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Two asymptotic formulae on the k + 1-power
free numbers
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Abstract The main purpose of this paper is to study the distributive properties of k + 1-power free

numbers, and give two interesting asymptotic formulae.
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§1. Introduction

A natural number n is called a k + 1-power free number if it can not be divided by any
pk+1, where p is a prime number. One can obtain all k +1-power free numbers by the following
method:

From the set of natural numbers (except 0 and 1)
-take off all multiples of 2k+1(i.e. 2k+1, 2k+2, · · · ).
-take off all multiples of 3k+1.
-take off all multiples of 5k+1.
· · · and so on (take off all multiples of all k + 1-power primes).
In reference [1], Professor F. Smarandache asked us to study the properties of the k + 1-

power free numbers sequence. Yet we still know very little about it.
Now we define two new number-theoretic functions U(n) and V (n) as following,

U(1) = 1, U(n) =
∏

p|n
p,

V (1) = 1, V (n) = V (pα1
1 ) · · ·U (pαr

r ) = (pα1 − 1) · · · (pαr − 1),

where n is any natural number with the form n = pα1
1 · · · pαr

r . Obviously they are both multi-
plicative functions. In this paper, we shall use the analytic method to study the distribution
properties of this sequence, and obtain two interesting asymptotic formulae. That is, we have
the following two theorems:

Theorem 1. Let A denote the set of all k + 1-power free numbers, then for any real
number x ≥ 1, we have the asymptotic formula

∑

n∈A
n≤x

U(n) =
3x2

π2

∏
p

(
1 +

p2k−2 − 1
p2k+1 + p2k − p2k−1 − p2k−2

)
+ O

(
x

3
2+ε

)
,
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where ε denotes any fixed positive number and
∏
p

denotes the product of all the prime numbers.

Theorem 2. For any real number x ≥ 1, we have the asymptotic formula

∑

n∈A
n≤x

V (n) =
x2

2

∏
p

(
1− 1

pk+1
− p2k+1 + p2k − p− 1

p2k+3 + p2k+1

)
+ O

(
x

3
2+ε

)
.

§2. Proof of Theorems

In this section, we shall complete the proof of Theorems. First we prove Theorem 1, let

f(s) = 1 +
∑

n∈A
n≤x

U(n)
ns

.

From the Euler product formula [2] and the definition of U(n), we may have

f(s) =
∏
p

(
1 +

U(p)
ps

+
U(p2)
p2s

+ · · ·+ U(pk)
pks

)

=
∏
p

(
1 +

1
ps−1

+
1

p2s−1
+ · · ·+ 1

pks−1

)

=
∏
p

(
1 +

1
ps−1

+
p(k−1)s − 1

p2s−1(p(k−1)s − p(k−2)s)

)

=
ζ(s− 1)

ζ(2(s− 1))

∏
p

(
1 +

p(k−1)s − 1
(p2s−1 + ps)(p(k−1)s − p(k−2)s)

)
,

where ζ(s) is the Riemann-zeta function. Obviously, we have the following two inequalities

|U(n)| ≤ n,

∣∣∣∣∣
∞∑

n=1

U(n)
nσ

∣∣∣∣∣ <
1

σ − 2
,

where σ > 2 is the real part of s. So by Perron formula [3]

∑

n≤x

U(n)
ns0

=
1

2iπ

∫ b+iT

b−iT

f(s + s0)
xs

s
ds + O

(
xbB(b + σ0)

T

)

+O

(
x1−σ0H(2x)min(1,

log x

T
)
)

+ O

(
x−σ0H(N)min(1,

x

||x|| )
)

,

where N is the nearest integer to x, ‖x‖ = |x−N |. Taking s0 = 0, b = 3, T = x
3
2 , H(x) = x,

B(σ) = 1
σ−2 , we have

∑

n≤x

U(n) =
1

2iπ

∫ 3+iT

3−iT

ζ(s− 1)
ζ(2(s− 1))

R(s)
xs

s
ds + O(x

3
2+ε),

where

R(s) =
∏
p

(
1 +

p2k−2 − 1
p2k+1 + p2k − p2k−1 − p2k−2

)
.
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To estimate the main term

1
2iπ

∫ 3+iT

3−iT

ζ(s− 1)
ζ(2(s− 1))

R(s)
xs

s
ds,

we move the integral line from s = 3± iT to s = 3
2 ± iT . This time, the function

f(s) =
ζ(s− 1)xs

ζ(2(s− 1))s
R(s)

has a simple pole point at s = 2 with residue x2

2ζ(2)R(2). So we have

1
2iπ

(∫ 3+iT

3−iT

+
∫ 3

2+iT

3+iT

+
∫ 3

2−iT

3
2+iT

+
∫ 3−iT

3
2−iT

)
ζ(s− 1)xs

ζ(2(s− 1))s
R(s)ds

=
x2

2ζ(2)

∏
p

(
1 +

p2k−2 − 1
p2k+1 + p2k − p2k−1 − p2k−2

)
.

We can easily get the estimates
∣∣∣∣∣

1
2πi

(∫ 3
2+iT

3+iT

+
∫ 3−iT

3
2−iT

)
ζ(s− 1)xs

ζ(2(s− 1))s
R(s)ds

∣∣∣∣∣

¿
∫ 3

3
2

∣∣∣∣
ζ(σ − 1 + iT )

ζ(2(σ − 1 + iT ))
R(s)

x3

T

∣∣∣∣ dσ ¿ x3

T
= x

3
2

and ∣∣∣∣∣
1

2πi

∫ 3
2−iT

3
2+iT

ζ(s− 1)xs

ζ(2(s− 2))s
R(s)ds

∣∣∣∣∣ ¿
∫ T

0

∣∣∣∣∣
ζ(1/2 + it)
ζ(1 + 2it)

x
3
2

t

∣∣∣∣∣ dt ¿ x
3
2+ε.

Note the fact that ζ(2) = π2

6 , then from the above we can obtain

∑

n∈A
n≤x

U(n) =
3x2

π2

∏
p

(
1 +

p2k−2 − 1
p2k+1 + p2k − p2k−1 − p2k−2

)
+ O

(
x

3
2+ε

)
.

This completes the proof of Theorem 1.
Now we come to prove Theorem 2. Let

g(s) = 1 +
∑

n∈A
n≤x

V (n)
ns

.

From the Euler product formula [2] and the definition of V (n), we also have

g(s) =
∏
p

(
1 +

V (p)
ps

+
V (p2)
p2s

+ · · ·+ V (pk)
pks

)

=
∏
p

(
1 +

p− 1
ps

+
p2 − 1

p2s
+ · · ·+ pk − 1

pks

)

=
∏
p

(
1− 1

p(k+1)(s−1)

1− 1
ps−1

−
1− 1

pks

ps − 1

)

= ζ(s− 1)
∏
p

(
1− 1

p(k+1)(s−1)
− (pks − 1)(ps−1 + 1)

(pks − p(k−1)s)p2s−1

)
.
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Now applying Perron formula [3], and the method of proving Theorem 1, we can also obtain
the result of Theorem 2.

This completes the proof of Theorems.
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