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§1. Introduction and result

Let N be the set of all positive integer. For any positive integer a, let S(a) denote the
Smarandache function of a. Let n be a postivie integer. If n satisfy

∑

d|n
S(d) = n + 1 + S(n), (1)

then n is called a Smarandache perfect number. Recently, Ashbacher [1] showed that if n ≤ 106,
then 12 is the only Smarandache perfect number. In this paper we completely determine all
Smarandache perfect number as follows:

Theorem. 12 is the only Smarandache perfect number.

§2. Proof of the theorem

The proof of our theorem depends on the following lemmas.
Lemma 1 ([2]). For any positive integer n with n > 1, if

n = pr1
1 pr2

2 · · · prk

k (2)

is the factorization of n, then we have

S(n) = max (S(pr1
1 ), S(pr2

2 ), · · · , S(prk

k )) .

Lemma 2 ([2]). For any prime p and any positive integer r, we have S(pr) ≤ pr.
Lemma 3 ([3], Theorem 274). Let d(n) denote the divisor function of n. Then d(n)

is a multiplicative function. Namely, if (2) is the factorization of n, then

d(n) = (r1 + 1)(r2 + 1) · · · (rk + 1).

Lemma 4. The inequality
n

d(n)
< 2, n ∈ N. (3)
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has only the solutions n = 1, 2, 3, 4 and 6.
Proof. For any positive integer n, let

f(n) =
n

d(n)
.

Since f(1) = 1, f(2) = 1, f(3) = 3/2, f(4) = 4/3, and f(6) = 3/2, (3) has solutions n = 1, 2, 3, 4
and 6.

Let n be a solution of (3) with n 6= 1, 2, 3, 4 or 6. Since f(5) = 5
2 > 2, we have n > 6. Let

(2) be the factorization of n. If k = 1 and r1 = 1, then n = p1 ≥ 7 and 2 > f(n) = p1
2 ≥ 7

2 , a

contradiction. If k = 1 and r1 = 2, then n = p2
1, where p1 ≥ 3. So we have 2 > f(n) = p

r1
1

(r1+1) ≥
23

4 ≥ 2, a contradiction. If k = 2, since n > 6, then we get

2 > f(n) =
pr1
1

r1 + 1
· pr2

2

r2 + 1
≥





5
2 if p1 = 2 and r1 = 1,

2 if p1 = 2 and r1 > 1,
15
4 if p1 > 2,

a contradiction. If k ≥ 3, then

2 > f(n) =
pr1
1

(r1 + 1)
pr2
2

(r2 + 1)
pr3
3

(r3 + 1)
≥ 15

4
,

a contradiction. To sum up, (3) has no solution n with n 6= 1, 2, 3, 4 or 6. The Lemma is proved.
Proof of Theorem. Let n be a Smarandache perfect number with n 6= 12. By [1] we

have n > 106. By Lemma 1, if (2) is the factorization of n, Then

S(n) = S(pr), (4)

where
p = pj , r = rj , 1 ≤ j ≤ k. (5)

From (2) and (5), we get

n = prm, m ∈ N, gcd(pr,m) = 1. (6)

For any positive integer n, let
g(n) =

∑

d|n
S(d). (7)

Then, by (1), the Smarandache perfect number n satisfies

g(n) = n + 1 + S(n). (8)

We see from (4) that n|S(pr)!. Therefore, for any divisor d of n, we have

S(d) ≤ S(pr). (9)

Thus, if (8) holds, then from (7) and (9) we obtain

d(n)S(pr) > n. (10)
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where d(n) is the divisor function of n. Further, by Lemma 3, we get from (4), (6) and (10)
that

(r + 1)S(pr)
pr

> f(m). (11)

If r = 1, since S(p) = p, then from (11) we get 2 > f(m). Hence, by Lemma 4, we obtain
m = 1, 2, 3, 4 or 6. When m = 1, we get from (8) that

g(n) = g(p) = S(1) + S(p) = 1 + p = p + 1 + S(p) = 1 + 2p,

a contradiction. When m = 2, we have p > 2 and

g(n) = g(p) = S(1) + S(2) + S(p) + S(2p) = 3 + 2p = 3p + 1, (12)

whence we get p = 2, a contradiction. By the same method, we can prove that if r = 1 and
m = 3, 4 or 6, then (8) is false.

If r = 2, since S(p2) = 2p, then from (11) we get

6
p

> f(m). (13)

Since n > 106, by (4) we have S(p2) = S(n) ≥ 10 it implies that p ≥ 5. Hence, by (13) we
get f(m) < 6

5 . Further, by Lemma 4 we get m ≤ 6. Since n = p2m ≤ 6p2, we obtain p ≥ 7.
Therefore, by (13) it is impossible. By the same method, we can prove that if r = 3, 4, 5 or 6,
then (11) is false.

If r ≥ 7, then we have S(pr) ≤ pr and

(r + 1)r
pr−1

>
(r + 1)S(pr)

pr
> f(m) ≥ 1, (14)

by (11). From (14), we get

(r + 1)r > pr−1 ≥ 2r−1 ≥ 2


(

r − 1

0
) + (

r − 1

1
) + (

r − 1

2
) + (

r − 1

3
)


 , (15)

whence we obtain
0 > r2 − 6r + 5 = (r − 1)(r − 5) > 0, (16)

a contradiction. To sum up, there has no Smarandache perfect number n with n > 106. Thus,
the theorem is proved.
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§1. Introduction

For any positive integer n, the famous Smarandache function S(n) is defined by

S(n) = max{m : n | m!}.

For example, S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4,
· · · . About the arithmetical properties of S(n), many scholars have show their interest on it,
see [1], [2] and [3]. For example, Farris Mark and Mitchell Patrick [2] studied the bounding of
Smarandache function, and they gave an upper and lower bound for S(pα), i.e.

(p− 1)α + 1 ≤ S(pα) ≤ (p− 1)[α + 1 + logp α] + 1.

Wang Yongxing [3] studied the mean value of
∑

n≤x

S(n) and obtained an asymptotic formula by

using the elementary methods. He proved that

∑

n≤x

S(n) =
π2

12
x2

lnx
+ O

(
x2

ln2 x

)
.

Similarly, many scholars studied another function which have close relations with the Smaran-
dache function. It is called the Smarandache dual function S∗(n) which defined by

S∗(n) = max{m : m! | n}.

About this function, J. Sandor in [4] conjectured that

S∗((2k − 1)!(2k + 1)!) = q − 1,

where k is a positive integer, q is the first prime following 2k + 1. This conjecture was proved
by Le Maohua [5].
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Li Jie [6] studied the mean value property of
∑

n≤x

S∗(n) by using the elementary methods,

and obtained an interesting asymptotic formula:
∑

n≤x

S∗(n) = ex + O
(
ln2 x(ln lnx)2

)
.

In this paper, we introduce another Smarandache dual function s̄k(n) which denotes the
greatest positive integer m such that mk|n, where n denotes any positive integer. That is,

s̄k(n) = max{m : mk|n}.

On the other hand, we let Ω(n) denotes the number of the prime divisors of n, including multiple
numbers. If n = pα1

1 pα2
2 · · · pαr

r denotes the factorization of n into prime powers, then

Ω(n) = α1 + α2 · · ·+ αr.

In this paper, we shall study the positive integer solutions of the equation

s̄3(1) + s̄3(2) + · · ·+ s̄3(n) = 3Ω(n),

and give its all solutions. That is, we shall prove the following conclusions:

Theorem. For all positive integer n, the equation

s̄3(1) + s̄3(2) + · · ·+ s̄3(n) = 3Ω(n)

has only three solutions. They are n = 3, 6, 8.
For general positive integer k > 3, whether there exists finite solutions for the equation

s̄k(1) + s̄k(2) + · · ·+ s̄k(n) = kΩ(n).

It is an unsolved problem. We believe that it is true.

§2. Proof of the theorem

In this section, we will complete the proof of Theorem. First we will separate all positive
integer into two cases.

1. If n ≤ 8, then from the definition of s̄k(n) and Ω(n), we have

s̄3(1) = 1, s̄3(2) = 1, s̄3(3) = 1, s̄3(4) = 1,

s̄3(5) = 1, s̄3(6) = 1, s̄3(7) = 1, s̄3(8) = 2.

Ω(1) = 0, Ω(2) = 1, Ω(3) = 1, Ω(4) = 2,

Ω(5) = 1, Ω(6) = 2, Ω(7) = 1, Ω(8) = 3.

So that we have
s̄3(1) + s̄3(2) + s̄3(3) = 3Ω(3);
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s̄3(1) + s̄3(2) + · · ·+ s̄3(6) = 3Ω(6);

s̄3(1) + s̄3(2) + · · ·+ s̄3(8) = 3Ω(8).

Hence n = 3, 6, 8 are the positive integer solutions of the equation.
2. If n > 8, then we have the following:
Lemma. For all positive integer n > 8, we have

s̄3(1) + s̄3(2) + · · ·+ s̄3(n) > 3Ω(n).

Proof. Let n = pα1
1 pα2

2 · · · pαr
r is the factorization of n into prime powers, then we have

s̄3(1) + s̄3(2) + · · ·+ s̄3(n) > n if n > 8.

From the definition of Ω(n), we have

Ω(n) = α1 + α2 · · ·+ αr.

So to complete the proof of the lemma, we only prove the following inequality:

pα1
1 pα2

2 · · · pαr
r > 3(α1 + α2 · · ·+ αr). (1)

Now we prove (1) by mathematical induction on r.
i) If r = 1, then n = pα1

1 .
a. If p1 = 2, then we have α1 ≥ 4, hence

24 > 3 · 4, 2α1 > 3α1.

b. If p1 = 3, 5 and 7, then we have α1 ≥ 2, hance

i4 > 3 · 2, iα1 > 3α1, i = 3, 5, 7.

c. If p1 ≥ 11, then we have α1 ≥ 1, hence

pα1
1 > 3α1.

This proved that Lemma holds for r = 1.
ii) Now we assume (1) holds for r (≥ 2), and prove that it is also holds for r + 1.
From the inductive hypothesis, we have

pα1
1 pα2

2 · · · pαr
r p

αr+1
r+1 > 3(α1 + α2 · · ·+ αr) · pαr+1

r+1 .

Since pr+1 is a prime, then
p

αr+1
r+1 > αr+1 + 1.

From above we obtain

pα1
1 pα2

2 · · · pαr
r p

αr+1
r+1 > 3(α1 + α2 · · ·+ αr) · (αr+1 + 1).

Note that if a > 1, b > 1, then a · b ≥ a + b, so we have

(α1 + α2 · · ·+ αr) · (αr+1 + 1) ≥ α1 + α2 · · ·+ αr + αr+1 + 1 > α1 + α2 · · ·+ αr + αr+1.
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So
pα1
1 pα2

2 · · · pαr
r p

αr+1
r+1 > 3(α1 + α2 · · ·+ αr + αr+1).

This completes the proof of the lemma.
Now we complete the proof of Theorem. From the lemma we know that the equation has

no positive solutions if n > 8. In other words, the equation

s̄3(1) + s̄3(2) + · · ·+ s̄3(n) = 3Ω(n)

has only three solutions. They are n = 3, 6, 8.
This completes the proof of Theorem.
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