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Abstract: A simple graph G = (V| E) admits an H-covering if every edge in F belongs to
a subgraph of G isomorphic to H. We say that G is Smarandachely pair {s,{} H-magic if
there is a total labeling f : VUFE — {1,2,3,---,|V| + |E|} such that there are subgraphs
H, = (Vi,E1) and Hy = (V2, E2) of G isomorphic to H, the sum Y f(v)+ > f(e) =s

veEV] ecEy
and Y. f(v)+ > f(e) =1 Particularly, if s =, such a Smarandachely pair {s, [} H-magic
vEVH ecEo
is called H-magic and if f(V) = {1,2,---,|V|}, G is said to be a H-supermagic. In this

paper we show that edge amalgamation of a finite collection of graphs isomorphic to any

2-connected simple graph H is H-supermagic.
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§1. Introduction

The concept of H-magic graphs was introduced in [3]. An edge-covering of a graph G is a family
of different subgraphs Hy, Ho, ..., Hj such that each edge of F belongs to at least one of the
subgraphs H;,1 < i < k. Then, it is said that G admits an (Hy, Ha,..., Hy) - edge covering.
If every H; is isomorphic to a given graph H, then we say that G admits an H-covering.

Suppose that G = (V, E) admits an H-covering. We say that a bijective function f :
VUE —{1,2,3,---,|V|+ |E|} is an H-magic labeling of G if there is a positive integer m(f),
which we call magic sum, such that for each subgraph H' = (V’, E’) of G isomorphic to H,
we have,f(H') = > v f(v) + > .cp fe) = m(f). In this case we say that the graph G
is H-magic. When f(V) = {1,2, |V|}, we say that G is H-supermagic and we denote its
supermagic-sum by s(f).

We use the following notations. For any two integers n < m, we denote by [n,m], the set

of all consecutive integers from n to m. For any set I C N we write, > I = > x and for any
zel
integers k, I+ k = {x+k : x € I}. Thus k+[n,m] is the set of consecutive integers from k+n to
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k+m. It can be easily verified that Y (I+k) = > I4+k|I|. P = {X;, Xo,---, X, } is a partition
of a set X of integers with the same cardinality then we say P is an n-equipartition of X. Also
we denote the set of subsets sums of the parts of Pby > P = {>>X1,>" Xo,---,> X, }.Finally,
given a graph G = (V, E) and a total labeling f on it we denote by f(G) =3 f(V)+ > f(E).

§2. Preliminary Results

In this section we give some lemmas which are used to prove the main results in Section 3.

Lemma 2.1 Let h and k be two positive integers and h is odd. Then there exists a k-

h—1)(hk+k+1
equipartition P = {X1, Xo,--- , X3} of X = [1, hk] such that > X, = ( J(hk +k+1) +r

2
(h—l)(hk+k+1)+

for1 <r <k. Thus, > P is a set of consecutive integers given by Y P = 5

[1, k].

Proof Let us arrange the set of integers X = [1, hk] in a h x k matrix A as given below.

1 2 e k=1 k
n+1 n+2 e 2%k—1 2k

A= 0+ 1 m+2 - 3k—1 3k
(h—=1k+1 (h—=1)k+2 --- hk—1 hk

hxk

That is, A = (a;;)nxk Where a;; = (1 — Dk +jfor 1 <i<hand1<j<k Forl<r<kEk,
define X, = {a; /1 <i < 22} U{aip—rq1/2E2 <i < h}. Then

h,;rl h
E Xr = E Qi + E Qi k—r+1
i— . h+3
=1 i=n4
h41

N|

h
=> (i=Dk+r Y (i-Dk+k—r+1

= g
h2k — k-
_ +h—k 1+7°
2
h—1)hk+k+1
:( )(2+ +)—|—T for 1<r<k.

(h—1)(hk+k+1)
2
Example 2.2 Let h = 9, k = 6 and X = [1,54]. Then the partition subsets are X; =
{1,7,13,19,25,36,42,48,54}, Xo = {2,8,14,20,26,35,41,47,53}, X3 = {3,9,15,21,27, 34,
40, 46,52}, X4 = {4,10,16,22, 28, 33,39, 45,51}, X5 = {5,11,17, 23, 29,32, 38,44, 50} and Xs =

h—1)(hk+k+1
{6,12,18,24, 30,31, 37,43,49}. 3 X _ (1) 2+ +1)

Hence, Y P =

+[1,]. O

+r=244+7r for 1 <r <6.
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Lemma 2.3 Let h and k be two positive integers such that h is even and k > 3 is odd.

Then there exists a k-equipartition P = {X1, Xa, -, Xi} of X = [1,hk] such that > X, =
(h—1)(hk+k+1)

+r for 1 <r < k. Thus,y P is a set of consecutive integers given by
h—1)(hk+k+1
g (=Dt k+ D)
2
Proof Let us arrange the set of integers X = {1,2,3,--- ,hk}in a h X k matrix A as given
below.

+ [1, k).

1 2 e k=1 k
n+1 n+2 e 2%k—1 2%k

A= o+ 1 n+2 - 3k—1 3k
(h—1k+1 (h—=1)k+2 --- hk—1 hk

hxk
That is, A = (a; ;)nxk Where a; ; = (i — Dk +jfor 1<i<hand1<j <k Forl<r<kEk,

h h
define Y, = {a; /1 <i < E}U {ai7k77«+1/§ +1<i<h-—1}. Then

L h—1
E Y, = E a;r+ E Qi lo—r+1
i=1

i=h41

4 h—1
=Y {i-Dk+r}+ > {i-Dk+k—r+1}

i=L41
k(h—1)*+h—k—2
= +T
2
For 1 < r < k, define X, = Y,,) U{(h — 1)k + n(r)}, where 0 and 7 denote the per-
k—2 1 k-1
koar+l for 1<r<——
mutations of {1,2,---,k} given by o(r) = ;. —22r+1 ka1 2 and n(r) =
—5 for —— <r<k
k-1
2r for 1<r< 5
. Then
2r — k  for k+1 <r<k

* ‘

N
>
|

ZYG(T) + (h=1)k+=(r)
k(h—1)2+h—k—2

= 5 +o(r)+ (h— 1Dk +n(r)

k(h—1)2+h—k—2+k—2r+1

+(h=1Dk+2r for 1<pr<kd
L X = k(h—1)23h—k—2 3k—22r+1 - On
5 +(h—Dk+2r—k for El<r<k

h—1(hk+Ek+1
simplification we get > X, = ( ) 5 tEk+1) +7r for 1 < r < k. Hence, > P =
h—1)(hk+k+1
( )(2+ L ) 0
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Example 2.4 Let h = 6,k = 5 and X = [1,30]. Y3 = {1,6,11,20,25}, Y5 = {2,7,12, 19, 24},
Ys = {3,8,13,18,23}, Yy = {4,9,14,17,22}and Vs = {5, 10, 15,16, 21}. By definition the parti-
tion subsets are, X, = Y,y U{(h — 1)k +n(r) for 1 <r <5. Xy = {2,7,12,19,24,27}, X, =
{1,6,11,20,25,29}, X5 = {5, 10,15, 16,21, 26} X, = {4,9, 14,17, 22,28} X; = {3,8,13, 18, 23, 30},

h—1)(hk+Ek+1
NOW,ZXTZ( )(2+ ha )+r=90+rfor1§r§5.

Lemma 2.5 If h is even, then there exists a k-equipartition P = {X1, X, -+, Xk} of X =

h(hk+1

[1, hk] such that > X, = hhk +1)
h(hk+1)

equal to ——.
¢ 2

for 1 < r < k. Thus, the subsets sum are equal and is

Proof Let us arrange the set of integers X = {1,2,3,--- , hk}in a h x k matrix A as given
below.

1 2 e k=1 k
n+1 n+2 e 2%k—1 2%k

A= o+ 1 m+2 - 3k—1 3k
(h—1k+1 (h—1k+2 --- hk—1 hk

hxk
That is, A = (a;;)nxk Where a;; = (1 — Dk +jfor 1 <i<hand1<j<k Forl<r<kEk,
define X, = {a;,/1 <i < 2YU{a;p—ry1/%+1<i<h—1}. Then

3 h
E Xr = E Qg r + E Qi k—r+1
=1

i=2+1
LI hoo h(hk + 1)
=> {i—Dk+r}+ > {-Dk+k—r+1}= —
i=1 i=h+1
h(hk + 1
Thus, the subsets sum are equal and is equal to % O

Example 2.6 Let h = 6, k = 5 and X = [1,30]. Then the partition subsets are X; =
{1,6,11,20,25,30}, Xo = {2,7,12,19,24,29}, X3 = {3,8,13,18,23,28}, X4 = {4,9,14,17,
h(hk +1
92,27} and X5 = {5,10,15,16,21,26}. Now, " X, = %ﬂ —93for1<r<5.
k

Lemma 2.7 Let h and k be two even positive integers and h > 4. If X = [1,hk+1] — {5 +1},
h2k — k-

+3h—k 2+7°

2

+ [1,k].

there exists a k-equipartition P = { X3, Xo,--- , X} of X such that Y X, =
hk+3h—k—2
2

Proof First we prove this lemma for h = 2 and we generalize for any even integer h > 4.

for 1 <r <Ek. Thus > P is a set of consecutive integers

Case 1: h=2.
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X =[1,2k+1] — {5 +1}. For 1 <r < k, define

{E+1-rk+1+2r} for
{%—1—2—7“,27“} for

IN
<
IN

X, =

=< N

[STE R
+
—_
IA
IA
o~

Hence7ZXT=%+2+rf0r1§r§k.
Case 2: h >4

k
Let Y =[1,2k+1] — {§+ 1} and Z = [2k+2,hk+1]. Then X =Y U Z. By Case 1, there
exists a k-equipartition P; = {Y7,Ya,--- , Y} of Y such that

3k
ZYT:7+2+T for 1<r<k (1)

Since h — 2 is even, by Lemma 2.5, there exists a k-equipartition

Py = {Z;,Zb,---, Z}} of [1,(h — 2)k] such that 3 Z/ = (h = 2)(hk2_ 26+ D) o1 <r<k.
Adding 2k+1 to [1, (h—2)k], we get a k-equipartition Py = {Z1, Zs,- -+ , Zx} of Z = [2k+2, hk+
1] such that 3" Z, = (h — 2)(2k + 1) + (h = 2)(]“;_ 2k+1)
for 1 <r < k. Then,

for1<r<k. Let X, =Y,UZ,

Y Xe = Y YUY 7,

h?k +3h —k —2

= 5 +r for 1<r<k.

h%k +3h — k — 2
2
Example 2.8 Let h = 6, k = 6 and X = [1,37] — {4}.Then the partition subsets are X; =
{3,9,14,20,31,37}, Xo = {2,11,15,21,30,36}, X5 = {1,13,16,22,29,35}, X, = {7,8,17,23,

28,34}, X5 = {6,10,18,24,27,33} and Xg = {5,12,19,25, 26, 32}. Now,

h2k +3h —k — 2
Y X, = +2 +r=113+7

Hence, Y P is a set of consecutive integers + [1, k]. O

forl1 <r <6.

Lemma 2.9 Let h and k be two even positive integers. If X = [1,hk + 2] — {1,; + 2}, there
h2k +5h —k — 2
2

+[1,K).

exists a k-equipartition P = {X1, Xo,--- , Xy} of X such that > X, =
h?k +5h —k —2
2

Proof First we prove this lemma for 1 = 2 and we generalize for any even integer h > 4.

+r for

1<r<k. Thus > P is a set of consecutive integers

Case1: h=2

k
X=[1,2k+2]—{1,§+2}. For 1 < r <k, define

k
{§+1—r,k+2+2r} for

IN
<
IN

X, =

5 Nl

IN
>

o
+
[
IN

k
{37+3—r,2r—|—1} for
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k
Hence, >~ X :%—l—él—i—rforlgrgk.

Case 2: h>4

k
Let Y =[1,2k+ 2] — {1,5 +2} and Z = [2k 4+ 3,hk 4+ 2]. Then X =Y U Z. By Case 1,
there exists a k-equipartition P; = {Y7,Ya,---, Y%} of Y such that

3k
Zn:7+4+r for 1<r<k (2)

Since h — 2 is even, by Lemma 2.5, there exists a k-equipartition
h—2)(hk — 2k +1
By — (70,2}, , 71} of [L,(h — 2)k] such that 3" 72/ — =2 - D e 1 <7 < k.
Adding 2k+2 to [1, (h—2)k], we get a k-equipartition Py = {Z1, Zs,- -+ , Zx} of Z = [2k+3, hk+
(h—2)(hk — 2k +1)
2] such that > 7, = (h —2)(2k+2) + 5 for1<r <k Let X, =Y, UZ,
for 1 <r < k. Then,

>

Y Yud 7,

h2k+5h—k—2
= + 5 +r for 1<r<k.

h2k +5h — k — 2
2
Example 2.10 Let h = 6, k = 6 and X = [1,38] — {1,5}.Then the partition subsets
are X, = {4,10,15,21,32,38}, Xo = {3,12,16,22,31,37}, X3 = {2,14,17,23,30,36}, X, =
{8,9,18,24,29,35}, X5 = {7,11,19, 25,28, 34} and X = {6, 13,20, 26,27,33}. Now, 3" X, =
h?k +5h —k —2
2

Hence, Y P is a set of consecutive integers + [1, k] O

+r=119+7rfor1 <r <6.

§3. Main Results

Definition 3.1(Edge amalgamation of a finite collection of graphs, [1]) For any finite collection
(Gy,uv;) of graphs G;, each with a fized edge w;v;, Carlson [1] defined the edge amalgamation
Edgeamal{(G;,u;v;)} as the graph obtained by taking the union of all the G;’s and identifying
their fized edges.

Definition 3.2( Generalized Book) If all the G;’s are cycles then Edgeamal{(G;,u;v;)} is

called a generalized book.

Theorem 3.3 Let H be a 2-connected (p,q) simple graph. Then the edge amalgamation
Edgeamal{(H;,uw;v;)} of any finite collection {H;,u;v;} of graphs H;, each with a fized edge

w;v; isomorphic to H is H-supermagic for all values of p and q.

Proof Let {H;,u;v;} be a collection of n graphs H;, each with a fixed edge w;v; and
isomorphic to a 2-connected simple graph H.
Let G = Edgeamal{(H;, u;v;)} with vertex set V and edge set E. Note that |V| =n(p—2)+2
and |E| = n(qg—1)+ 1. Let H; = (V;, E;) for 1 < i < n. Label the common edge of G as
e =uqws. Let V! =V, — {wy,we} and B = FE — {e} for 1 <i < n.
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Case 1: nisodd
Subcase (i): p is even and ¢ is odd

Since p — 2 and ¢ — 1 are even by Lemma 2.5 there exists n-equipartitions P} = { X7, X},
X/} of [1,(p—2)n] and Py = {Y{,Y,--- , Y.} of [1, (q — 1)n] such that

ZX/_ (p—2)( pn—2n+1 Zy,_ —1)( qn—n+1)
2

Add 2 to each element of the set [1, (p—2) ] and (p—2)n+3 to each element of the set [1, (g—1)n].
We get n-equipartitions Py = {X1, Xo, -+, X, } of [3,pn —2n + 3] and Py = {¥1,Y>, -+, Y, }
of [pn — 2n+ 4, (p+ g — 3)n + 3] such that

2)(pn — 2n + 1) D gn—n+1
S Xi=(p- 22+(p Xp” nt C S Y= (¢-Dpn— 2n+3)+(q )(qg ntl)

Define a total labeling f : V U E — [1,(p+ q — 3)n + 3] as follows:

flw)) = 1 and f(ws) =2.
fle) = pn—2n+3.

fv)y = X; for 1<i<n.

f(E) = Ypiy1 for 1<i<n.

FUH) = flw)+ f(wa) + fle)+ > FV)+ D f(E]

= f(w1)+fw2 + f(e +ZX/+ZY7£ il

= constant.
Since H; 2 H for 1 < i < n, G is H-supermagic.
Subcase (ii): p is odd and ¢ is even

Since p—2 and ¢—1 are odd, by Lemma 2.1 there exists n-equipartitions P} = { X1, X5, -+,

X/ }of [1,(p—2)n] and P, = {Y{,Yy,--- , Y/} of [1,(¢ — 1)n ]suchthat
_ (p—3)(pn—n+1) _ )(gn +1)
S x; : i Y= el

for 1 <i < n. Add 2 to each element of the set [1, (p — 2)n] and (p —2)n + 3 to each element
of the set [1, (¢ — 1)n]. We get n-equipartitions Py = { X1, Xo,---, X, } of [3,pn — 2n + 3] and
Py ={Y1,Ys,- -, Y,} of [pn —2n+ 4, (p + ¢ — 3)n + 3] such that

> Xi=(p- 22+(p—3)(p7;—n+1 S Yi=(¢-1)(pn—2n+3)+ w“'
for 1 <i<n. Deﬁneatotallabelingf:VUEa[,(p+q_3)n+3] as follows:

flw)) = 1 and f(wz)=2.

fle) = pn—2n+3.

fV)) = Xi for 1<i<n.

f(E) = Yo for 1<i<n.
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Then for 1 <i <n,

FUH) = flw)+ f(wa)+ fle)+ > FV)+ D f(E]

= flwn)+ flw2) + Fle)+ > X[+ D Y iy

- Mt RS (- e 3

= constant.

Since H; = H for 1 < i < n, G is H-supermagic.
Subcase (iii): p and ¢ are odd
Since p — 2 is odd, by Lemma 2.1 there exists an n-equipartition P} = {X7, X4,--- , X/}
-3 — 1
of [1, (p— 2)n] such that > X/ = (p=3)pn=—n+1)
n is odd, by Lemma 2.3 there exists an n-equipartition Py = {Y{,Yy,--- Y} of [1,(q — 1)n]
-2 1
such that > Y/ = w +ifor 1 < i < n. Add 2 to each element of the set
[1,(p — 2)n] and (p — 2)n + 3 to each element of the set [1, (¢ — 1)n]. We get n-equipartitions

Py ={X1, X2, -+, X} of [3,pn—2n+3] and Py = {Y1, Y, -+ , Y, } of [pn—2n+4, (p+q¢—3)n+3]
such that

+1 for 1 <4 <mn. Since ¢ — 1 is even and

(p=3)(np—n+1)

doXi = (p-2)2+ 5 +1,
v o= (q—1)(pn—2n+3)+(q_2)(2ﬂ+z

for 1 <4 < n. Define a total labeling f: VUE — [1,(p + ¢ — 3)n + 3] as follows:

fa) = 1 and  flws) =2
fle) = pn—2n+3.

fV) = X; for 1<i<n.

fE) = Y, g for 1<i<n.

FUH) = flw)+ flwa) + fle)+ > FVI)+ > f(E]

= flw)+ flw) + fle)+ D X[ +) Y 1y

_ nlp+a)? +p;q+5(”_1) —(n—1)(2p+ 3q)

= constant.

Since H; & H for 1 < i < n, G is H-supermagic.
Subcase (iv): p and g are even

Since p — 2 is even and n is odd, by Lemma 2.3 there exists an n-equipartition P} =

-3 — 1
(X1, X0, X!} of [1,(p— 2)n] such that S x7 = L=@R=nEY gy o 2
Since ¢ — 1 is odd, by Lemma 2.1 there exists an n-equipartition P, = {Y¥{,Yy,--- Y} of
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[1,(g — 1)n] such that > Y/ = la=2)gn+1) +ifor 1 <i<mn. Add 2 to each element of the
set [1, (p —2)n] and (p — 2)n + 3 to each element of the set [1, (¢ — 1)n]. We get n-equipartitions
Py ={X1,Xo, -, X, } of [3,pn—2n+3] and Py = {¥1,Y>, -+ , Y, } of [pn—2n+4, (p+q—3)n+3|
such that

ZX (p— 22+(p—3)(p7;—n+1 ZY (g—1)(pn—2n+3)+ —(q—2)(2qn—|—1)+l

for 1 <4 < n. Define a total labeling f: VUE — [1,(p+ g — 3)n + 3] as follows:

flw) = 1 and f(wy)=2.
fle) = pn—2n+3.

fV)y = X; for 1<i<n.
f(E) = Yo for 1<i<n.

FUH) = flw)+ f(wa)+ fle)+ > FV)+ D f(E]

= flwn)+ flw2) + fle)+ > X[+ D Y 1y

- Mt et (- e 3

= constant.

Since H; 2 H for 1 < i < n, G is H-supermagic.
Case 2: n is even
Subcase (i): p is even and ¢ is odd

The argument in Subcase(i) of Case (1) is independent of the nature of n. Hence we get
G is H-supermagic.
Subcase (ii): pis odd and g is even

The argument in Subcase(ii) of Case (1) is independent of the nature of n. Hence we get
G is H-supermagic.
Subcase (iii): p and ¢ are odd

Since p — 2 is odd, by Lemma 2.1 there exists an n-equipartition P} = {X7, X},--- , X/}

-3 - 1
of [1,(p — 2)n] such that 3" x7 = L= 3n=n+1)
are even, by Lemma 2.7 there exists an n-equipartition P, = {Y{,Yy,--- Y/} of [1,(¢ — 1)n +
—1)2n+3(¢—1)—n—2

1]—{g+1}suchthat sy A= (2" ) =n =2 i for1<i<n Add 2 to each
element of the set [1, (p — 2)n] and (p — 2)n + 2 to each element of the set [1,(q — 1)n]. We
get n-equipartitions P; = {X1, Xo,---, X,,} of [3,pn — 2n + 3] and Py = {V7,Y5,---,Y,} of
pn—2n+3,(p+q—3)n+3]—{(p—2)n+ g + 3} such that

44 for 1 < i <mn. Since ¢g—1 and n

Y Xi=(p-22+ (p_3)(pg_n+1)+i,
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—1)2 —1)—n—2
> Yi=(q—D(pn—2n+2)+ (g )”+3(2q )—n

for 1 <4 < n. Define a total labeling f: VUE — [1,(p+ g — 3)n + 3] as follows:

+1

flw)) = 1 and f(ws) =2.
fle) = (P—Q)n—i-g—i—&

vy = X; for 1<i<n.

f(E) = Yyiy1 for 1<i<n.

Then for 1 <i <n,

FUH) = flwy)+ flwa) + fle)+ > FVI)+ D F(E))
Flwr) + flwa) + fle) + D X/ + Y Vi iy

np+q)?+pt+aq (n
2
= constant.

—1)(2p+ 3¢ —3)

Since H; & H for 1 < i < n, G is H-supermagic.
Subcase (iv): p and g are even

Since p — 2 and n are even, by Lemma 2.9 there exists an n-equipartition P; = {X7, X5,
(p—2)°n+5p—2)—n—2

LX) of [1,(p—2)n+2]—{1,g—|—2} such that 3> X; = : +i for
1<i<n.
Since ¢ — 1 is odd, by Lemma 2.1 there exists an n-equipartition Py = {Y{,Yy,--- Y./} of

[1,(¢g—1)n]and > Y/ = % +ifor 1 <i<n. Add (p—2)n+ 3 to each element of the
set [1, (¢—1)n]. We get an n-equipartition Py = {Y7,Ya,--- , ¥, } of [pn—2n+4, (p+q—3)n+3)
such that > Y; = (¢ — 1)(pn — 2n + 3) + % + 1 for 1 < i < n. Define a total labeling
f:VUE —=[1,(p+q—3)n+ 3] as follows:

flw) = 1 and f(wy) = g 42,
fle) = pn—2n+3.

fV)) = Xi for 1<i<n.

f(E) = Yo for 1<i<n.

Then for 1 <i <n,

FUH) = flwy)+ flwa) + fle)+ > FVI)+ D F(E)
= flwi) + f(w2) + f(e +ZX/+ZY1; il

= n(p+Q)2+p+q—(n—l)(2p+3q—3)

= constant.

Since H; & H for 1 < i < n, G is H-supermagic.



Supermagic Coverings of Some Simple Graphs 43

Hence, the edge amalgamation Edgeamal{(H;,u;v;)} of any finite collection {H;, u;v;} of
graphs H;, each with a fixed edge u;v; and isomorphic to H is H-supermagic for all values of
p and q. O

Illustration 3.4 Let Hqi,Hs,H3,H, and Hs be five graphs isomorphic to the wheel W, =
C4 + K; and their fixed edges given by dotted lines. Then the Edge amalgamation graph
Edgeamal{(H;,u;v;)} of the given collection is Wy-supermagic with supermagic sum 303.

Fig.1

Illustration 3.5 Let Hi,H>,Hs and H,4 be four graphs isomorphic to H and their fixed edges
given by dotted lines. Then the Edge amalgamation graph Edgeamal{(H;,u;v;)} of the given

collection is H-supermagic with supermagic sum 300.

Fig.2
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Definition 3.6(Book with m-gon pages) Let n and m be any positive integers with n > 1 and
m >3 . Then, n copies of the cycle C,, with an edge in common is called a book with n m-gon
pages. That is, if {Gi,u;v;} is a collection of n copies of the cycle C,, each with a fized edge
u;v; then Edgeamal{(G;,u;v;)} is called a book with n m-gon pages.

A book with 3 pentagon pages is given below.

Fig.3

Corollary 3.7 Books with n m-gon pages are Cy, -supermagic for every positive integers
n > land m > 3.

Illustration 3.8 Cs-supermagic covering of a book with 3 hexagon pages is given below. The

supermagic sum is 167.

Fig.4

Theorem 3.9 Let H; = K, with vertex set V(H;) = {vi,vir : 1 <1 < k} and the edge set
E(H;) =4{vivir : 1 <r <k} where 1 <i <k and G be a graph obtained by joining a new vertex

w with vi1,v21,- -+ ,vk1. Then G is Ky j-supermagic.

Proof Let V; = {vj,vir : 1 <7 < k}and E; = {Vivj, : 1 <r <k} forl <i<Ek.
Then the vertex and edge set of G = (V, E) are given by V = U_ V; U {v} and E = U}_,E; U
{vvr,vvg, -+ ,vvE}. Also |V| = k? +k+ 1 and |E| = k? + k. Let Vi1 = {w,v1,ve, -+ , v}
and Ey1 = {wvy,wve, -+ ,wug} and Higy1 = (Vit1, Frt1) be the graph with vertex set Vi1
and edge set Eji+1. Note that any edge of E belongs to at least one of the subgraphs H; for
1<i<k+1. Since H; = K, for 1 <7 <k +1, G admits a K; j-covering.
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Case 1: k£ is odd

Since k + 1 is even, by Lemma 2.3, there exists a k-equipartition P = {X;, X5, -+, Xi} of
X =1, (k + 1)k] such that

(k+1
> X—;)—i—i for 1<i<k (3)
. . e . kE+1
It can be easily verified from the definition of X, in Lemma 2.3 that — = 1) k+o(r) € X,
for 1 <r < k, where ¢ denotes the permutation of {1,2,---  k} given by
k—2 1 k—1
o ++ for 1<r< —
o(r) = )
3k —2 1 k
# for ; <r<k

k+1
Construct X1 = {<%—1) k+o(r):1<r<k}u{k®+k+1}.

> Xy = Z[(%—l)k—l—a(ﬂ] +k+k+1

K2(k—1)  k(k+1)

= E+k+1
gty HE ke
k(k+1)2
:%—l—k—l—l (4)
From (1) and (2) we have
k(k+1
ZX— + REED? 0 g 1<i<hid (5)

As k is odd, by Lemma 1, there exists a k + 1-equipartition Q" = {Y{, Y5, -, Y/ |} of the

E—-D[(k+1)2+1
set Y =[1,k(k + 1)) suchthatZYi'z( Il 2+ s ]+if0r1§i§k+1.

Adding k? + k+1 to [1,k(k + 1)], we get a k + 1-equipartition Q = {Y¥7,Y2, -+, Yii1} of
the set Y = [k% + k + 2,2k? + 2k + 1] such that

SOV = k(K 4 k+1) + (k_l)[(k2+1)2+1] +i for 1<i<k+1 (6)

Define a total labeling f : VU E — [1,2k% + 2k + 1] as follows:

(i) flw)=k*+Fk+1.

(i) f(V;) = X; with f(v;) = (% - 1) k+o(r)for1 <i<k+1.

Then for 1 <i<k+1,
Zf +Zf ZXi+ZYk+2—i

74k3+5k2+5k+2
= 5 ,
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which is a constant. Since H; =2 Ky, for 1 <i <k +1, G is K; y-supermagic.
Case 2: k is even
Since k + 1 is odd, by Lemma 1,there exists a k-equipartition P = {X;1, Xa, -+, X;} of
X =1, (k + 1)k] such that
k(k+1
> Xi= +)+i for 1<i<k (7)

k+2
It can be easily verified from the definition of X,. in Lemma 2.3 that <% — 1> k+r € X, for

k k k+2
1<r< and (E—l)k—kreX for§+1<r<k: Constructh+1—{<%—1>k+r:

wl?rwl?r

I<r

I /\

}U{(E—1>k+r g+1<r<k}u{k2+k+1}

k

ZXk-}-l:i[(#—l)kﬁ-T‘] +y [(g—l>k+r} +E+k+1

r=1 541
zkz(k2_1)+k(k2+1)+k2+k+1
=WT+1>2+1§+1 (8)
From (5) and (6) we have
S = S k“) Yi for 1<i<k+1 9)

As k is even, by Lemma 2.3, there exists a k + l-equipartition Q" = {Y{,Y5,---,Y; ,} of

the set Y = [1,k(k + 1)] such that Y V/ = w +iforl <i<k+1. Adding

k> +k+1 to [1,k(k + 1)], we get a k + l-equipartition Q = {Y3,Ya,--+,Ysy1} of the set

Y = [k* + k + 2,2k? 4+ 2k + 1] such that

(k=D[(k+1)*+1]
2

Define a total labeling f : VU E — [1,2k% + 2k + 1] as follows:

(i) flw)=k*+Fk+1.

SOV = k(R 4 k4 1) + +i for 1<i<k+1 (10)

(i) f(V;) = X; with f(v;1) = <¥ —1>k+r for 1 <i< g and f(v;1) = <§ —1) k+r

k
for 5 +1<e<k.

Then for 1 <i<k+1,

f(Hy) =232 f(Vi) + 2 f(Eq)

=YX+ > Yiyo,
 Ak® 4+ 5k? + 5k + 2
- 5 ,
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which is a constant. Since H; = K;  for 1 <i < k41, G is K; p-supermagic. Thus, in both

4k3 4+ 5k% + 5k + 2
the cases G is K p-supermagic with supermagic sum s(f) = + 2+ ha .

Illustration 3.10

Fig.1. G- is K s-supermagic with supermagic sum 236.

39 26
24
25 78 71
SN 3% a4 553 @23
31 . 1
7 /6 12 4 23
82 45 11 39
Ry 17 9
18 2 9
1 7 80 76
£4 50 1 65
0 22
307 68 &5 Y 60 40
P e 8 20 21 .
36 ] 49 . 34
55\ 49 0 3
qa 41 56 66
14 RS s
74 28
67
29 35 15

Fig.2. G- is K ¢-supermagic with supermagic sum 538.

O
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