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§1. Introduction

N. Levine [7] introduced the theory of semi-open sets and the theory of α-sets for topological

spaces. For a systematic development of semi-open sets and the theory of α-sets one may refer

to [1], [2], [4], [5] and [9]. The notion of preopen sets for topological spaces was introduced by

S. N. Mashour, M. E. Abd El-Moncef and S.N. El-Deep in [8]. These concepts above are closely

related. It is known that, in a topological space, a set is preopen and semi-open if and only if it

is an α-set [10], [11]. Our object in section 3 is to define a prebounded set, totally prebounded

set, and precompact set in a topological vector space. In Sections 3 and 4 we identify them.

Moreover, in Section 2, we show that every linear functional on a topological vector space is

precontinuous and deduce that every topological vector space is a prehausdorff space.

§2. Precontinuous maps

We recall the following definitions [2], [8].

Definition 2.1 Let X be a topological space. A subset S of X is said to be Smarandachely

preopen if there exists a set U ⊂ cl(S) such that S ⊂ int(cl(S)∪U). A Smarandachely preneigh-

bourhood of the point x ∈ X is any Smarandachely preopen set containing x. Particularly, a
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Smarandachely ∅-preopen set S is usually called a preopen set.

Definition 2.2 Let X and Y be topological spaces and f : X → Y . The function f is said

to be Smarandachely precontinuous if the inverse image f−1(B) of each open set B in Y is a

Smarandachely preopen set in X. The function f is said to be Smarandachely preopen if the

image f(A) of every open set A in X is Smarandachely preopen in Y . Particularly, if we replace

each Smarandachely preopen by preopen, f is called to be precontinuous.

The following lemma is obvious.

Lemma 2.1 Let X and Y be topological vector spaces and f : X → Y linear. The function f

is preopen if and only if, for every open set U containing 0 ∈ X, 0 ∈ Y is an interior point of

cl(f(U)).

The following two theorems are known but we include the proofs for convenience of the

reader.

Theorem 2.1 Let X,Y be topological vector spaces and let Y have the Baire property, that is,

whenever Y = ∪∞
n=1Bn with closed sets Bn, there is is N such that int(BN ) is nonempty. Let

f : X → Y be linear and f(X) = Y . Then f is preopen.

Proof Let U ⊂ X be a neighborhood of 0. There is a neighborhood V of 0 such that

V −V ⊂ U . Since V is a neighborhood of 0 we have X = ∪∞
n=1nV . It follows from linearity and

surjectivity of f that Y = ∪∞
n=1nf(V ). Since Y has the Baire property, there is N such that

cl(Nf(V )) = Ncl(f(V )) contains an open set S which is not empty. Then cl(f(V )) contains

the open set T = 1
N S. It follows that

T − T ⊂ cl(f(V )) − cl(f(V )) ⊂ cl(f(V ) − f(V )) = cl(f(V − V )) ⊂ cl(f(U)).

The set T − T is open and contains 0. Therefore, 0 ∈ Y is an interior point of cl(f(U)). From

Lemma 2.1 we conclude that f is preopen. �

Note that f can be any linear surjective map. It is not necessary to assume that f is

continuous or precontinuous.

Theorem 2.2 Let X,Y be topological vector spaces, and let X have the Baire property. Then

every linear map f : X → Y is precontinuous.

Proof Let G = {(x, f(x)) : x ∈ X} be the graph of f . The projections π1 : G → X and

π2 : G → Y are continuous. The projection π1 : G → X is bijective. It follows from Theorem

?? that π1 is preopen. Therefore, the inverse mapping π−1
1 is precontinuous. Then f = π2 ◦π−1

1

is precontinuous. �

Theorem 2.2 shows that many linear maps are automatically precontinuous. Therefore, it

is natural to ask for an example of a linear map which is not precontinuous.

Let X = C[0, 1] be the vector space of real-valued continuous functions on [0, 1] equipped

with the norm
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‖f‖1 =

∫ 1

0

|f(x)| dx.

Let Y = C[0, 1] be equipped with the norm

‖f‖∞ = max
x∈[0,1]

|f(x)|.

Lemma 2.2 The identity operator T : X → Y is not precontinuous.

Proof Let U = {f ∈ C[0, 1] : ‖f‖∞ < 1} which is an open subset of Y . Let cl(U) be the

closure of U in X . We claim that

(2.1) cl(U) ⊂ {f ∈ C[0, 1] : ‖f‖∞ 6 1}.

For the proof, consider a sequence fn ∈ U and a function f ∈ C[0, 1] such that {fn} converges

to f in X . Suppose that there is x0 ∈ [0, 1] such that f(x0) > 1. By continuity of f , there are

a < b and δ > 0 such that 0 6 a 6 x0 6 b 6 1 and f(x) > 1+ δ for x ∈ (a, b). Then, as n→ ∞,

(b− a)δ 6

∫ b

a

|fn(x) − f(x)| dx 6

∫ 1

0

|fn(x) − f(x)| dx → 0

which is a contradiction. Therefore, f(x) 6 1 for all x ∈ [0, 1]. Similarly, we show that

f(x) > −1 for all x ∈ [0, 1]. Now 0 ∈ U = T−1(U) but U is not preopen in X . We see this

as follows. Suppose that U is preopen in X . The sequence gn(x) = 2xn converges to 0 in X .

Therefore, gn ∈ cl(U) for some n and (2.1) implies 2 = ‖gn‖∞ 6 1 which is a contradiction. �

We can improve Theorem 2.2 for linear functionals.

Theorem 2.3 Let f be a linear functional on a topological vector space X. If V is a preopen

subset of R then f−1(V ) is a preopen subset of X. In particular, f is precontinuous.

Proof We distinguish the cases that f is continuous or discontinuous.

Suppose that f is continuous. If f(x) = 0 for all x ∈ X the statement of the theorem is

true. Suppose that f is onto. We choose u ∈ X such that f(u) = 1. Let V be a preopen subset

of R, and set U := f−1(V ). Let x ∈ U so f(x) ∈ V . Since V is preopen, there is δ > 0 such

that

(2.2) I := (f(x) − δ, f(x) + δ) ⊂ cl(V ).

Since f is continuous, f−1(I) is an open subset of X containing x. We claim that

(2.3) f−1(I) ⊂ cl(U).

In order to prove (2.3), let y ∈ f−1(I) so f(y) ∈ I. By (2.2), there is a sequence {tn} in V

converging to f(y). Set

yn := y + (tn − f(y))u.
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We have f(yn) = tn ∈ V so yn ∈ U . Since X is a topological vector space, yn converges to y.

This establishes (2.3). It follows that U is preopen.

Suppose now that f is not continuous. By [3, Corollary 22.1], N(f) = {x ∈ X : f(x) = 0}
is not closed. Therefore, there is y ∈ cl(N(f)) such that y 6∈ N(f) so f(y) 6= 0. Let x be any

vector in X . There is t ∈ R such that f(x) = tf(y) and so x − ty ∈ N(f). It follows that

x ∈ cl(N(f)). We have shown that N(f) is dense in X . Let a ∈ R. There is y ∈ X such that

f(y) = a. Then f−1({a}) = y + N(f) and so the closure of f−1({a}) is y + cl(N(f)) = X .

Therefore, f−1({a}) is dense for every a ∈ R. Let V be a preopen set in R. If V is empty then

f−1(V ) is empty and so is preopen. If V is not empty choose a ∈ V . Then f−1(V ) ⊃ f−1({a})
and so f−1(V ) is dense. Therefore, f−1(V ) is preopen. �

§3. Subsets of topological vector spaces

In this section our principal goal is to define prebounded sets, totally prebounded sets and

precompact sets in a topological vector space, and to find relations between them. We begin

this section with some definitions.

Definition 3.1 A subset E of a topological vector space X is said to be prebounded if for every

preneighbourhood V of 0 there exists s > 0 such that E ⊂ tV for all t > s.

Definition 3.2 A subset E of a topological vector space X is said to be totally prebounded if

for every preneighbourhood U of 0 there exists a finite subset F of X such that E ⊂ F + U .

Definition 3.3 A subset E of a topological vector space X is said to be precompact if every

preopen cover of E admits a finite subcover.

Lemma 3.1 Every precompact set in a topological vector space X is totally prebounded.

Proof Let E be precompact. Let V be preopen with 0 ∈ V. Then the collection {x + V :

x ∈ E} is a cover of E consisting of preopen sets. There are x1, x2, . . . , xn ∈ E such that

E ⊂ n∪
i=1

{xi + V } . Therefore, E is totally prebounded. �

Lemma 3.2 In a topological vector space X the singleton {0} is the only prebounded set.

Proof It is enough to show that every singleton {u}, u 6= 0, is not prebounded. Let

V = X −
{

1
nu : n ∈ N

}
. The closure of V is X so V is preopen . But {u} is not subset of nV

for n = 1, 2, 3, . . . Therefore, {u} is not prebounded. �

Theorem 3.1 If E is a prebounded subset of a topological vector space X, then E is totally

prebounded. The converse statement is not true.

Proof This follows from the fact that every finite set is totally prebounded, and by using

Lemma 3.2. �
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§4. Applications of Theorem 2.3

We need the following known lemma.

Lemma 4.1 If U , V are two vector spaces, and W is a linear subspace of U and f : W → V

is a linear map. then there is a linear map g : U → V such that f(x) = g(x) for all x ∈W.

Proof We choose a basis A in W and then extend to a basis B ⊃ A in U. We define

h(a) = f(a) for a ∈ A and h(b) arbitrary in V for b ∈ B − A. There is a unique linear map

g : U → V such that g(b) = h(b) for b ∈ B. Then g(x) = f(x) for all x ∈W. �

We obtain the following result.

Theorem 4.1 Every topological vector space X is a prehausdorff space, that is, for each

x, y ∈ X, x 6= y, there exists a preneighbourhood U of x and a preneighbourhood V of y such

that U ∩ V = ∅.

Proof Let x, y ∈ X and x 6= y. If x, y are linearly dependent we choose a linear functional

on the span of {x, y} such that f(x) < f(y). If x, y are linearly independent we set f(sx+ty) = t.

By Lemma 4.1 we extend f to a linear functional g with g(x) < g(y). Choose c ∈ (g(x), g(y))

and define U = g−1((−∞, c)), and V = g−1((c,∞)). Then, using Theorem 2.3, U, V are

preopen. Also U and V are disjoint and x ∈ U , y ∈ V . �

We now determine totally prebounded subsets in R. The result may not be surprising but

the proof requires some care.

Lemma 4.2 A subset of R is totally prebounded if and only if it is finite.

proof It is clear that a finite set is totally prebounded. Let E be a countable (finite or

infinite) subset of R which is totally prebounded. Let A := {x − y : x, y ∈ E}. The set A is

countable. We define a sequence {un} of real numbers inductively as follows. We set u1 = 0.

Then we choose u2 ∈ (−1, 0) such that u2 − u1 6∈ A. Then we choose u3 ∈ (0, 1) such that

u3 − ui 6∈ A for i = 1, 2. Then we choose u4 ∈ (−1,− 1
2 ) such that u4 − ui 6∈ A for i = 1, 2, 3.

Continuing in this way we construct a set U = {un : n ∈ N} ⊂ (−1, 1) such that every interval

of the form (m2−k, (m + 1)2−k) with −2k 6 m < 2k, k ∈ N, contains at least one element

of U , and such that 0 ∈ U and u − v 6∈ A for all u, v ∈ U , u 6= v. Then cl(U) = [−1, 1] so

U is a preneighborhood of 0. Since E is totally prebounded, there is a finite set F such that

E ⊂ F + U . If z ∈ F and x, y ∈ E lie in z + U then x = z + u, y = z + v with u, v ∈ U . It

follows that u − v = x − y ∈ A and, by construction of U , u = v. Therefore, x = y and so

each set z + U , z ∈ F , contains at most one element of E. Therefore, E is finite. We have

shown that every countable set which is totally prebounded is finite. It follows hat every totally

prebounded set is finite. �

Combining several of our results we can now identify totally prebounded and precompact

subset of any topological vector space.

Theorem 4.2 Let X be a topological vector space. A subset of X is totally prebounded if and

only if it is finite. Similarly, a subset of X is precompact if and only it is finite.

Proof Every finite set is totally prebounded. Conversely, suppose that E is a totally
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prebounded subset of X . Let f be a linear functional on X . It follows easily from Theorem 2.3

that f(E) is a totally prebounded subset of R. By Lemma 4.2, f(E) is finite. It follows that

E is finite as we see as follows. Suppose that E contains a sequence {xn}∞n=1 which is linearly

independent. Then, using Lemma 4.1, we can construct a linear functional f on X such that

f(xn) 6= f(xm) if n 6= m. This is a contradiction so E must lie in a finite dimensional subspace

Y of X . We choose a basis y1, . . . , yk in Y , and represent each x ∈ E in this basis

x = f1(x)y1 + · · · + fk(x)yk.

Every fj is a linear functional on Y so fj(E) is a finite set for each j = 1, 2, . . . , k. It follows

that E is finite.

Clearly, every finite set is precompact. Conversely, by Lemma 3.1, a precompact subset of

X is totally prebounded, so it is finite. �
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