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§1. Introduction

Let S(n) be the Smarandache (or Kempner-Smarandache) function, i.e., the function that
associates to each positive integer n the smallest positive integer k such that n|k!. Let o(n)
denote the sum of distinct positive divisors of n, while 0*(n) the sum of distinct unitary divisors
of n (introduced for the first time by E. Cohen, see e.g. [7] for references and many informations
on this and related functions). Put w(n) = number of distinct prime divisors of n, where n > 1.

In paper [4] we have proved the inequality
S(e(n)) < 2n —w(n), (1)

for any n > 1, with equality if and only if w(n) = 1 and 2n — 1 is a Mersenne prime.

In what follows we shall prove the similar inequality
S(0*(n)) < n+w(n), (2)

for n > 1. Remark that n + w(n) < 2n —w(n), as 2w(n) < n follows easily for any n > 1. On

the other hand 2n — w(n) < 2n — 1, so both inequalities (1) and (2) are improvements of
S(g(n)) <2n—1, (3)

where g(n) = o(n) or g(n) = o*(n).
We will consider more general inequalities, for the composite functions f(g(n)), where f,

g are arithmetical functions satisfying certain conditions.
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§2. Main results

Lemma 2.1. For any real numbers a > 0 and p > 2 one has the inequality

pa+1 -1

pT <2p" -1, (4)

with equality only for a =0 or p = 2.
Proof. Tt is easy to see that (4) is equivalent to

(p" = 1)(p—2) >0,

which is true by p>2and a > 0,as p®* >2*>1and p—2 > 0.

Lemma 2.2. For any real numbers y; > 2 (1 < i < r) one has

ity <Yy (5)

with equality only for r = 1.

Proof. For r = 2 the inequality follows by (y1 — 1)(y2 — 1) > 1, which is true, as
y1—1>1, y —1 > 1. Now, relation (5) follows by mathematical induction, the induction
step y1 .- Yr + Yre1 < (Y1--.Yr)yr+1 being an application of the above proved inequality for
the numbers ¥} = y1 ... Yr, Yo = Yrt1-

Now we can state the main results of this paper.

Theorem 2.1. Let f, g : N — R be two arithmetic functions satisfying the following
conditions:

(i) f(zy) < f(z) + f(y) for any z,y € N,

(ii) f(z) <z for any z € N.

(iii) g(p*) < 2p™ — 1, for any prime powers p® (p prime, a > 1).

(iv) g is multiplicative function.

Then one has the inequality
Flg(n)) < 20— w(n), n > 1. (6)

Theorem 2.2. Assume that the arithmetical functions f and g of Theorem 2.1 satisfy
conditions (i), (ii), (iv) and

(iii)” g(p®*) < p® + 1 for any prime powers p®.

Then one has the inequality

flg(n)) <n+w(n), n>1 (7)
Proof of Theorem 2.1. As f(z1) < f(x1) and
f(zix2) < f(z1) + f(22),
it follows by mathematical induction, that for any integers r > 1 and x1,...,x, > 1 one has

flrr...zp) < f(z1) + ...+ f(zr). (8)
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Let now n = p{* ...p%" > 1 be the prime factorization of n, where p; are distinct primes

and a; > 1 (i =1,...,r). Since g is multiplicative, by inequality (8) one has

flg(n)) = flg®7") .. 9(pr7)) < flg(Pi™)) + ...+ fg(Pi))-

By using conditions (ii) and (iii), we get

flg(n)) < g(pi*) +...+g(prm) <2(p7" + ... +pim) — 7.

As pi" > 2, by Lemma 2.2 we get inequality (6), as r = w(n).
Proof of Theorem 2.2. Use the same argument as in the proof of Theorem 2.1, by

remarking that by (iii)’
flg(n) < @S 4+ p2) +r < pf o p2 =0+ w(n).

Remark 2.1. By introducing the arithmetical function B!(n) (see [7], Ch.IV.28)

Bl(n) = Zpo‘:pf1+...+pfr.

pe|n
(i.e., the sum of greatest prime power divisors of n), the following stronger inequalities can be
stated:
flg(n)) < 2B'(n) - w(n), (6")
(in place of (6)); as well as:
f(g(n)) < B(n) +w(n), (7)
(in place of (7)).

For the average order of B!(n), as well as connected functions, see e.g. [2], [3], [8], [7].

§3. Applications

1. First we prove inequality (1).
Let f(n) = S(n). Then inequalities (i), (ii) are well-known (see e.g. [1], [6], [4]). Put

g(n) =o(n). As o(p®) = paptll_l, inequality (iii) follows by Lemma 2.1. Theorem 2.1 may be

applied.

2. Inequality (2) holds true.

Let f(n) = S(n), g(n) = o*(n). As o*(n) is a multiplicative function, with o*(p*) = p®+1,
inequality (iii)’ holds true. Thus (2) follows by Theorem 2.2.

3. Let g(n) = ¢¥(n) be the Dedekind arithmetical function, i.e., the multiplicative function

whose value of the prime power p® is
Y(p®) =p*Hp+ ).
Then ¢ (p®) < 2p* — 1 since

pY+p < 2p —1; p* Tt +1<p% p* H(p—1) >0,
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which is true, with strict inequality.

Thus Theorem 2.1 may be applied for any function f satisfying (i) and (ii).

4. There are many functions satisfying inequalities (i) and (ii) of Theorems 2.1 and 2.2.

Let f(n) = loga(n).

As o(mn) < o(m)o(n) for any m, n > 1, relation (i) follows. The inequality f(n) < n
follows by o(n) < e", which is a consequence of e.g. o(n) < n? < e” (the last inequality may
be proved e.g. by induction).

Remark 3.1. More generally, assume that F'(n) is a submultiplicative function, i.e.,
satisfying

F(mn) < F(m)F(n) for m,n > 1. (i)

Assume also that
F(n) < e™ (ii')

Then f(n) = log F(n) satisfies relations (i) and (ii).
5. Another nontrivial function, which satisfies conditions (i) and (ii) is the following

P, if n=p (prime),

1, if n = composite or n = 1.

Clearly, f(n) < n, with equality only if n = 1 or n = prime. For y = 1 we get f(z) <
f@)+1=f(z)+ f(1), when x, y > 2 one has

flzy) =1< f(z)+ f(y)-

6. Another example is
fn)=Qmn)=ar+... + o, (10)

for n = p{*...p%, i.e., the total number of prime factors of n. Then f(mn) = f(m)+ f(n), as
Q(mn) = Q(m) + Q(n) for all m, n > 1. The inequality Q(n) < n follows by n = pJ* ...p% >
20t tar 5y 4L 4 .

7. Define the additive analogue of the sum of divisors function o, as follows: If n =

pTt...p%r is the prime factorization of n, put

E(n)zz(a+1_1) ipﬁ“ . (11)

i=1 pzfl

Aso(n) =T]_, p;:)_l and p L > 2. clearly by Lemma 2.2 one has

Y(n) < o(n). (12)

Let f(n) be any arithmetic function satisfying condition (ii), i.e., f(n) < n for any n > 1.
Then one has the inequality:

f(En)) < QBl(n) —w(n)<2n—-wn)<2n-1 (13)

for any n > 1.



74 Joézsef Sandor No. 2

Indeed, by Lemma 2.1, and Remark 2.1, the first inequality of (13) follows. Since B*(n) <n
(by Lemma 2.2), the other inequalities of (13) will follow. An example:

S(X(n)) <2n-1, (14)

which is the first and last term inequality in (13).

It is interesting to study the cases of equality in (14). As S(m) = m if and only if m =1,
4 or p (prime) (see e.g. [1], [6], [4]) and in Lemma 2.2 there is equality if w(n) = 1, while in
Lemma 2.1, as p = 2, we get that n must have the form n = 2%, Then X(n) = 2°"1 — 1 and
20+l 1 £ 1,20t 1 44 20%1 _ 1 = prime, we get the following theorem:

There is equality in (14) iff n = 2%, where 227! — 1 is a prime.

In paper [5] we called a number n almost f-perfect, if f(n) = 2n — 1 holds true. Thus, we
have proved that n is almost S o ¥-perfect number, iff n = 2%, with 29t — 1 a prime (where

“o” denotes composition of functions).
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