Perfect Domination Excellent Trees

Sharada B.

(Department of Studies in Computer Science, University of Mysore, Manasagangothri, Mysore-570006, India)

E-mail: sharadab21@gmail.com

Abstract: A set D of vertices of a graph G is a *perfect dominating set* if every vertex in $V \setminus D$ is adjacent to exactly one vertex in D. In this paper we introduce the concept of *perfect domination excellent graph* as a graph in which every vertex belongs to some perfect dominating set of minimum cardinality. We also provide a constructive characterization of perfect domination excellent trees.

Key Words: Tree, perfect domination, Smarandachely k-dominating set, Smarandachely k-domination number.

AMS(2010): 05C69

§1. Introduction

Let G = (V, E) be a graph. A set D of vertices is a perfect dominating set if every vertex in $V \setminus D$ is adjacent to exactly one vertex in D. The perfect domination number of G, denoted $\gamma_p(G)$, is the minimum cardinality of a perfect dominating set of G. A perfect dominating set of cardinality $\gamma_p(G)$ is called a $\gamma_p(G)$ -set. Generally, a set of vertices S in a graph G is said to be a *Smarandachely k-dominating set* if each vertex of G is dominated by at least K vertices of K and the *Smarandachely k-domination number* K0 of K1 is the minimum cardinality of a Smarandachely K2-dominating set of K3. Particularly, if K4 is nothing but the domination number of K3 and the Smarandachely 1-domination number of K4 is nothing but the domination number of K5 and denoted by K6. Domination and its parameters are well studied in graph theory. For a survey on this subject one can go through the two books by Haynes et al [3,4].

Sumner [7] defined a graph to be $\gamma - excellent$ if every vertex is in some minimum dominating set. Also, he has characterized $\gamma - excellent$ trees. Similar to this concept, Fricke et al [2] defined a graph to be i - excellent if every vertex is in some minimum independent dominating set. The i-excellent trees have been characterized by Haynes et al [5]. Fricke et al [2] defined $\gamma_t - excellent$ graph as a graph in which every vertex is in some minimum total dominating set. The γ_t -excellent trees have been characterized by Henning [6].

In this paper we introduce the concept of γ_p -excellent graph. Also, we provide a constructive characterization of perfect domination excellent trees.

We define the perfect domination number of G relative to the vertex u, denoted $\gamma_p^u(G)$, as the minimum cardinality of a perfect dominating set of G that contains u. We call a perfect dominating set of cardinality $\gamma_p^u(G)$ containing u to be a $\gamma_p^u(G)$ -set. We define a graph G to be

¹Received February 1, 2012. Accepted June 18, 2012.

 $\gamma_p - excellent \text{ if } \gamma_p^u(G) = \gamma_p(G) \text{ for every vertex } u \text{ of } G.$

All graphs considered in this paper are finite and simple. For definitions and notations not given here see [4]. A tree is an acyclic connected graph. A *leaf* of a tree is a vertex of degree 1. A *support vertex* is a vertex adjacent to a leaf. A *strong support vertex* is a support vertex that is adjacent to more than one leaf.

§2. Perfect Domination Excellent Graph

Proposition 2.1 A path P_n is γ_p – excellent if and only if n=2 or $n\equiv 1 \pmod{3}$.

Proof It is easy to see that the paths P_2 and P_n for $n \equiv 1 \pmod{3}$ are γ_p -excellent. Let $P_n, n \geq 3$, be a γ_p -excellent path and suppose that $n \equiv 0, 2 \pmod{3}$. If $n \equiv 0 \pmod{3}$, then P_n has a unique γ_p -set, which does not include all the vertices. If $n \equiv 2 \pmod{3}$, then no γ_p -set of P_n contains the third vertex on the path.

Proposition 2.2 Every graph is an induced subgraph of a γ_p -excellent graph.

Proof Consider a graph H and let $G = HoK_1$, the 1-corona of a graph H. Every vertex in V(H) is now a support vertex in G. Therefore, V(H) is a γ_p -set of G. As well, the set of end vertices in G is a γ_p -set. Hence every vertex in V(G) is in some γ_p -set and G is γ_p -excellent. Since H is an induced subgraph of G, the result follows.

§3. Characterization of Trees

We now provide a constructive characterization of perfect domination excellent trees. We accomplish this by defining a family of labelled trees as defined in [1].

Let $\mathcal{F} = \{T_n\}_{n\geq 1}$ be the family of trees constructed inductively such that T_1 is a path P_4 and $T_n = T$, a tree. If $n \geq 2$, T_{i+1} can be obtained recursively from T_i by one of the two operations \mathcal{F}_1 , \mathcal{F}_2 for $i = 1, 2, \dots, n-1$. Then we say that T has length n in \mathcal{F} .

We define the status of a vertex v, denoted $\operatorname{sta}(v)$ to be A or B. Initially if $T_1 = P_4$, then $\operatorname{sta}(v) = A$ if v is a support vertex and $\operatorname{sta}(v) = B$, if v is a leaf. Once a vertex is assigned a status, this status remains unchanged as the tree is constructed.

Operation \mathcal{F}_1 Assume $y \in T_n$ and $\operatorname{sta}(y) = A$. The tree T_{n+1} is obtained from T_n by adding a path x, w and the edge xy. Let $\operatorname{sta}(x) = A$ and $\operatorname{sta}(w) = B$.

Operation \mathcal{F}_2 Assume $y \in T_n$ and $\operatorname{sta}(y) = B$. The tree T_{n+1} is obtained from T_n by adding a path x, w, v and the edge xy. Let $\operatorname{sta}(x) = \operatorname{sta}(w) = A$ and $\operatorname{sta}(v) = B$.

 \mathcal{F} is closed under the two operations \mathcal{F}_1 and \mathcal{F}_2 . For $T \in \mathcal{F}$, let A(T) and B(T) be the sets of vertices of status A and B respectively. We have the following observation, which follow from the construction of \mathcal{F} .

Observation 3.1 Let $T \in \mathcal{F}$ and $v \in V(T)$

78 Sharada B

- 1. If sta(v) = A, then v is adjacent to exactly one vertex of B(T) and at least one vertex of A(T).
- 2. If sta(v) = B, then N(v) is a subset of A(T).
- 3. If v is a support vertex, then sta(v) = A.
- 4. If v is a leaf, then sta(v) = B.
- 5. $|A(T)| \ge |B(T)|$
- 6. Distance between any two vertices in B(T) is at least three.

Lemma 3.2 If $T \in \mathcal{F}$, then B(T) is a $\gamma_p(T)$ -set. Moreover if T is obtained from $T' \in \mathcal{F}$ using operation \mathcal{F}_1 or \mathcal{F}_2 , then $\gamma_p(T) = \gamma_p(T') + 1$.

Proof By Observation 3.1, it is clear that B(T) is a perfect dominating set. Now we prove that, B(T) is a $\gamma_p(T)$ -set. We proceed by induction on the length n of the sequence of trees needed to construct the tree T. Suppose n=1, then $T=P_4$, belongs to \mathcal{F} . Let the vertices of P_4 be labeled as a,b,c,d. Then, $B(P_4)=\{a,d\}$ and is a $\gamma_p(P_4)$ -set. This establishes the base case. Assume then that the result holds for all trees in \mathcal{F} that can be constructed from a sequence of fewer than n trees where $n \geq 2$. Let $T \in \mathcal{F}$ be obtained from a sequence T_1, T_2, \dots, T_n of n trees, where $T' = T_{n-1}$ and $T = T_n$. By our inductive hypothesis B(T') is a $\gamma_p(T')$ -set.

We now consider two possibilities depending on whether T is obtained from T' by operation \mathcal{F}_1 or \mathcal{F}_2 .

Case 1 T is obtained from T' by operation \mathcal{F}_1 .

Suppose T is obtained from T' by adding a path y, x, w of length 2 to the attacher vertex $y \in V(T')$. Any $\gamma_p(T')$ -set can be extended to a $\gamma_p(T)$ -set by adding to it the vertex w, which is of status B. Hence $B(T) = B(T') \cup \{w\}$ is a $\gamma_p(T)$ -set.

Case 2 T is obtained from T' by operation \mathcal{F}_2 .

The proof is very similar to Case 1.

If T is obtained from $T' \in \mathcal{F}$ using operation \mathcal{F}_1 or \mathcal{F}_2 , then T can have exactly one more vertex with status B than T'. Since $\gamma_p(T) = |B(T)|$ and $\gamma_p(T') = |B(T')|$, it follows that $\gamma_p(T) = \gamma_p(T') + 1$.

Lemma 3.3 If $T \in \mathcal{F}$ have length n, then T is a γ_p – excellent tree.

Proof Since T has length n in \mathcal{F} , T can be obtained from a sequence T_1, T_2, \dots, T_n of trees such that T_1 is a path P_4 and $T_n = T$, a tree. If $n \geq 2$, T_{i+1} can be obtained from T_i by one of the two operations \mathcal{F}_1 , \mathcal{F}_2 for $i = 1, 2, \dots, n-1$. To prove the desired result, we proceed by induction on the length n of the sequence of trees needed to construct the tree T.

If n=1, then $T=P_4$ and therefore, T is γ_p -excellent. Hence the lemma is true for the base case.

Assume that the result holds for all trees in \mathcal{F} of length less than n, where $n \geq 2$. Let $T \in \mathcal{F}$ be obtained from a sequence T_1, T_2, \dots, T_n of n trees. For notational convenience, we denote T_{n-1} by T'. We now consider two possibilities depending on whether T is obtained from T' by operation \mathcal{F}_1 or \mathcal{F}_2 .

Case 1 T is obtained from T' by operation \mathcal{F}_1 .

By Lemma 3.2, $\gamma_p(T) = \gamma_p(T') + 1$. Let u be an arbitrary element of V(T).

Subcase 1.1 $u \in V(T')$.

Since T' is γ_p -excellent, $\gamma_p^u(T') = \gamma_p(T')$. Now any $\gamma_p^u(T')$ -set can be extended to a perfect dominating set of T by adding either x or w and so $\gamma_p^u(T) \le \gamma_p^u(T') + 1 = \gamma_p(T') + 1 = \gamma_p(T)$.

Subcase 1.2 $u \in V(T) \setminus V(T')$.

Any $\gamma_p^y(T')$ -set can be extended to a perfect dominating set of T by adding the vertex w and so $\gamma_p^u(T) \leq \gamma_p^y(T') + 1 = \gamma_p(T') + 1 = \gamma_p(T)$.

Consequently, we have $\gamma_p^u(T) = \gamma_p(T)$ for any arbitrary vertex u of T. Hence T is γ_p -excellent.

Case 2 T is obtained from T' by operation \mathcal{F}_2 .

The proof is very similar to Case 1.

Proposition 3.4 If T is a tree obtained from a tree T' by adding a path x, w or a path x, w, v and an edge joining x to the vertex y of T', then $\gamma_p(T) = \gamma_p(T') + 1$.

Proof Suppose T is a tree obtained from a tree T' by adding a path x, w and an edge joining x to the vertex y of T', then any $\gamma_p(T')$ -set can be extended to a perfect dominating set of T by adding x or w and so $\gamma_p(T) \leq \gamma_p(T') + 1$. Now let S be a $\gamma_p(T)$ -set and let $S' = S \cap V(T')$. Then S' is a perfect dominating set of T'. Hence, $\gamma_p(T') \leq |S'| \leq |S| - 1 = \gamma_p(T) - 1$. Thus, $\gamma_p(T) \geq \gamma_p(T') + 1$. Hence $\gamma_p(T) = \gamma_p(T') + 1$. The other case can be proved on the same lines. \square

Theorem 3.5 A tree T of order $n \ge 4$ is $\gamma_p - excellent$ if and only if $T \in \mathcal{F}$.

Proof By Lemma 3.3, it is sufficient to prove that the condition is necessary. We proceed by induction on the order n of a γ_p -excellent tree T. For n=4, $T=P_4$ is γ_p -excellent and also it belongs to the family \mathcal{F} . Assume that $n \geq 5$ and all γ_p -excellent trees with order less than n belong to \mathcal{F} . Let T be a γ_p -excellent tree of order n. Let $P: v_1, v_2, \cdots, v_k$ be a longest path in T. Obviously $\deg(v_1) = \deg(v_k) = 1$ and $\deg(v_2) = \deg(v_{k-1}) = 2$ and $k \geq 5$. We consider two possibilities.

Case 1 v_3 is a support vertex.

Let $T' = T \setminus \{v_1, v_2\}$. We prove that T' is γ_p -excellent, that is for any $u \in T', \gamma_p^u(T') = \gamma_p(T')$. Since $u \in T' \subset T$ and T is γ_p -excellent, there exists a $\gamma_p^u(T)$ -set such that $\gamma_p^u(T) = \gamma_p(T)$. Let S be a $\gamma_p^u(T)$ - set and $S' = S \cap V(T')$. Then S' is a perfect dominating set of T'. Also, $|S'| \leq |S| - 1 = \gamma_p(T) - 1 = \gamma_p(T')$, by Proposition 3.4. Since $u \in S', S'$ is a $\gamma_p^u(T')$ -set

80 Sharada B.

such that $\gamma_p^u(T') = \gamma_p(T')$. Thus T' is γ_p -excellent. Hence by the inductive hypothesis $T' \in \mathcal{F}$, since |V(T')| < |V(T)|. The $sta(v_3) = A$ in T', because v_3 is a support vertex. Thus, T is obtained from $T' \in \mathcal{F}$ by the operation \mathcal{F}_1 . Hence $T \in \mathcal{F}$ as desired.

Case 2 v_3 is not a support vertex.

Let $T' = T \setminus \{v_1, v_2, v_3\}$. As in Case 1, we can prove that T' is γ_p -excellent. Since $|V(T')| < |V(T)|, T' \in \mathcal{F}$ by the inductive hypothesis.

If v_4 is a support vertex or has a neighbor which is a support vertex then v_3 is present in none of the γ_p -sets. So, T cannot be γ_p -excellent. Hence either $deg(v_4) = 2$ and v_4 is a leaf of T' so that $v_4 \in B(T')$ by Observation 3.1 or $deg(v_4) \geq 3$ and all the neighbors of v_4 in $T' \setminus \{v_5\}$ are at distance exactly 2 from a leaf of T'. Hence all the neighbors of v_4 in $T' \setminus \{v_5\}$ are in A(T') by Observation 3.1, and have no neighbors in B(T') except v_4 . Hence $v_4 \in B(T')$, again by Observation 3.1. Thus, T can be obtained from T' by the operation \mathcal{F}_2 . Hence $T \in \mathcal{F}$.

References

- [1] H.Aram, S.M.Sheikholeslami and O.Favaron, Domination subdivision numbers of trees, *Discrete Math.*, 309 (2009), 622-628.
- [2] G.H.Fricke, T.W.Haynes, S.S.Hedetniemi and R.C.Laskar, Excellent trees, *Bulletin of ICA*, 34(2002) 27-38.
- [3] T.W.Haynes, S.T.Hedetniemi and P.J.Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [4] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [5] T.W.Haynes, M.A.Henning, A characterization of i-excellent trees, *Discrete Math.*, 248 (2002), 69-77.
- [6] M.A.Henning, Total domination excellent trees, Discrete Math., 263(2003), 93-104.
- [7] D.Sumner, personal communication, May 2000.