Y_n'\}$ of $[1,(q-1)n+1]-\{\frac{n}{2}+1\}$ such that $\sum Y_i'=\frac{(q-1)^2n+3(q-1)-n-2}{2}+i$ for $1\leq i\leq n$. Add 2 to each element of the set [1,(p-2)n] and (p-2)n+2 to each element of the set [1,(q-1)n]. We get n-equipartitions $\mathbb{P}_1=\{X_1,X_2,\cdots,X_n\}$ of [3,pn-2n+3] and $\mathbb{P}_2=\{Y_1,Y_2,\cdots,Y_n\}$ of $[pn-2n+3,(p+q-3)n+3]-\{(p-2)n+\frac{n}{2}+3\}$ such that

$$\sum X_i = (p-2)2 + \frac{(p-3)(pn-n+1)}{2} + i,$$

$$\sum Y_i = (q-1)(pn-2n+2) + \frac{(q-1)^2n + 3(q-1) - n - 2}{2} + i$$

for $1 \le i \le n$. Define a total labeling $f: V \cup E \to [1, (p+q-3)n+3]$ as follows:

$$f(w_1) = 1$$
 and $f(w_2) = 2$.
 $f(e) = (p-2)n + \frac{n}{2} + 3$.
 $f(V'_i) = X_i$ for $1 \le i \le n$.
 $f(E'_i) = Y_{n-i+1}$ for $1 \le i \le n$.

Then for $1 \leq i \leq n$,

$$f(H_i) = f(w_1) + f(w_2) + f(e) + \sum f(V_i') + \sum f(E_i')$$

$$= f(w_1) + f(w_2) + f(e) + \sum X_i' + \sum Y_{n-i+1}'$$

$$= \frac{n(p+q)^2 + p + q}{2} - (n-1)(2p+3q-3)$$

$$= constant.$$

Since $H_i \cong H$ for $1 \leq i \leq n$, G is H-supermagic.

Subcase (iv): p and q are even

Since p-2 and n are even, by Lemma 2.9 there exists an n-equipartition $\mathbb{P}_1 = \{X_1, X_2, \dots, X_n\}$ of $[1, (p-2)n+2] - \{1, \frac{n}{2}+2\}$ such that $\sum X_i = \frac{(p-2)^2 n + 5(p-2) - n - 2}{2} + i$ for $1 \le i \le n$.

Since q-1 is odd, by Lemma 2.1 there exists an n-equipartition $\mathbb{P}_2'=\{Y_1',Y_2',\cdots,Y_n'\}$ of [1,(q-1)n] and $\sum Y_i'=\frac{(q-2)(qn+1)}{2}+i$ for $1\leq i\leq n$. Add (p-2)n+3 to each element of the set [1,(q-1)n]. We get an n-equipartition $\mathbb{P}_2=\{Y_1,Y_2,\cdots,Y_n\}$ of [pn-2n+4,(p+q-3)n+3] such that $\sum Y_i=(q-1)(pn-2n+3)+\frac{(q-2)(qn+1)}{2}+i$ for $1\leq i\leq n$. Define a total labeling $f:V\cup E\to [1,(p+q-3)n+3]$ as follows:

$$f(w_1) = 1$$
 and $f(w_2) = \frac{n}{2} + 2$.
 $f(e) = pn - 2n + 3$.
 $f(V'_i) = X_i$ for $1 \le i \le n$.
 $f(E'_i) = Y_{n-i+1}$ for $1 \le i \le n$.

Then for $1 \leq i \leq n$,

$$f(H_i) = f(w_1) + f(w_2) + f(e) + \sum f(V_i') + \sum f(E_i')$$

$$= f(w_1) + f(w_2) + f(e) + \sum X_i' + \sum Y_{n-i+1}'$$

$$= \frac{n(p+q)^2 + p + q}{2} - (n-1)(2p+3q-3)$$

$$= constant$$

Since $H_i \cong H$ for $1 \leq i \leq n$, G is H-supermagic.

Hence, the edge amalgamation $\mathcal{E}dgeamal\{(H_i, u_i v_i)\}$ of any finite collection $\{H_i, u_i v_i\}$ of graphs H_i , each with a fixed edge $u_i v_i$ and isomorphic to H is H-supermagic for all values of p and q.

Illustration 3.4 Let H_1, H_2, H_3, H_4 and H_5 be five graphs isomorphic to the wheel $W_4 = C_4 + K_1$ and their fixed edges given by dotted lines. Then the Edge amalgamation graph $\mathcal{E}dgeamal\{(H_i, u_i v_i)\}$ of the given collection is W_4 -supermagic with supermagic sum 303.

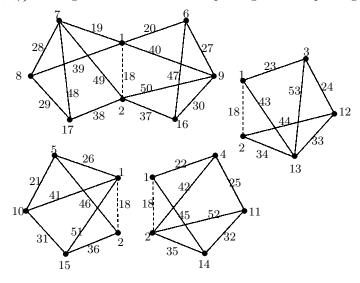


Fig.1

Illustration 3.5 Let H_1, H_2, H_3 and H_4 be four graphs isomorphic to H and their fixed edges given by dotted lines. Then the Edge amalgamation graph $\mathcal{E}dgeamal\{(H_i, u_i v_i)\}$ of the given collection is H-supermagic with supermagic sum 300.

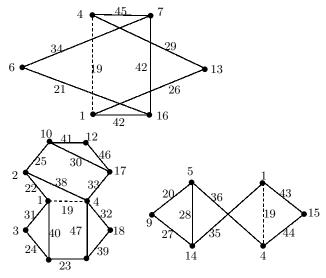


Fig.2

Definition 3.6(Book with m-gon pages) Let n and m be any positive integers with $n \ge 1$ and $m \ge 3$. Then, n copies of the cycle C_m with an edge in common is called a book with n m-gon pages. That is, if $\{Gi, u_iv_i\}$ is a collection of n copies of the cycle C_m each with a fixed edge u_iv_i then $\mathcal{E}dgeamal\{(G_i, u_iv_i)\}$ is called a book with n m-gon pages.

A book with 3 pentagon pages is given below.

Fig.3

Corollary 3.7 Books with n m-gon pages are C_m -supermagic for every positive integers $n \ge 1$ and $m \ge 3$.

Illustration 3.8 C_5 -supermagic covering of a book with 3 hexagon pages is given below. The supermagic sum is 167.

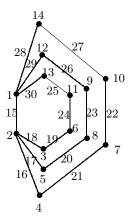


Fig.4

Theorem 3.9 Let $H_i = K_{1,k}$ with vertex set $V(H_i) = \{v_i, v_{ir} : 1 \le r \le k\}$ and the edge set $E(H_i) = \{v_i v_{ir} : 1 \le r \le k\}$ where $1 \le i \le k$ and G be a graph obtained by joining a new vertex w with $v_{11}, v_{21}, \dots, v_{k1}$. Then G is $K_{1,k}$ -supermagic.

Proof Let $V_i = \{v_i, v_{ir} : 1 \leq r \leq k\}$ and $E_i = \{V_i v_{jr} : 1 \leq r \leq k\}$ for $1 \leq i \leq k$. Then the vertex and edge set of G = (V, E) are given by $V = \bigcup_{i=1}^k V_i \cup \{v\}$ and $E = \bigcup_{i=1}^k E_i \cup \{vv_1, vv_2, \cdots, vv_k\}$. Also $|V| = k^2 + k + 1$ and $|E| = k^2 + k$. Let $V_{k+1} = \{w, v_1, v_2, \cdots, v_k\}$ and $E_{k+1} = \{wv_1, wv_2, \cdots, wv_k\}$ and $H_{k+1} = (V_{k+1}, E_{k+1})$ be the graph with vertex set V_{k+1} and edge set E_{k+1} . Note that any edge of E belongs to at least one of the subgraphs H_i for $1 \leq i \leq k+1$. Since $H_i \cong K_{1,k}$ for $1 \leq i \leq k+1$, G admits a $K_{1,k}$ -covering.

Case 1: k is odd

Since k+1 is even, by Lemma 2.3, there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of X = [1, (k+1)k] such that

$$\sum X_i = \frac{k(k+1)^2}{2} + i \quad \text{for} \quad 1 \le i \le k$$
 (3)

It can be easily verified from the definition of X_r in Lemma 2.3 that $\left(\frac{k+1}{2}-1\right)k+\sigma(r)\in X_r$ for $1 \le r \le k$, where σ denotes the permutation of $\{1, 2, \dots, k\}$ given by

$$\sigma(r) = \begin{cases} \frac{k - 2r + 1}{2} & \text{for } 1 \le r \le \frac{k - 1}{2} \\ \frac{3k - 2r + 1}{2} & \text{for } \frac{k + 1}{2} \le r \le k \end{cases}.$$

Construct $X_{k+1} = \left\{ \left(\frac{k+1}{2} - 1 \right) k + \sigma(r) : 1 \le r \le k \right\} \cup \left\{ k^2 + k + 1 \right\}.$

$$\sum X_{k+1} = \sum_{r=1}^{k} \left[\left(\frac{k+1}{2} - 1 \right) k + \sigma(r) \right] + k^2 + k + 1$$

$$= \frac{k^2(k-1)}{2} + \frac{k(k+1)}{2} + k^2 + k + 1$$

$$= \frac{k(k+1)^2}{2} + k + 1$$
(4)

From (1) and (2) we have

$$\sum X_i = \frac{k(k+1)^2}{2} + i \quad \text{for} \quad 1 \le i \le k+1$$
 (5)

As k is odd, by Lemma 1, there exists a k+1-equipartition $\mathbb{Q}'=\{Y_1',Y_2',\cdots,Y_{k+1}'\}$ of the set Y=[1,k(k+1)] such that $\sum Y_i'=\frac{(k-1)[(k+1)^2+1]}{2}+i$ for $1\leq i\leq k+1$. Adding k^2+k+1 to [1,k(k+1)], we get a k+1-equipartition $\mathbb{Q}=\{Y_1,Y_2,\cdots,Y_{k+1}\}$ of

the set $Y = [k^2 + k + 2, 2k^2 + 2k + 1]$ such that

$$\sum Y_i = k(k^2 + k + 1) + \frac{(k-1)[(k+1)^2 + 1]}{2} + i \quad \text{for} \quad 1 \le i \le k + 1$$
 (6)

Define a total labeling $f: V \cup E \rightarrow [1, 2k^2 + 2k + 1]$ as follows:

(i) $f(w) = k^2 + k + 1$.

(ii)
$$f(V_i) = X_i$$
 with $f(v_{i1}) = \left(\frac{k+1}{2} - 1\right)k + \sigma(r)$ for $1 \le i \le k+1$.

(iii)
$$f(E_i) = Y_{k+2-i}$$
 for $1 \le i \le k+1$.

Then for $1 \le i \le k+1$,

$$f(H_i) = \sum_{i} f(V_i) + \sum_{i} f(E_i) = \sum_{i} X_i + \sum_{i} Y_{k+2-i}$$
$$= \frac{4k^3 + 5k^2 + 5k + 2}{2},$$

which is a constant. Since $H_i \cong K_{1,k}$ for $1 \leq i \leq k+1$, G is $K_{1,k}$ -supermagic.

Case 2: k is even

Since k+1 is odd, by Lemma 1, there exists a k-equipartition $\mathbb{P}=\{X_1,X_2,\cdots,X_k\}$ of X=[1,(k+1)k] such that

$$\sum X_i = \frac{k(k+1)^2}{2} + i \quad \text{for} \quad 1 \le i \le k$$
 (7)

It can be easily verified from the definition of X_r in Lemma 2.3 that $\left(\frac{k+2}{2}-1\right)k+r \in X_r$ for $1 \le r \le \frac{k}{2}$, and $\left(\frac{k}{2}-1\right)k+r \in X_r$ for $\frac{k}{2}+1 \le r \le k$. Construct $X_{k+1} = \left\{\left(\frac{k+2}{2}-1\right)k+r : 1 \le r \le \frac{k}{2}\right\} \cup \left\{\left(\frac{k}{2}-1\right)k+r : \frac{k}{2}+1 \le r \le k\right\} \cup \left\{k^2+k+1\right\}$.

$$\sum X_{k+1} = \sum_{r=1}^{\frac{k}{2}} \left[\left(\frac{k+2}{2} - 1 \right) k + r \right] + \sum_{\frac{k}{2}+1}^{k} \left[\left(\frac{k}{2} - 1 \right) k + r \right] + k^2 + k + 1$$

$$= \frac{k^2 (k-1)}{2} + \frac{k(k+1)}{2} + k^2 + k + 1$$

$$= \frac{k(k+1)^2}{2} + k + 1$$
(8)

From (5) and (6) we have

$$\sum X_i = \frac{k(k+1)^2}{2} + i \quad \text{for} \quad 1 \le i \le k+1$$
 (9)

As k is even, by Lemma 2.3, there exists a k+1-equipartition $\mathbb{Q}'=\{Y_1',Y_2',\cdots,Y_{k+1}'\}$ of the set Y=[1,k(k+1)] such that $\sum Y_i'=\frac{(k-1)[(k+1)^2+1]}{2}+i$ for $1\leq i\leq k+1$. Adding k^2+k+1 to [1,k(k+1)], we get a k+1-equipartition $\mathbb{Q}=\{Y_1,Y_2,\cdots,Y_{k+1}\}$ of the set $Y=[k^2+k+2,2k^2+2k+1]$ such that

$$\sum Y_i = k(k^2 + k + 1) + \frac{(k-1)[(k+1)^2 + 1]}{2} + i \quad \text{for} \quad 1 \le i \le k + 1$$
 (10)

Define a total labeling $f: V \cup E \to [1, 2k^2 + 2k + 1]$ as follows:

(i) $f(w) = k^2 + k + 1$.

(ii)
$$f(V_i) = X_i$$
 with $f(v_{i1}) = \left(\frac{k+2}{2} - 1\right)k + r$ for $1 \le i \le \frac{k}{2}$ and $f(v_{i1}) = \left(\frac{k}{2} - 1\right)k + r$ for $\frac{k}{2} + 1 \le i \le k$.

(iii)
$$f(E_i) = Y_{k+2-i}$$
 for $1 \le i \le k+1$.

Then for $1 \le i \le k+1$,

$$f(H_i) = \sum f(V_i) + \sum f(E_i)$$

= $\sum X_i + \sum Y_{k+2-i}$
= $\frac{4k^3 + 5k^2 + 5k + 2}{2}$,

which is a constant. Since $H_i\cong K_{1,k}$ for $1\leq i\leq k+1,$ G is $K_{1,k}$ -supermagic. Thus, in both the cases G is $K_{1,k}$ -supermagic with supermagic sum $s(f)=\frac{4k^3+5k^2+5k+2}{2}$.

Illustration 3.10

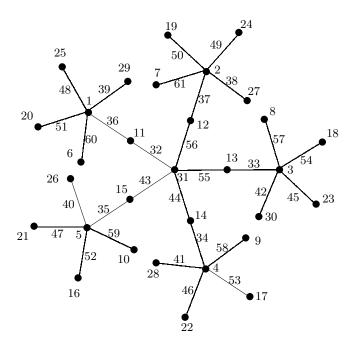


Fig.1. G- is $K_{1,5}$ -supermagic with supermagic sum 236.

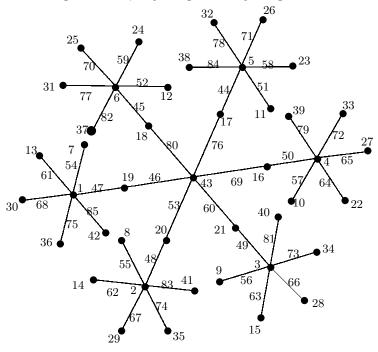


Fig.2. G- is $K_{1,6}$ -supermagic with supermagic sum 538.

References

- [1] K.Carlson, Generalized books and Cm-snakes are prime graphs, Ars Combin. 80(2006) 215-221.
- [2] J.A.Gallian, A Dynamic Survey of Graph labeling(DS6), The Electronic Journal of Combinatorics, 5(2005).
- [3] A.Gutierrez, A.Llado, Magic coverings, J. Combin. Math. Combin. Comput., 55(2005), 43-56.
- [4] P.Selvagopal, P.Jeyanthi, On Ck-supermagic graphs, *International Journal of Mathematics* and Computer Science, 3(2008), No. 1, 25-30.