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Abstract: In this paper, we deduce a necessary and sufficient condition for graphs whose

plick graphs have crossing number 1. We also obtain a necessary and sufficient condition for

plick graphs to have crossing number 1 in terms of forbidden subgraphs.
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§1. Introduction

All graphs considered here are finite, undirected and without loops or multiple edges. We refer

the terminology of [2]. For any graph G, L(G) denote the line graph of G.

A Smarandache P-drawing of a graph G for a graphical property P is such a good drawing

of G on the plane with minimal intersections for its each subgraph H ∈ P. A Smarandache

P-drawing is said to be optimal if P = G and it minimizes the number of crossings. A graph

is planar if it can be drawn in the plane or on the sphere in such a way that no two of its edges

intersect. The crossing number cr(G) of a graph G is the least number of intersections of pairs

of edges in any embedding of G in the plane. Obviously, G is planar if and only if cr(G) = 0.

It is implicit that the edges in a drawing are Jordan arcs(hence, non-selfintersecting), and it is

easy to see that a drawing with the minimum number of crossings(an optimal drawing) must

be good drawing, that is, each two edges have at most one vertex in common, which is either a

common end-vertex or a crossing. Theta is the result of adding a new edge to a cycle and it is

denoted by θ. The corona G+ of a graph G is obtained from G by attaching a path of length

1 to every vertex of G.

The plick graph P (G) of a graph G is obtained from the line graph by adding a new vertex

corresponding to each block of the original graph and joining this vertex to the vertices of the

line graph which correspond to the edges of the block of the original graph(see[4]).

The following will be useful in the proof of our results.
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Theorem A([5]) The line graph of a planar graph G is planar if and only if ∆(G) ≤ 4 and

every vertex of degree 4 is a cut-vertex.

Theorem B([3]) Let G be a nonplanar graph. Then cr(L(G)) = 1 if and only if the following

conditions hold:

(1) cr(G) = 1;

(2) ∆(G) ≤ 4, and every vertex of degree 4 is a cut-vertex of G;

(3) There exists a drawing of G in the plane with exactly one crossing in which each crossed

edge is incident with a vertex of degree 2.

Theorem C([3]) The line graph of a planar graph G has crossing number one if and only if

(1) or (2) holds:

(1) ∆(G) = 4 and there is a unique non-cut-vertex of degree 4;

(2) ∆(G) = 5, every vertex of degree 4 is a cut-vertex, there is a unique vertex of degree

5 and it has at most 3 incident edges in any block.

Theorem D([4]) The plick graph P (G) of a graph G is planar if and only if G satisfies the

following conditions:

(1) ∆(G) ≤ 4, and

(2) every block of G is either a cycle or a K2.

Theorem E([1]) A graph has a planar ilne graph if and only if it has no subgraph homeomorphic

to K3,3, K1,5, P4 +K1 or K2 +K3.

Remark 1([4]) For any graph, L(G) is a subgraph of P (G).

§2. Results

The following theorem supports the main theorem.

Theorem 1 Let x be any edge of K4. If G is homeomorphic to K4 − x, then cr(P (G)) = 1.

Proof We prove the theorem first for G = (K4−x). One can see that the graph P (K4−x)

has 6 vertices and 13 edges. But a planar graph with 6 vertices has at most 12 edges. This

shows that P (K4 − x) has crossing number at least 1. Figure 1, being drawing of P (K4 − x)

concludes that cr(P (K4 − x)) = 1. Suppose now G is the graph as in the statement. Referring

to Figure 1, it is immediate to see that cr(P (K4 − x)) = 1. �
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P (K4 − x)K4 − x

Figure 1

The following theorem gives a necessary and sufficient condition for graphs whose plick

graphs have crossing number 1.

Theorem 2 A graph G has a plick graph with crossing number 1 if and only if G is planar

and one of the following holds:

(1) ∆(G) = 3, G has exactly two non-cut-vertices of degree 3 and they are adjacent.

(2) ∆(G) = 4, every vertex of degree 4 is a cut-vertex of G, there exists exactly one theta

as a block in G such that at least one vertex of theta is a non-cut- vertex of degree 2 or 3 and

every other block of G is either a cycle or a K2.

(3) ∆(G) = 5, G has a unique cut-vertex of degree 5 and every block of G is either a cycle

or a K2.

Proof Suppose P (G) has crossing number one. Then by Remark 1, and Theorem B, G is

planar. By Theorem D, ∆(G) ≤ 4, then at least one block of G is neither a cycle nor a K2.

Suppose ∆(G) ≤ 6. Then K1,6 is a subgraph of G. Clearly L(K1,6) = K6. It is known that

cr(K6) = 3. By Remark 1, K6 is a subgraph of P (G) and hence cr(P (G)) > 1, a contradiction.

This implies that ∆(G) ≤ 5. If ∆(G) ≤ 2, then P (G) is planar, again a contradiction. Thus

∆(G) = 3 or 4 or 5.

We now consider the following cases:

Case 1. Suppose ∆(G) = 3. Then by Theorem D and since cr(P (G)) = 1, G has a non-

cut-vertex of degree 3. Clearly G contains a subgraph homeomorphic to K4 − x, so that there

exist at least two non-cut-vertex of degree3. More precisely, there is an even number, say 2n,

of non-cut-vertex of degree 3. Now suppose G has at least two diagonal edges. Then there are

two subcases to consider depending on whether 2 diagonal edges exist in one cycle or in two

different edge disjoint cycles.

Subcase 1.1 If two diagonal edges exist in one cycle of G. Then G has a subgraph homeo-

morphic from K4. The graph P (K4) has 7 vertices and 18 edges. It is known that a planar

graph with 7 vertices has at most 15 edges. This shows that P (K4) must have crossing number

exceeding 1 and hence P (G) has crossing number greater than 1, a contradiction.

Subcase 1.2 If two diagonal edges exist in two different edge-disjoint cycles of G. Then by
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Theorem 1, we see that for every subgraph of G homeomorphic to K4 − x, there corresponds

at least one crossing of G. Hence P (G) has at least 2 crossings, a contradiction.

Hence G has exactly two non-cut-vertices of degree 3 and every other vertex of degree 3 is

a cut-vertex.

Suppose a graph G has two non-cut-vertices of degree 3 and they are not adjacent. Then

G contains a subgraph homeomorphic to K2,3. On drawing P (K2,3) in a plane one can see that

cr(P (K2,3)) = 2. Since P (K2,3) is a subgraph of P (G), P (G) has crossing number exceeding

1, a contradiction(see Figure 2).

Therefore, we conclude that G contains exactly two non-cut-vertices of degree 3 and these

are adjacent. This proves (1).

K2,3 P (K2,3)

Figure 2

Case 2. Assume ∆(G) = 4. We show first that every vertex of degree 4 is a cut-vertex. On the

contrary suppose that G has non-cut-vertex v of degree 4. Then by Theorem C, cr(L(G)) ≥ 1.

The vertex u1 in P (G) corresponding to the block which contains a non-cut-vertex of degree 4

is adjacent to every vertex of L(G). We obtain the drawing of P (G) with 3 crossings.

Assume now G has at least two blocks each of which is a theta. By Theorem 1 and case 1

of this theorem, we see that for every subgraph of G homeomorphic to K4−x, there correspond

to at least 2 crossings of G, a contradiction.

Suppose there exists exactly one theta S as a block in G such that none of its vertices is

a non-cut-vertex of degree 2 or 3. Assume all vertices of theta S have degree 4 in G. Then by

Theorem A, L(S) is planar. Let v1 be the vertex of L(G) corresponding to the chord of a cycle

C of theta. The vertex w1 in P (G) corresponding to the block theta S is adjacent to every

vertex of L(C) without crossings. In P (G)− v1w1, the vertex w1 is adjacent to every vertex of

L(S) − v1 without crossings. By the definition of P (G), the vertices v1 and w1 are adjacent in

P (G). The edge v1w1 crosses at least two edges of L(G). On drawing of P (G) in the plane, it

has at least two crossings, a contradiction. This proves that ∆(G) = 4, there exist exactly one

theta as a block in G such that at least one vertex of theta is either a non-cut-vertex of degree

2 or 3.

Suppose every block of G different from theta block is neither a cycle nor a K2. It implies

that G has a block which is a subgraph homeomorphic to K4 − x. By Cases 1 and 2 of this

theorem, we see that for every subgraph of G homeomorphic to K4 − x, there corresponds at
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least one crossing of G. Hence P (G) has at least 2 crossings, a contradiction.
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Case 3. Assume ∆(G) = 5. Suppose G has at least two vertices of degree 5. Then by Theorem

C, L(G) has crossing number at least 2. By Remark 1, cr(P (G)) ≥ 2, which is a contradiction.

Thus G has a unique vertex of degree 5.

Suppose G has a vertex v of degree 5 and at least one block of G is neither a cycle nor

a K2. Then some block of G has a subgraph homeomorphic to K4 − x. By Case 1 of this

theorem cr(P (K4 − x)) ≥ 1 and the 5 edges incident to v form K5 as a subgraph in P (G).

Hence cr(P (K4 − x)) ≥ 2, a contradiction.

Conversely, suppose G is a planar graph satisfying (1) or (2) or (3). Then by Theorem

D, P (G) has crossing number at least 1. We now show that its crossing number is at most 1.

First suppose (1) holds. Then G has exactly one block, say H , homeomorphic to K4 − x which

contains 2 adjacent non-cut-vertices of degree 3. By Theorem 1, cr(P (H)) = 1. By Theorem

D, all other remaining blocks of G have a planar plick graph. Hence P (G) has crossing number

1.

Assume (2) holds. Let u be a cut-vertex of degree 4. The vertex u has a non-cut-vertex of

degree 3 in a block for otherwise, G does contain a subgraph homeomorphic to K4 − x which

is impossible. By virtue of Theorem 1, for a non-cut-vertex of G of degree 3, there corresponds

one crossing in P (G). However P (G) can not have more than one crossing since the removal of

any edge in a block containing u, yields a graph H such that P (H) is planar by Theorem D. It

follows easily that P (G) has crossing number 1.

Suppose (3) holds. The edges at the vertex v of the degree 5 can be split into sets of sizes
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2 and 3 so that no edges in different sets are in the same block. Transform G to G′ as in Figure

3. Then P (G′) is again planar. Thus P (G) can be drawn with only one crossing as shown in

Figure 4. �

§3. Forbidden Subgraphs

By using Theorem 2, we now characterize graphs whose plick graphs have crossing number 1

in terms of forbidden subgraphs.

Theorem 3 The plick graph of a connected graph G has crossing number 1 if and only if G

has no subgraphs homeomorphic from any one of the graphs of Figure 5 or G has subgraph θ+

such that none of the vertices of theta have non-cut-vertices of degree 2 or 3.
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Proof Suppose G has a plick graph with crossing number one. We now show that all

graphs homeomorphic from any one of the graphs of Figure 5 or a subgraph θ+ such that

none of the vertices of theta have non-cut-vertices of degree 2 or 3, have no plick graph with

crossing number one. This result follows from Theorem 2, since graphs homeomorphic from

G1, G2 or G3 have more than two non-cut-vertices of degree three. Graphs homeomorphic from

G4 have two non-cut-vertices of degree 3 which are not adjacent. Graphs homeomorphic from
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G5 have a vertex of degree 4 which is a non-cut-vertex. Graphs homeomorphic from G6 have

more than one theta. θ+ has exactly one block which is a theta and none of its vertices have

non-cut-vertices of degree 2 or 3. Graphs homeomorphic from G7 have ∆(G7) > 5. Graphs

homeomorphic from G8 or G9 have two or more vertices of degree 5. Graphs homeomorphic to

G10 or G11 have a block which is neither a cycle nor a K2.

Conversely, suppose G is a graph which does not contain a subgraph homeomorphic from

any one of the graphs of Figure 5 or G has exactly one subgraph theta as a block such that

none of the vertices of theta have non-cut-vertices of degree 2 or 3. First we prove condition (1)

of Theorem 2. Suppose G contains more than two non-cut-vertices of degree 3. Then it is easy

to see that G is a planar graph with at least 2 diagonal edges. Now consider 2 cases depending

on whether the 2 diagonal edges exist in one block or in two different blocks.

Case 1. Suppose two diagonal edges exist in one block of G, then G has a subgraph homeo-

morphic from G1 or G2.

Case 2. Suppose two diagonal edges exist in two different blocks of G, then G has a subgraph

homeomorphic from G3.

In each case we have a contradiction. Hence G has at most two non-cut-vertices of degree

3. Suppose G has exactly two nonadjacent non-cut-vertices of degree 3. Then there exist 3

disjoint paths between these two non-cut-vertices of degree 3. Clearly G contains a subgraph

homeomorphic from G4, a contradiction. Thus G has exactly two adjacent non-cut-vertices of

degree 3.

Since G does not contain a subgraph homeomorphic from G7 i.e, K1,6 , ∆(G) ≤ 5. Also

since ∆(G) ≥ 4, if it follows that ∆(G) = 4 or 5.

Suppose G has a vertex v of degree 4. We prove that v is a cut-vertex. If not, let a, b, c and d

be the vertices of G adjacent to v. Then there exist paths between every pair of vertices of a, b, c

and d not containing v. Then it is proved in Theorem E, G has a subgraph homeomorphic from

G5, this is a contradiction. Thus v is a cut-vertex and every vertex of degree 4 is a cut-vertex.

Suppose that a cut-vertex of degree 4 lies on two blocks, each of which is a theta. Then

G has a subgraph homeomorphic from G6. This is a contradiction. G has exactly one block

which is a theta such that at least one vertex of theta is either a non-cut-vertex of degree 2 or

3, for otherwise a forbidden subgraph has exactly one theta as a block such that none of the

vertices of theta have non-cut-vertices of degree 2 or 3 would appear in G.

Suppose G has two vertices v1 and v2 of degree 5. Since G is a connected, v1 and v2 are

connected by a path P and let (v1, ai) and (v2, bj), i, j = 1, 2, 3, 4, be edges of G. We consider

the following possibilities.

If ai 6= bj for i, j = 1, 2, 3, 4, then G contains a subgraph homeomorphic from G8, a

contradiction.

If there exists a path between a vertex of ai and a vertex of bj, then G has a subgraph

homeomorphic from G9, a contradiction.

If ai = bj , for i, j = 1, 2, then clearly G contains a subgraph homeomorphic from G10, a

contradiction.

This proves that G has exactly one vertex v of degree 5.
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Suppose G has a vertex v of degree 5. We show that v is a cut-vertex. If possible let us

assume that G has a non-cut-vertex of degree 5. In this case Greenwell and Hemminger showed

in [1] that G must contain a subgraph homeomorphic from G5, a contradiction.

Suppose G has a unique cut-vertex v of degree 5 and it lies on blocks, one block which is

neither a cycle nor a K2. Then G contains a subgraph homeomorphic from G10 or G11.

Thus Theorem 2 implies that G has a plick graph with crossing number one. �
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