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Abstract For any positive integer n, the Smarandache LCM dual function SL∗(n) is defined

as the greatest positive integer k such that [1, 2, · · · , k] divides n. The main purpose of this

paper is using the elementary method to study the number of the solutions of two equations

involving the Smarandache LCM dual function SL∗(n), and give their all positive integer

solutions.
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§1. Introduction and results

For any positive integer n, the famous F.Smarandache LCM function SL(n) is defined as
the smallest positive integer k such that n | [1, 2, · · · , k], where [1, 2, · · · , k] denotes the
least common multiple of all positive integers from 1 to k. That is,

SL(n) = min{k : k ∈ N, n | [1, 2, · · · , k]}.

About the elementary properties of SL(n), many people had studied it, and obtained some
interesting results, see references [1] and [2]. For example, Murthy [1] proved that if n is a
prime, then SL(n) = S(n), where S(n) = min{m : n|m!, m ∈ N} be the F.Smarandache
function. Simultaneously, Murthy [1] also proposed the following problem:

SL(n) = S(n), S(n) 6= n ? (1)

Le Maohua [2] solved this problem completely, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

n = 12 or n = pα1
1 pα2

2 · · · pαr
r p,

where p1, p2, · · · , pr, p are distinct primes and α1, α2, · · · , αr are positive integers satisfying
p > pαi

i , i = 1, 2, · · · , r. Zhongtian Lv [3] proved that for any real number x > 1 and fixed
positive integer k, we have the asymptotic formula

∑

n≤x

SL(n) =
π2

12
· x2

lnx
+

k∑

i=2

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,
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where ci (i = 2, 3, · · · , k) are computable constants.
Now, we define the Smarandache LCM dual function SL∗(n) as follows:

SL∗(n) = max{k : k ∈ N, [1, 2, · · · , k] | n}.

It is easy to calculate that SL∗(1) = 1, SL∗(2) = 2, SL∗(3) = 1, SL∗(4) = 2, SL∗(5) = 1,
SL∗(6) = 3, SL∗(7) = 1, SL∗(8) = 2, SL∗(9) = 1, SL∗(10) = 2, · · · . Obviously, if n is an
odd number, then SL∗(n) = 1. If n is an even number, then SL∗(n) ≥ 2. About the other
elementary properties of SL∗(n), it seems that none had studied it yet, at least we have not
seen such a paper before. In this paper, we use the elementary method to study the number
of the solutions of two equations involving the Smarandache LCM dual function SL∗(n). For
further, we obtain all the positive numbers n, such that

∑

d|n
SL∗(d) = n (2)

or
∑

d|n
SL∗(d) = φ(n), (3)

where
∑

d|n
denotes the summation over all positive divisors of n. That is, we shall prove the

following two conclusions:
Theorem 1. The equation (2) has only one and only one solution n = 1, and

∑

d|n
SL∗(d) >

n is true if and only if n = 2, 4, 6, 12.
Theorem 2. The equation (3) is true if and only if n = 1, 3, 14.

§2. Some lemmas

To complete the proofs of the theorems, we need the following lemmas.
Lemma 1. (a) For any prime p and any real number x ≥ 1, we have px ≥ x + 1, and the

equality is true if and only if x = 1, p = 2.
(b) For any odd prime p and any real number x, if x ≥ 2, then we have px > 2(x + 1); If

x ≥ 3, then we have px > 4(x + 1).
(c) For any prime p ≥ 5 and any real number x ≥ 2, we have px > 4(x + 1).
(d) For any prime p ≥ 11 and any real number x ≥ 1, we have px > 4(x + 1).
Proof. We only prove case (a), others can be obtained similarly.
Let f(x) = px − x− 1, if x ≥ 1, then

f
′
(x) = px ln p− 1 > p ln e

1
2 − 1 =

p

2
− 1 ≥ 1.

That is to say, f(x) is a monotone increasing function if x ∈ [1, ∞). So f(x) ≥ f(1) ≥ 0,
namely px ≥ x + 1, and px = 4(x + 1) is true if and only if x = 1, p = 2. This complete the
proof of case (a).

Lemma 2. For all odd positive integer number n,



82 Chengliang Tian No. 2

(a) the equation d(n) = φ(n) is true if and only if n = 1, 3;

(b) the inequality 8d(n) > φ(n) is true if and only if n = 1, 3, 5, 7, 9, 11, 13, 15, 21, 27,
33, 35, 39, 45, 63, 105, where d(n) is the divisor function of n, φ(n) is the Euler function.

Proof. Let H(n) = φ(n)
d(n) , then the equation d(n) = φ(n) is equivalent to H(n) = 1 and

8d(n) > φ(n) is equivalent to H(n) < 8. Because d(n) and φ(n) are multiplicative functions,
hence H(n) is multiplicative. Assume that p, q are prime numbers and p > q, then H(p) =
p−1
2 > q−1

2 = H(q). On the other hand, for any given prime p and integer k ≥ 1, we have
H(pk+1)
H(pk)

= p(1+k)
2+k > 2k+2

2+k > 1. Hence if k ≥ 1, then H(p1+k) > H(pk).

Because

H(1) = 1, H(3) = 1, H(5) = 2, H(7) = 3, H(11) = 5, H(13) = 6, H(17) = 8 ≥ 8,

H(32) = 2, H(52) =
20
3
≥ 8, H(72) = 14 ≥ 8, H(112) =

110
3
≥ 8, H(132) = 52 ≥ 8,

H(33) =
9
2
,

H(34) =
54
5
≥ 8.

We have H(1) = 1, H(3) = 1, H(5) = 2, H(7) = 3, H(9) = 2, H(11) = 5, H(13) =
6, H(15) = H(3)H(5) = 2, H(21) = H(3)H(7) = 3, H(27) = H(33) = 9

2 ,H(33) =
H(3)H(11) = 5, H(35) = H(5)H(7) = 6, H(39) = H(3)H(13) = 6, H(45) = H(32)H(5) =
4, H(63) = H(32)H(7) = 6, H(105) = H(3)H(5)H(7) = 6.

Consequently, for all positive odd integer number n, H(n) = 1 is true if and only if n = 1, 3;
the inequality H(n) < 8 is true if and only if n = 1, 3, 5, 7, 9, 11, 13, 15, 21, 27, 33, 35, 39, 45,
63, 105.

This completes the proof of Lemma 2.

§3. Proof of the theorems

In this section, we shall complete the proof of the theorems. First we prove Theorem 1. It
is easy to see that n = 1 is one solution of the equation (2). In order to prove that the equation
(2) has no other solutions except n = 1, we consider the following two cases:
(a) n is an odd number larger than 1.

Assume that n = pα1
1 pα2

2 · · · pαs
s , where pi is an odd prime, p1 < p2 < · · · < ps, αi ≥ 1,

i = 1, 2, · · · , s. In this case, for any d|n, d is an odd number, so SL∗(d) = 1. From Lemma 1
(a), we have

∑

d|n
SL∗(d) =

∑

d|n
1 = d(n) = (α1 + 1)(α2 + 1) · · · (αs + 1) < pα1

1 pα2
2 · · · pαs

s = n.

(b) n is an even number.

Assume that n = 2αpα1
1 pα2

2 · · · pαs
s = 2α ·m, where pi is an odd prime, p1 < p2 < · · · < ps,



Vol. 3 Two equations involving the Smarandache LCM dual function 83

αi ≥ 1, i = 1, 2, · · · , s. In this case,

∑

d|n
SL∗(d) =

α∑

i=0

∑

d|m
SL∗(2id)

<
α∑

i=0

2i+1
∑

d|m
1 = (2 + 22 + · · ·+ 2α+1)d(m)

= (2α+2 − 2)d(m) < 2α · 4d(m). (4)

(i) If ps ≥ 11, from Lemma 1 (a), we have

4d(m) = (α1 + 1)(α2 + 1) · · · 4(αs + 1) < pα1
1 pα2

2 · · · pαs
s = m.

Associated with (4) we have
∑

d|n
SL∗(d) < n.

(ii) If there exists i, j ∈ {1, 2, · · · , s} and i 6= j such that αi ≥ 2, αj ≥ 2, then from Lemma
1 (a), we have

4d(m) = (α1 + 1) · · · 2(αi + 1) · · · 2(αj + 1) · · · (αs + 1) < pα1
1 · · · pαi

i · · · pαj

j · · · pαs
s = m.

Associated with (4) we have
∑

d|n
SL∗(d) < n.

(iii) If there exists i ∈ {1, 2, · · · , s} such that αi ≥ 3, then from Lemma 1 (a), we have

4d(m) = (α1 + 1) · · · 4(αi + 1) · · · (αs + 1) < pα1
1 · · · pαi

i · · · pαs
s = m.

Associated with (4) we have
∑

d|n
SL∗(d) < n.

(iv) If there exists i ∈ {1, 2, · · · , s} such that pi ≥ 5, αi ≥ 2, then from Lemma 1 (a), we
have

4d(m) = (α1 + 1) · · · 4(αi + 1) · · · (αs + 1) < pα1
1 · · · pαi

i · · · pαs
s = m.

Associated with (4) we also have
∑

d|n
SL∗(d) < n.

From the discussion above we know that if n satisfies the equation (2), then m has only seven
possible values. That is m ∈ {1, 3, 5, 7, 9, 15, 21}. We calculate the former three cases only,
other cases can be discussed similarly.

If m = 1, namely n = 2α(α ≥ 1), then

∑

d|n
SL∗(d) =

α∑

i=0

∑

d|1
SL∗(2id)

= SL∗(1) + SL∗(2) + SL∗(22) + · · ·+ SL∗(2α)

= 1 + 2 + 2 + · · ·+ 2 = 2α + 1.

α = 1, 2, namely n = 2, 4. In this case, 2α + 1 > 2α, so
∑

d|n
SL∗(d) > n.

α ≥ 3. In this case, 2α + 1 < 2α, so
∑

d|n
SL∗(d) < n.
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If m = 3, namely n = 2α · 3, (α ≥ 1), then

∑

d|n
SL∗(d) =

α∑

i=0

∑

d|3
SL∗(2id)

=
∑

d|3
SL∗(d) +

∑

d|3
SL∗(2d) +

∑

d|3
SL∗(22d) + · · ·+

∑

d|3
SL∗(2αd)

= 2 + 5 + 6 + · · ·+ 6 = 6α + 1.

α = 1, namely n = 6. In this case, 6α + 1 = 7 > 2 · 3, so
∑

d|n
SL∗(d) > n.

α = 2, namely n = 12. In this case, 6α + 1 = 13 > 22 · 3, so
∑

d|n
SL∗(d) > n.

α ≥ 3. In this case, 2α + 1 < 2α, so
∑

d|n
SL∗(d) < n.

If m = 5, namely n = 2α · 5, (α ≥ 1), then

∑

d|n
SL∗(d) =

α∑

i=0

∑

d|5
SL∗(2id)

=
∑

d|5
SL∗(d) +

∑

d|5
SL∗(2d) +

∑

d|5
SL∗(22d) + · · ·+

∑

d|5
SL∗(2αd)

= 2 + 4 + 4 + · · ·+ 4 = 4α + 2.

For any α ≥ 1, we have 4α + 2 < 2α · 5, so
∑

d|n
SL∗(d) < n.

If m = 7, 9, 15, 21, using the similar method we can obtain that for any α ≥ 1,
∑

d|n
SL∗(d) <

n is true.
Hence the equation (2) has no positive even integer number solutions, and

∑

d|n
SL∗(d) > n

is true if and only if n = 2, 4, 6, 12.
Associated (a) and (b), we complete the proof of Theorem 1.
At last we prove Theorem 2. From Lemma 2, it is easy to versify that n = 1, 3 are the

only positive odd number solutions of the equation (3). Following we consider the case that n

is an even number.
Assume that n = 2α ·m, where 2 †m. In this case,

∑

d|n
SL∗(d) =

α∑

i=0

∑

d|m
SL∗(2id) <

α∑

i=0

2i+1
∑

d|m
1

= (2 + 22 + · · ·+ 2α+1)d(m) = (2α+2 − 2)d(m) < 2α−1 · 8d(m),

and φ(n) = φ(2αm) = φ(2α)φ(m) = 2α−1φ(m). Let

S = {1, 3, 5, 7, 9, 11, 13, 15, 21, 27, 33, 35, 39, 45, 63, 105}.

From Lemma 2, if m /∈ S, then φ(m) ≥ 8 · d(m), consequently
∑

d|n
SL∗(d) < 2α−1 · 8d(m) ≤ 2α−1φ(m) = φ(n).
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Hence if n satisfies the equation (3), then m ∈ S. We only discuss the cases m = 1, 7, other
cases can be discussed similarly.

If m = 1, namely n = 2α(α ≥ 1), then

∑

d|n
SL∗(d) =

α∑

i=0

∑

d|1
SL∗(2id)

= SL∗(1) + SL∗(2) + SL∗(22) + · · ·+ SL∗(2α)

= 1 + 2 + 2 + · · ·+ 2 = 2α + 1

and φ(n) = φ(2α) = 2α−1, 2 † (2α + 1), but 2|2α−1, hence if m = 1, then the equation (2) has
no solution.

If m = 7, namely n = 2α · 7, (α ≥ 1), then

∑

d|n
SL∗(d) =

α∑

i=0

∑

d|7
SL∗(2id)

=
∑

d|7
SL∗(d) +

∑

d|7
SL∗(2d) +

∑

d|7
SL∗(22d) + · · ·+

∑

d|7
SL∗(2αd)

= 2 + 4 + 4 + · · ·+ 4 = 4α + 2,

and φ(n) = φ(2α · 7) = 2α−1 · 6, Solving the equation 4α + 2 = 2α−1 · 6, we have α = 1. That
is to say that n = 14 is one solution of the equation (3).

Discussing the other cases similarly, we have that if n is an even number, then the equation
(3) has only one solution n = 14.

This completes the proof of Theorem 2.
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