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Abstract: An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n. Let

Hn = {(a1, a2, · · · , an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric

n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G, σ)

(Sn = (G, µ)), where G = (V, E) is a graph called the underlying graph of Sn and σ : E → Hn

(µ : V → Hn) is a function. In this paper, we introduced a new notion S-antipodal symmetric

n-sigraph of a symmetric n-sigraph and its properties are obtained. Also we give the relation

between antipodal symmetric n-sigraphs and S-antipodal symmetric n-sigraphs. Further, we

discuss structural characterization of S-antipodal symmetric n-sigraphs.
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§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the

reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Let n ≥ 1 be an integer. An n-tuple (a1, a2, · · · , an) is symmetric, if ak = an−k+1, 1 ≤
k ≤ n. Let Hn = {(a1, a2, · · · , an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all

symmetric n-tuples. Note that Hn is a group under coordinate wise multiplication, and the

order of Hn is 2m, where m = ⌈n

2
⌉.

A Smarandachely k-marked graph (Smarandachely k-signed graph) is an ordered pair

S = (G, µ) (S = (G, σ)) where G = (V, E) is a graph called underlying graph of S and

µ : V → {e1, e2, ..., ek} (σ : E → {e1, e2, ..., ek}) is a function, where ei ∈ {+,−}. An n-

tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n. Let Hn = {(a1, a2, ..., an) :

ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric n-tuples. A Smaran-

dachely symmetric n-marked graph (Smarandachely symmetric n-signed graph) is an ordered

pair Sn = (G, µ) (Sn = (G, σ)) where G = (V, E) is a graph called the underlying graph of Sn

and µ : V → Hn (σ : E → Hn) is a function. Particularly, a Smarandachely 1-marked graph

(Smarandachely 1-signed graph) is called a marked graph (signed graph).
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In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-

tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple (a1, a2, · · · , an) is the identity n-tuple, if ak = +, for 1 ≤ k ≤ n, otherwise

it is a non-identity n-tuple. In an n-sigraph Sn = (G, σ) an edge labelled with the identity

n-tuple is called an identity edge, otherwise it is a non-identity edge. Further, in an n-sigraph

Sn = (G, σ), for any A ⊆ E(G) the n-tuple σ(A) is the product of the n-tuples on the edges of

A.

In [7], the authors defined two notions of balance in n-sigraph Sn = (G, σ) as follows (See

also R. Rangarajan and P.S.K.Reddy [4]):

Definition 1.1 Let Sn = (G, σ) be an n-sigraph. Then,

(i) Sn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Sn is

the identity n-tuple, and

(ii) Sn is balanced, if every cycle in Sn contains an even number of non-identity edges.

Note 1.1 An i-balanced n-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [7].

Proposition 1.1 (E. Sampathkumar et al. [7]) An n-sigraph Sn = (G, σ) is i-balanced if, and

only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is

equal to the product of the n-tuples of u and v.

Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of Sn defined as

follows: each vertex v ∈ V , µ(v) is the n-tuple which is the product of the n-tuples on the

edges incident with v. Complement of Sn is an n-sigraph Sn = (G, σc), where for any edge

e = uv ∈ G, σc(uv) = µ(u)µ(v). Clearly, Sn as defined here is an i-balanced n-sigraph due to

Proposition 1.1 ([10]).

In [7], the authors also have defined switching and cycle isomorphism of an n-sigraph

Sn = (G, σ) as follows (See also [2,5,6,10]):

Let Sn = (G, σ) and S′
n = (G′, σ′), be two n-sigraphs. Then Sn and S′

n are said to be

isomorphic, if there exists an isomorphism φ : G → G′ such that if uv is an edge in Sn with

label (a1, a2, · · · , an) then φ(u)φ(v) is an edge in S′
n with label (a1, a2, · · · , an).

Given an n-marking µ of an n-sigraph Sn = (G, σ), switching Sn with respect to µ is

the operation of changing the n-tuple of every edge uv of Sn by µ(u)σ(uv)µ(v). The n-sigraph

obtained in this way is denoted by Sµ(Sn) and is called the µ-switched n-sigraph or just switched

n-sigraph. Further, an n-sigraph Sn switches to n-sigraph S′
n (or that they are switching

equivalent to each other), written as Sn ∼ S′
n, whenever there exists an n-marking of Sn such

that Sµ(Sn) ∼= S′
n.

Two n-sigraphs Sn = (G, σ) and S′
n = (G′, σ′) are said to be cycle isomorphic, if there

exists an isomorphism φ : G → G′ such that the n-tuple σ(C) of every cycle C in Sn equals to

the n-tuple σ(φ(C)) in S′
n. We make use of the following known result (see [7]).

Proposition 1.2 (E. Sampathkumar et al. [7]) Given a graph G, any two n-sigraphs with G
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as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of S defined

as follows: each vertex v ∈ V , µ(v) is the product of the n-tuples on the edges incident

at v. Complement of S is an n-sigraph Sn = (G, σ′), where for any edge e = uv ∈ G,

σ′(uv) = µ(u)µ(v). Clearly, Sn as defined here is an i-balanced n-sigraph due to Proposition

1.1.

§2. S-Antipodal n-Sigraphs

Radhakrishnan Nair and Vijayakumar [3] has introduced the concept of S-antipodal graph of a

graph G as the graph A∗(G) has the vertices in G with maximum eccentricity and two vertices

of A∗(G) are adjacent if they are at a distance of diam(G) in G.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion

of S-antipodal graphs to n-sigraphs as follows:

The S-antipodal n-sigraph A∗(Sn) of an n-sigraph Sn = (G, σ) is an n-sigraph whose

underlying graph is A∗(G) and the n-tuple of any edge uv is A∗(Sn) is µ(u)µ(v), where µ is the

canonical n-marking of Sn. Further, an n-sigraph Sn = (G, σ) is called S-antipodal n-sigraph, if

Sn
∼= A∗(S′

n) for some n-sigraph S′
n. The following result indicates the limitations of the notion

A∗(Sn) as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be

S-antipodal n-sigraphs.

Proposition 2.1 For any n-sigraph Sn = (G, σ), its S-antipodal n-sigraph A∗(Sn) is i-balanced.

Proof Since the n-tuple of any edge uv in A∗(Sn) is µ(u)µ(v), where µ is the canonical

n-marking of Sn, by Proposition 1.1, A∗(Sn) is i-balanced. �

For any positive integer k, the kth iterated S-antipodal n-sigraph A∗(Sn) of Sn is defined

as follows:

(A∗)0(Sn) = Sn, (A∗)k(Sn) = A∗((A∗)k−1(Sn))

Corollary 2.2 For any n-sigraph Sn = (G, σ) and any positive integer k, (A∗)k(Sn) is i-

balanced.

In [3], the authors characterized those graphs that are isomorphic to their S-antipodal

graphs.

Proposition 2.3(Radhakrishnan Nair and Vijayakumar [3]) For a graph G = (V, E), G ∼=
A∗(G) if, and only if, G is a regular self-complementary graph.

We now characterize the n-sigraphs that are switching equivalent to their S-antipodal

n-sigraphs.

Proposition 2.4 For any n-sigraph Sn = (G, σ), Sn ∼ A∗(Sn) if, and only if, G is regular
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self-complementary graph and Sn is i-balanced n-sigraph.

Proof Suppose Sn ∼ A∗(Sn). This implies, G ∼= A∗(G) and hence G is is a regular

self-complementary graph. Now, if Sn is any n-sigraph with underlying graph as regular self-

complementary graph, Proposition 2.1 implies that A∗(Sn) is i-balanced and hence if S is i-

unbalanced and its A∗(Sn) being i-balanced can not be switching equivalent to Sn in accordance

with Proposition 1.2. Therefore, Sn must be i-balanced.

Conversely, suppose that Sn is an i-balanced n-sigraph and G is regular self-complementary.

Then, since A∗(Sn) is i-balanced as per Proposition 2.1 and since G ∼= A∗(G), the result follows

from Proposition 1.2 again. �

Proposition 2.5 For any two vs Sn and S′
n with the same underlying graph, their S-antipodal

n-sigraphs are switching equivalent.

Remark 2.6 If G is regular self-complementary graph, then G ∼= G. The above result is holds

good for Sn ∼ A∗(Sn).

In [16], P.S.K.Reddy et al. introduced antipodal n-sigraph of an n-sigraph as follows:

The antipodal n-sigraph A(Sn) of an n-sigraph Sn = (G, σ) is an n-sigraph whose un-

derlying graph is A(G) and the n-tuple of any edge uv in A(Sn) is µ(u)µ(v), where µ is the

canonical n-marking of Sn. Further, an n-sigraph Sn = (G, σ) is called antipodal n-sigraph, if

Sn
∼= A(S′

n) for some n-sigraph S′
n.

Proposition 2.7(P.S.K.Reddy et al. [16]) For any n-sigraph Sn = (G, σ), its antipodal n-

sigraph A(Sn) is i-balanced.

We now characterize n-sigraphs whose S-antipodal n-sigraphs and antipodal n-sigraphs

are switching equivalent. In case of graphs the following result is due to Radhakrishnan Nair

and Vijayakumar [3].

Proposition 2.8 For a graph G = (V, E), A∗(G) ∼= A(G) if, and only if, G is self-centred.

Proposition 2.9 For any n-sigraph Sn = (G, σ), A∗(Sn) ∼ A(Sn) if, and only if, G is self-

centred.

Proof Suppose A∗(Sn) ∼ A(Sn). This implies, A∗(G) ∼= A(G) and hence by Proposition

2.8, we see that the graph G must be self-centred.

Conversely, suppose that G is self centred. Then A∗(G) ∼= A(G) by Proposition 2.8. Now,

if Sn is an n-sigraph with underlying graph as self centred, by Propositions 2.1 and 2.7, A∗(Sn)

and A(Sn) are i-balanced and hence, the result follows from Proposition 1.2.

In [3], the authors shown that A∗(G) ∼= A∗(G) if G is either complete or totally discon-

nected. We now characterize n-sigraphs whose A∗(Sn) and A∗(Sn) are switching equivalent.

Proposition 2.10 For any signed graph S = (G, σ), A∗(Sn) ∼ A∗(Sn) if, and only if, G is

either complete or totally disconnected.
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The following result characterize n-sigraphs which are S-antipodal n-sigraphs.

Proposition 2.11 An n-sigraph Sn = (G, σ) is a S-antipodal n-sigraph if, and only if, Sn is

i-balanced n-sigraph and its underlying graph G is a S-antipodal graph.

Proof Suppose that Sn is i-balanced and G is a A(G). Then there exists a graph H

such that A∗(H) ∼= G. Since Sn is i-balanced, by Proposition 1.1, there exists an n-marking

µ of G such that each edge uv in Sn satisfies σ(uv) = µ(u)µ(v). Now consider the n-sigraph

S′
n = (H, σ′), where for any edge e in H , σ′(e) is the n-marking of the corresponding vertex in

G. Then clearly, A∗(S′
n) ∼= Sn. Hence Sn is a S-antipodal n-sigraph.

Conversely, suppose that Sn = (G, σ) is a S-antipodal n-sigraph. Then there exists an

n-sigraph S′
n = (H, σ′) such that A∗(S′

n) ∼= Sn. Hence G is the A∗(G) of H and by Proposition

2.1, Sn is i-balanced. �

§3. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs

(a sigraph) in the more general context of graphs with multiple signs on their edges. We look

at two kinds of complementation: complementing some or all of the signs, and reversing the

order of the signs on each edge.

For any m ∈ Hn, the m-complement of a = (a1, a2, · · · ., an) is: am = am. For any

M ⊆ Hn, and m ∈ Hn, the m-complement of M is Mm = {am : a ∈ M}. For any m ∈ Hn,

the m-complement of an n-sigraph Sn = (G, σ), written (Sm
n ), is the same graph but with each

edge label a = (a1, a2, ..., an) replaced by am. For an n-sigraph Sn = (G, σ), the A∗(Sn) is

i-balanced (Proposition 2.1). We now examine, the condition under which m-complement of

A(Sn) is i-balanced, where for any m ∈ Hn.

Proposition 3.1 Let Sn = (G, σ) be an n-sigraph. Then, for any m ∈ Hn, if A∗(G) is

bipartite then (A∗(Sn))m is i-balanced.

Proof Since, by Proposition 2.1, A∗(Sn) is i-balanced, for each k, 1 ≤ k ≤ n, the number

of n-tuples on any cycle C in A∗(Sn) whose kth co-ordinate are − is even. Also, since A∗(G)

is bipartite, all cycles have even length; thus, for each k, 1 ≤ k ≤ n, the number of n-tuples on

any cycle C in A∗(Sn) whose kth co-ordinate are + is also even. This implies that the same

thing is true in any m-complement, where for any m,∈ Hn. Hence (A∗(Sn))t is i-balanced. �

Problem 3.2 Characterize these n-sigraphs for which

(1) (Sn)m ∼ A∗(Sn);

(2) (Sn)m ∼ A(Sn);

(3) (A∗(Sn))m ∼ A(Sn);

(4) A∗(Sn) ∼ (A(Sn))m;

(5) (A∗(S))m ∼ A∗(Sn);

(6) A∗(Sn) ∼ (A∗(Sn))m.
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