ON M-TH POWER FREE PART OF AN INTEGER

Zhao Xiaopeng and Ren Zhibin

Department of Mathematics, Weinan Teacher' College, Weinan, Shaanxi, P.R.China

Abstract In this paper, we using the elementary method to study the convergent property

of one class Dirichlet series involving a special sequences, and give an interest-

ing identity for it.

Keywords: *m*-th power free part; Infinity series; Identity.

§1. Introduction and results

For any positive integer n and $m \ge 2$, we define $C_m(n)$ as the m-th power free part of n. That is,

$$C_m(n) = \min\{n/d^m : d^m \mid n, d \in N\}.$$

If $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_s}$ is the prime powers decomposition of n, then we have: $C_m(n_1^mn_2)=C_m(n_2)$, and

$$C_m(n) = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}, \quad if \quad \alpha_i \leq m-1.$$

Now for any positive integer k, we also define arithmetic function $\delta_k(n)$ as follows:

$$\delta_k(n) = \left\{ \begin{array}{ccc} \max\{d \in N & | & d|n, (d,k) = 1\}, & if & n \neq 0, \\ & 0, & if & n = 0. \end{array} \right.$$

Let \mathcal{A} denotes the set of all positive integers n satisfy the equation $C_m(n) = \delta_k(n)$. That is, $\mathcal{A} = \{n \in N, C_m(n) = \delta_k(n)\}$. In this paper, we using the elementary method to study the convergent property of the Dirichlet series involving the set \mathcal{A} , and give an interesting identity for it. That is, we shall prove the following conclusion:

Theorem. Let $m \ge 2$ be a fixed positive integer. Then for any real number s > 1, we have the identity

$$\sum_{\substack{n=1\\n\in\mathcal{A}}}^{\infty} \frac{1}{n^s} = \frac{\zeta(s)}{\zeta(ms)} \prod_{p|k} \frac{1 - \frac{1}{p^s}}{(1 - \frac{1}{p^{ms}})^2},$$

where $\zeta(s)$ is the Riemann zeta-function, and $\prod\limits_{p}$ denotes the product over all primes..

Note that $\zeta(2) = \pi^2/6$, $\zeta(4) = \pi^4/90$ and $\zeta(6) = \pi^6/945$, from our Theorem we may immediately deduce the following:

Corollary. Let $\mathcal{B} = \{n \in N, C_2(n) = \delta_k(n)\}$ and $\mathcal{C} = \{n \in N, C_3(n) = \delta_k(n)\}$, then we have the identities:

$$\sum_{\substack{n=1\\n\in\mathcal{B}}}^{\infty} \frac{1}{n^2} = \frac{15}{\pi^2} \prod_{p|k} \frac{p^6}{(p^2+1)(p^4-1)}$$

and

$$\sum_{\substack{n=1\\n\in\mathcal{C}}}^{\infty}\frac{1}{n^2}=\frac{305}{2\pi^4}\prod_{p\mid k}\frac{p^{10}}{(p^4+p^2+1)(p^6-1)}.$$

§2. Proof of the theorem

In this section, we will complete the proof of the theorem. First, we define the arithmetical function a(n) as follows:

$$a(n) = \begin{cases} 1, & if \quad n \in \mathcal{A}, \\ 0, & otherwise. \end{cases}$$

For any real number s > 0, it is clear that

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} < \sum_{n=1}^{\infty} \frac{1}{n^s},$$

and
$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$
 is convergent if $s > 1$, thus $\sum_{n=1}^{\infty} \frac{1}{n^s}$ is also convergent if $s > 1$.

Now we find the set \mathcal{A} . From the definition of $C_m(n)$ and $\delta_k(n)$ we know that $C_m(n)$ and $\delta_k(n)$ both are multiplicative functions. So in order to find all solutions of the equation $C_m(n) = \delta_k(n)$, we only discuss the case $n = p^{\alpha}$. If $n = p^{\alpha}$, (p,k) = 1, then the equation $C_m(p^{\alpha}) = \delta(p^{\alpha})$ has solution if and only if $1 \leq \alpha \leq m-1$. If $n = p^{\alpha}$, $p \mid k$, then the equation $C_m(p^{\alpha}) = \delta(p^{\alpha})$ have solutions if and only if $m \mid \alpha$. Thus, by the Euler product formula (see [1]), we have

$$\sum_{\substack{n=1\\n\in A}}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 + \frac{a(p)}{p^s} + \frac{a(p^2)}{p^{2s}} + \dots + \frac{a(p^{m-1})}{p^{(m-1)s}} + \dots \right)$$

$$= \prod_{p \nmid k} \left(1 + \frac{a(p)}{p^s} + \frac{a(p^2)}{p^{2s}} + \dots + \frac{a(p^{m-1})}{p^{(m-1)s}} \right)$$

$$\times \prod_{p \mid k} \left(1 + \frac{a(p)}{p^{ms}} + \frac{a(p^2)}{p^{2ms}} + \frac{a(p^3)}{p^{3ms}} + \dots \right)$$

$$= \prod_{p \nmid k} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots + \frac{1}{p^{(m-1)s}} \right)$$

$$\times \prod_{p \mid k} \left(1 + \frac{1}{p^{ms}} + \frac{1}{p^{2ms}} + \frac{1}{p^{3ms}} + \dots \right)$$

$$= \frac{\zeta(s)}{\zeta(ms)} \prod_{p \mid k} \frac{1 - \frac{1}{p^s}}{(1 - \frac{1}{p^{ms}})^2},$$

where $\zeta(s)$ is the Riemann zeta-function, and $\prod\limits_{p}$ denotes the product over all primes.

This completes the proof of Theorem.

References

[1] Tom M.Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.