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Abstract: The concept of triple connected graphs with real life application was introduced

in [7] by considering the existence of a path containing any three vertices of a graph G. In this

paper, we introduce a new domination parameter, called Smarandachely triple connected

domination number of a graph. A subset S of V of a nontrivial graph G is said to be

Smarandachely triple connected dominating set, if S is a dominating set and the induced

sub graph 〈S〉 is triple connected. The minimum cardinality taken over all Smarandachely

triple connected dominating sets is called the Smarandachely triple connected domination

number and is denoted by γtc. We determine this number for some standard graphs and

obtain bounds for general graphs. Its relationship with other graph theoretical parameters

are also investigated.
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§1. Introduction

By a graph we mean a finite, simple, connected and undirected graph G(V, E), where V denotes

its vertex set and E its edge set. Unless otherwise stated, the graph G has p vertices and q

edges. Degree of a vertex v is denoted by d(v), the maximum degree of a graph G is denoted

by ∆(G). We denote a cycle on p vertices by Cp, a path on p vertices by Pp, and a complete

graph on p vertices by Kp. A graph G is connected if any two vertices of G are connected by a

path. A maximal connected subgraph of a graph G is called a component of G. The number of

components of G is denoted by ω(G). The complement G of G is the graph with vertex set V in

which two vertices are adjacent if and only if they are not adjacent in G. A tree is a connected

acyclic graph. A bipartite graph (or bigraph) is a graph whose vertex set can be divided into

two disjoint sets V1 and V2 such that every edge has one end in V1 and another end in V2.

A complete bipartite graph is a bipartite graph where every vertex of V1 is adjacent to every
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vertex in V2. The complete bipartite graph with partitions of order |V1| = m and |V2| = n, is

denoted by Km,n. A star, denoted by K1,p−1 is a tree with one root vertex and p − 1 pendant

vertices. A bistar, denoted by B(m, n) is the graph obtained by joining the root vertices of

the stars K1,m and K1,n. A wheel graph, denoted by Wp is a graph with p vertices, formed by

joining a single vertex to all vertices of Cp−1. A helm graph, denoted by Hn is a graph obtained

from the wheel Wn by attaching a pendant vertex to each vertex in the outer cycle of Wn.

Corona of two graphs G1 and G2, denoted by G1 ◦G2 is the graph obtained by taking one copy

of G1 and |V (G1)| copies of G2 in which ith vertex of G1 is joined to every vertex in the ith

copy of G2. If S is a subset of V, then 〈S〉 denotes the vertex induced subgraph of G induced

by S. The open neighbourhood of a set S of vertices of a graph G, denoted by N(S) is the set

of all vertices adjacent to some vertex in S and N(S) ∪ S is called the closed neighbourhood

of S, denoted by N [S]. The diameter of a connected graph is the maximum distance between

two vertices in G and is denoted by diam(G). A cut-vertex (cut edge) of a graph G is a vertex

(edge) whose removal increases the number of components. A vertex cut, or separating set of

a connected graph G is a set of vertices whose removal results in a disconnected graph. The

connectivity or vertex connectivity of a graph G, denoted by κ(G) (where G is not complete)

is the size of a smallest vertex cut. A connected subgraph H of a connected graph G is called a

H-cut if ω(G − H) ≥ 2. The chromatic number of a graph G, denoted by χ(G) is the smallest

number of colors needed to colour all the vertices of a graph G in which adjacent vertices receive

different colours. For any real number x, ⌊x⌋ denotes the largest integer less than or equal to x.

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a

parameter of a graph and its complement. Terms not defined here are used in the sense of [2].

A subset S of V is called a dominating set of G if every vertex in V − S is adjacent to at

least one vertex in S. The domination number γ(G) of G is the minimum cardinality taken over

all dominating sets in G. A dominating set S of a connected graph G is said to be a connected

dominating set of G if the induced sub graph 〈S〉 is connected. The minimum cardinality taken

over all connected dominating sets is the connected domination number and is denoted by γc.

Many authors have introduced different types of domination parameters by imposing con-

ditions on the dominating set [11-12]. Recently, the concept of triple connected graphs has been

introduced by Paulraj Joseph et. al. [7] by considering the existence of a path containing any

three vertices of G. They have studied the properties of triple connected graphs and established

many results on them. A graph G is said to be triple connected if any three vertices lie on a

path in G. All paths, cycles, complete graphs and wheels are some standard examples of triple

connected graphs. In this paper, we use this idea to develop the concept of Smarandachely

triple connected dominating set and Smarandachely triple connected domination number of a

graph.

Theorem 1.1([7]) A tree T is triple connected if and only if T ∼= Pp; p ≥ 3.

Theorem 1.2([7]) A connected graph G is not triple connected if and only if there exists a

H-cut with ω(G − H) ≥ 3 such that |V (H) ∩ N(Ci)| = 1 for at least three components C1, C2

and C3 of G − H.
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Notation 1.3 Let G be a connected graph with m vertices v1, v2, . . . , vm. The graph obtained

from G by attaching n1 times a pendant vertex of Pl1 on the vertex v1, n2 times a pendant

vertex of Pl2 on the vertex v2 and so on, is denoted by G(n1Pl1 , n2Pl2 , n3Pl3 , . . . , nmPlm) where

ni, li ≥ 0 and 1 ≤ i ≤ m.

Example 1.4 Let v1, v2, v3, v4, be the vertices of K4. The graph K4(2P2, P3, P4, P3) is obtained

from K4 by attaching 2 times a pendant vertex of P2 on v1, 1 time a pendant vertex of P3 on

v2, 1 time a pendant vertex of P4 on v3 and 1 time a pendant vertex of P3 on v4 and is shown

in Figure 1.1.

Figure 1.1 K4(2P2, P3, P4, P3)

§2. Triple Connected Domination Number

Definition 2.1 A subset S of V of a nontrivial connected graph G is said to be a Smarandachely

triple connected dominating set, if S is a dominating set and the induced subgraph 〈S〉 is triple

connected. The minimum cardinality taken over all Smarandachely triple connected dominating

sets is called the Smarandachely triple connected domination number of G and is denoted by

γtc(G). Any Smarandachely triple connected dominating set with γtc vertices is called a γtc-set

of G.

Example 2.2 For the graph G1 in Figure 2.1, S = {v1, v2, v5} forms a γtc-set of G1. Hence

γtc(G1) = 3.

Figure 2.1 Graph with γtc = 3

Observation 2.3 Triple connected dominating set (tcd-set) does not exist for all graphs and

if exists, then γtc(G) ≥ 3.

Example 2.4 For the graph G2 in Figure 2.2, any minimum dominating set must contain all

the supports and any connected subgraph containing these supports is not triple connected and

hence γtc does not exist.
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Figure 2.2 Graph with no tcd-set

Throughout this paper we consider only connected graphs for which triple connected dom-

inating set exists.

Observation 2.5 The complement of the triple connected dominating set need not be a triple

connected dominating set.

Example 2.6 For the graph G3 in Figure 2.3, S = {v1, v2, v3} forms a triple connected

dominating set of G3. But the complement V −S = {v4, v5, v6, v7, v8, v9} is not a triple connected

dominating set.

Figure 2.3 Graph in which V − S is not a tcd-set

Observation 2.7 Every triple connected dominating set is a dominating set but not conversely.

Observation 2.8 For any connected graph G, γ(G) ≤ γc(G) ≤ γtc(G) and the bounds are

sharp.

Example 2.9 For the graph G4 in Figure 2.4, γ(G4) = 4, γc(G4) = 6 and γtc(G4) = 8. For the

graph G5 in Figure 2.4, γ(G5) = γc(G5) = γtc(G5) = 3.

Figure 2.4
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Theorem 2.10 If the induced subgraph of each connected dominating set of G has more than

two pendant vertices, then G does not contain a triple connected dominating set.

Proof The proof follows from Theorem 1.2. �

Some exact value for some standard graphs are listed in the following:

1. Let P be the petersen graph. Then γtc(P ) = 5.

2. For any triple connected graph G with p vertices, γtc(G ◦ K1) = p.

3. For any path of order p ≥ 3, γtc(Pp) =







3 if p < 5

p − 2 if p ≥ 5.

4. For any cycle of order p ≥ 3, γtc(Cp) =







3 if p < 5

p − 2 if p ≥ 5.

5. For any complete bipartite graph of order p ≥ 4, γtc(Km,n) = 3. (where m, n ≥ 2 and

m + n = p ).

6. For any star of order p ≥ 3, γtc(K1,p−1) = 3.

7. For any complete graph of order p ≥ 3, γtc(Kp) = 3.

8. For any wheel of order p ≥ 4, γtc(Wp) = 3.

9. For any helm graph of order p ≥ 7, γtc(Hn) = p−1
2 (where 2n − 1 = p).

10. For any bistar of order p ≥ 4, γtc(B(m, n)) = 3 (where m, n ≥ 1 and m + n + 2 = p).

Example 2.11 For the graph G6 in Figure 2.5, S = {v6, v2, v3, v4} is a unique minimum

connected dominating set so that γc(G6) = 4. Here we notice that the induced subgraph of S

has three pendant vertices and hence G does not contain a triple connected dominating set.

Figure 2.5 Graph having cd set and not having tcd-set

Observation 2.12 If a spanning sub graph H of a graph G has a triple connected dominating

set, then G also has a triple connected dominating set.

Observation 2.13 Let G be a connected graph and H be a spanning sub graph of G. If H

has a triple connected dominating set, then γtc(G) ≤ γtc(H) and the bound is sharp.

Example 2.14 Consider the graph G7 and its spanning subgraphs G8 and G9 shown in Figure

2.6.
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Figure 2.6

For the graph G7, S = {u2, u4, u7} is a minimum triple connected dominating set and so

γtc(G7) = 3. For the spanning subgraph G8 of G7, S = {u1, u3, u4, u5} is a minimum triple

connected dominating set so that γtc(G8) = 4. Hence γtc(G7) < γtc(G8). For the spanning

subgraph G9 of G7, S = {u2, u4, u7} is a minimum triple connected dominating set so that

γtc(G9) = 3. Hence γtc(G7) = γtc(G9).

Observation 2.15 For any connected graph G with p vertices, γtc(G) = p if and only if G ∼= P3

or C3.

Theorem 2.16 For any connected graph G with p vertices, γtc(G) = p − 1 if and only if

G ∼= P4, C4, K4, K1,3, K4 − {e}, C3(P2).

Proof Suppose G ∼= P4, C4, K4−{e}, K4, K1,3, C3(P2), then γtc(G) = 3 = p−1. Conversely,

let G be a connected graph with p vertices such that γtc(G) = p−1. Let S = {u1, u2, . . . , up−1}
be a γtc-set of G. Let x be in V − S. Since S is a dominating set, there exists a vertex vi in

S such that vi is adjacent to x. If p ≥ 5, by taking the vertex vi, we can construct a triple

connected dominating set S with fewer elements than p − 1, which is a contradiction. Hence

p ≤ 4. Since γtc(G) = p − 1, by Observation 2.5, we have p = 4. Let S = {v1, v2, v3} and

V − S = {v4}. Since S is a γtc-set of G, 〈S〉 = P3 or C3.

Case i 〈S〉 = P3 = v1v2v3

Since G is connected, v4 is adjacent to v1 (or v3) or v4 is adjacent to v2. Hence G ∼= P4 or

K1,3.

Case ii 〈S〉 = C3 = v1v2v3v1

Since G is connected, v4 is adjacent to v1 (or v2 or v3). Hence G ∼= C3(P2). Now by adding

edges to P4, K1,3 or C3(P2) without affecting γtc, we have G ∼= C4, K4 − {e}, K4. �

Theorem 2.17 For any connected graph G with p ≥ 5, we have 3 ≤ γtc(G) ≤ p − 2 and the

bounds are sharp.

Proof The lower bound follows from Definition 2.1 and the upper bound follows from

Observation 2.15 and Theorem 2.16. Consider the dodecahedron graph G10 in Figure 2.7, the

path P5 and the cycle C9.
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Figure 2.7

One can easily check that S = {u6, u7, u8, u9, u10, u11, u12, u13, u14, u15} is a minimum triple

connected dominating set of G10 and γtc(G10) = 10 > 3. In addition, γtc(G10) = 10 < p − 2.

For P5, the lower bound is attained and for C9 the upper bound is attained. �

Theorem 2.18 For a connected graph G with 5 vertices, γtc(G) = p− 2 if and only if G is iso-

morphic to P5, C5, W5, K5, K1,4, K2,3, K1◦2K2, K5−{e}, K4(P2), C4(P2), C3(P3), C3(2P2), C3(P2,

P2, 0), P4(0, P2, 0, 0) or any one of the graphs shown in Figure 2.8.

Figure 2.8 Graphs with γtc = p − 2

Proof Suppose G is isomorphic to P5, C5, W5, K5, K1,4, K2,3, K1 ◦ 2K2, K5 − {e},
K4(P2), C4(P2), C3(P3), C3(2P2), C3(P2, P2, 0), P4(0, P2, 0, 0) or any one of the graphs H1 to

H7 given in Figure 2.8., then clearly γtc(G) = p − 2. Conversely, let G be a connected graph

with 5 vertices and γtc(G) = 3. Let S = {x, y, z} be a γtc-set. Then clearly 〈S〉 = P3 or C3. Let

V − S = V (G) − V (S) = {u, v}. Then 〈V − S〉 = K2 or K2.

Case i 〈S〉 = P3 = xyz
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Subcase i 〈V − S〉 = K2 = uv

Since G is connected, there exists a vertex say x (or z) in P3 which is adjacent to u (or

v) in K2. Then S = {x, y, u} is a minimum triple connected dominating set of G so that

γtc(G) = p − 2. If d(x) = d(y) = 2, d(z) = 1, then G ≃ P5. Since G is connected, there exists

a vertex say y in P3 is adjacent to u (or v) in K2. Then S = {y, u, v} is a minimum triple

connected dominating set of G so that γtc(G) = p − 2. If d(x) = d(z) = 1, d(y) = 3, then

G ∼= P4(0, P2, 0, 0). Now by increasing the degrees of the vertices, by the above arguments, we

have G ∼= C5, W5, K5, K2,3, K5 − {e}, K4(P2), C4(P2), C3(P3), C3(2P2), C3(P2, P2, 0) and H1 to

H7 in Figure 2.8. In all the other cases, no new graph exists.

Subcase ii 〈V − S〉 = 2

Since G is connected, there exists a vertex say x (or z) in P3 is adjacent to u and v in K2.

Then S = {x, y, z} is a minimum triple connected dominating set of G so that γtc(G) = p − 2.

If d(x) = 3, d(y) = 2, d(z) = 1, then G ∼= P4(0, P2, 0, 0). In all the other cases, no new graph

exists. Since G is connected, there exists a vertex say y in P3 which is adjacent to u and v in K2.

Then S = {x, y, z} is a minimum triple connected dominating set of G so that γtc(G) = p − 2.

If d(x) = d(z) = 1, d(y) = 4, then G ∼= K1,4. In all the other cases, no new graph exists. Since

G is connected, there exists a vertex say x in P3 which is adjacent to u in K2 and y in P3 is

adjacent to v in K2. Then S = {x, y, z} is a minimum triple connected dominating set of G so

that γtc(G) = p − 2. If d(x) = 2, d(y) = 3, d(z) = 1, then G ∼= P4(0, P2, 0, 0). In all the other

cases, no new graph exists. Since G is connected, there exists a vertex say x in P3 which is

adjacent to u in K2 and z in P3 which is adjacent to v in K2. Then S = {x, y, z} is a minimum

triple connected dominating set of G so that γtc(G) = p − 2. If d(x) = d(y) = d(z) = 2, then

G ∼= P5. In all the other cases, no new graph exists.

Case ii 〈S〉 = C3 = xyzx

Subcase i 〈V − S〉 = K2 = uv

Since G is connected, there exists a vertex say x (or y, z) in C3 is adjacent to u (or v) in K2.

Then S = {x, y, u} is a minimum triple connected dominating set of G so that γtc(G) = p − 2.

If d(x) = 3, d(y) = d(z) = 2, then G ∼= C3(P3). If d(x) = 4, d(y) = d(z) = 2, then G ∼= K1 ◦2K2.

In all the other cases, no new graph exists.

Subcase ii 〈V − S〉 = K2

Since G is connected, there exists a vertex say x (or y, z) in C3 is adjacent to u and v in K2.

Then S = {x, y, z} is a minimum triple connected dominating set of G so that γtc(G) = p − 2.

If d(x) = 4, d(y) = d(z) = 2, then G ∼= C3(2P2). In all the other cases, no new graph exists.

Since G is connected, there exists a vertex say x(or y, z) in C3 is adjacent to u in K2 and y (or

z) in C3 is adjacent to v in K2. Then S = {x, y, z} is a minimum triple connected dominating

set of G so that γtc(G) = p − 2. If d(x) = d(y) = 3, d(z) = 2, then G ∼= C3(P2, P2, 0). In all

other cases, no new graph exists. �

Theorem 2.19 For a connected graph G with p > 5 vertices, γtc(G) = p − 2 if and only if G
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is isomorphic to Pp or Cp.

Proof Suppose G is isomorphic to Pp or Cp, then clearly γtc(G) = p− 2. Conversely, let G

be a connected graph with p > 5 vertices and γtc(G) = p − 2. Let S = {v1, v2, . . . , vp−2} be a

γtc-set and let V − S = V (G) − V (S) = {vp−1, vp}. Then 〈V − S〉 = K2, K2.

Claim. 〈S〉 is a tree.

Suppose 〈S〉 is not a tree. Then 〈S〉 contains a cycle. Without loss of generality, let

C = v1v2 · · · vqv1, q ≤ p−2 be a cycle of shortest length in 〈S〉. Now let 〈V −S〉 = K2 = vp−1vp.

Since G is connected and S is a γtc-set of G, vp−1(or vp) is adjacent to a vertex vk in 〈S〉. If

vk is in C, then S = {vp−1, vi, vi+1, . . . , vi−3} ∪ {x ∈ V (G) : x /∈ C} forms a γtc-set of G so

that γtc(G) < p − 2, which is a contradiction. Suppose vp−1 (or vp) is adjacent to a vertex vi

in 〈S〉 − C, then we can construct a γtc-set which contains vp−1, vi with fewer elements than

p − 2, which is a contradiction. Similarly if 〈V − S〉 = K2, we can prove that no graph exists.

Hence 〈S〉 is a tree. But S is a triple connected dominating set. Therefore by Theorem 1.1, we

have 〈S〉 ∼= Pp−2.

Case i 〈V − S〉 = K2 = vp−1vp

Since G is connected and S is a γtc-set of G, there exists a vertex, say, vi in Pp−2 which

is adjacent to a vertex, say, vp−1 in K2. If vi = v1 (or) vp−2, then G ∼= Pp. If vi = v1 is

adjacent to vp+1 and vp−2 is adjacent to vp, then G ∼= Cp. If vi = vj for j = 2, 3, . . . , p − 3,

then S1 = S −{v1, vp−2} ∪ {vp−1} is a triple connected dominating set of cardinality p− 3 and

hence γtc ≤ p − 3, which is a contradiction.

Case ii 〈V − S〉 = K2

Since G is connected and S is a γtc-set of G, there exists a vertex say vi in Pp−2 which is

adjacent to both the vertices vp−1 and vp in K2. If vi = v1 (or vp−2), then by taking the vertex

v1 (or vp−2), we can construct a triple connected dominating set which contains fewer elements

than p − 2, which is a contradiction. Hence no graph exists. If vi = vj for j = 2, 3, . . . , n − 3,

then by taking the vertex vj , we can construct a triple connected dominating set which contains

fewer elements than p−2, which is a contradiction. Hence no graph exists. Suppose there exists

a vertex say vi in Pp−2 which is adjacent to vp−1 in K2 and a vertex vj(i 6= j) in Pp−2 which is

adjacent to vp in K2. If vi = v1 and vj = vp−2, then S = {v1, v2, . . . , vp−2} is a γtc-set of G and

hence G ∼= Pp. If vi = v1 and vj = vk for k = 2, 3, . . . , n−3, then by taking the vertex v1 and vk,

we can construct a triple connected dominating set which contains fewer elements than p − 2,

which is a contradiction. Hence no graph exists. If vi = vk and vj = vl for k, l = 2, 3, . . . , n− 3,

then by taking the vertex vk and vl, we can construct a triple connected dominating set which

contains fewer elements than p − 2, which is a contradiction. �

Corollary 2.20 Let G be a connected graph with p > 5 vertices. If γtc(G) = p − 2, then

κ(G) = 1 or 2, ∆(G) = 2, χ(G) = 2 or 3, and diam(G) = p − 1 or ⌊p
2⌋.

Proof Let G be a connected graph with p > 5 vertices and γtc(G) = p− 2. Since γtc(G) =

p − 2, by Theorem 2.19, G is isomorphic to Pp or Cp. We know that for Pp, κ(G) = 1, ∆(G) =
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2, χ(G) = 2 and diam(G) = p − 1. For Cp, κ(G) = 2, ∆(G) = 2, diam(G) = ⌊p
2⌋ and

χ(G) =







2 if p is even,

3 if p is odd.
�

Observation 2.21 Let G be a connected graph with p ≥ 3 vertices and ∆(G) = p − 1. Then

γtc(G) = 3.

For, let v be a full vertex in G. Then S = {v, vi, vj} is a minimum triple connected

dominating set of G, where vi and vj are in N(v). Hence γtc(G) = 3.

Theorem 2.22 For any connected graph G with p ≥ 3 vertices and ∆(G) = p − 2, γtc(G) = 3.

Proof Let G be a connected graph with p ≥ 3 vertices and ∆(G) = p−2. Let v be a vertex

of maximum degree ∆(G) = p−2. Let v1, v2, . . . and vp−2 be the vertices which are adjacent to

v, and let vp−1 be the vertex which is not adjacent to v. Since G is connected, vp−1 is adjacent

to a vertex vi for some i. Then S = {v, vi, vj |i 6= j} is a minimum triple connected dominating

set of G. Hence γtc(G) = 3. �

Theorem 2.23 For any connected graph G with p ≥ 3 vertices and ∆(G) = p − 3, γtc(G) = 3.

Proof Let G be a connected graph with p ≥ 3 vertices and ∆(G) = p− 3 and let v be the

vertex of G with degree p−3. Suppose N(v) = {v1, v2, . . . , vp−3} and V −N(v) = {vp−2, vp−1}.
If vp−1 and vp−2 are not adjacent in G, then since G is connected, there are vertices vi and vj

for some i, j, 1 ≤ i, j ≤ p− 3, which are adjacent to vp−2 and vp−1 respectively. Here note that

i can be equal to j. If i = j, then {v, vi, vp−1} is a required triple connected dominating set of

G. If i 6= j, then {vi, v, vj} is a required triple connected dominating set of G. If vp−2 and vp−1

are adjacent in G, then there is a vertex vj , for some j, 1 ≤ j ≤ p− 3, which is adjacent to vp−1

or to vp−1 or to both. In this case, {v, vi, vp−1} or {v, vi, vp−2} is a triple connected dominating

set of G. Hence in all the cases, γtc(G) = 3. �

The Nordhaus - Gaddum type result is given below:

Theorem 2.24 Let G be a graph such that G and G are connected graphs of order p ≥ 5. Then

γtc(G) + γtc(G) ≤ 2(p − 2) and the bound is sharp.

Proof The bound directly follows from Theorem 2.17. For the cycle C5, γtc(G) + γtc(G) =

2(p − 2). �

§3. Relation with Other Graph Parameters

Theorem 3.1 For any connected graph G with p ≥ 5 vertices, γtc(G) + κ(G) ≤ 2p− 3 and the

bound is sharp if and only if G ∼= K5.

Proof Let G be a connected graph with p ≥ 5 vertices. We know that κ(G) ≤ p − 1 and

by Theorem 2.17, γtc(G) ≤ p − 2. Hence γtc(G) + κ(G) ≤ 2p − 3. Suppose G is isomorphic
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to K5. Then clearly γtc(G) + κ(G) = 2p − 3. Conversely, let γtc(G) + κ(G) = 2p − 3. This is

possible only if γtc(G) = p − 2 and κ(G) = p − 1. But κ(G) = p − 1, and so G ∼= Kp for which

γtc(G) = 3 = p − 2 so that p = 5. Hence G ∼= K5. �

Theorem 3.2 For any connected graph G with p ≥ 5 vertices, γtc(G) + χ(G) ≤ 2p− 2 and the

bound is sharp if and only if G ∼= K5.

Proof Let G be a connected graph with p ≥ 5 vertices. We know that χ(G) ≤ p and

by Theorem 2.17, γtc(G) ≤ p − 2. Hence γtc(G) + χ(G) ≤ 2p − 2. Suppose G is isomorphic

to K5. Then clearly γtc(G) + χ(G) = 2p − 2. Conversely, let γtc(G) + χ(G) = 2p − 2. This is

possible only if γtc(G) = p− 2 and χ(G) = p. Since χ(G) = p, G is isomorphic to Kp for which

γtc(G) = 3 = p − 2 so that p = 5. Hence G ∼= K5. �

Theorem 3.3 For any connected graph G with p ≥ 5 vertices, γtc(G) + ∆(G) ≤ 2p −
3 and the bound is sharp if and only if G is isomorphic to W5, K5, K1,4, K1 ◦ 2K2, K5 −
{e}, K4(P2), C3(2P2) or any one of the graphs shown in Figure 3.1.

Figure 3.1 Graphs with γtc + ∆ = 2p − 3

Proof Let G be a connected graph with p ≥ 5 vertices. We know that ∆(G) ≤ p − 1

and by Theorem 2.17, γtc(G) ≤ p − 2. Hence γtc(G) + ∆(G) ≤ 2p − 3. Let G be isomorphic to

W5, K5, K1,4, K1 ◦ 2K2, K5 − {e}, K4(P2), C3(2P2) or any one of the graphs G1 to G4 given in

Figure 3.1. Then clearly γtc(G)+∆(G) = 2p−3. Conversely, let γtc(G)+∆(G) = 2p−3. This is

possible only if γtc(G) = p− 2 and ∆(G) = p− 1. Since ∆(G) = p− 1, by Observation 2.21, we

have γtc(G) = 3 so that p = 5. Let v be the vertex having a maximum degree and let v1, v2, v3, v4

be the vertices which are adjacent to the vertex v. If d(v) = 4, d(v1) = d(v2) = d(v3) = d(v4) = 1,

then G ∼= K1,4. Now by adding edges to K1,4 without affecting the value of γtc, we have

G ∼= W5, K5, K1 ◦ 2K2, K5 −{e}, K4(P2), C3(2P2) and the graphs G1 to G4 given in Figure 3.1.

�
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