ON THE PRIMITIVE NUMBERS OF POWER P AND ITS ASYMPTOTIC PROPERTY *

Yi Yuan

Research Center for Basic Science, Xi'an Jiaotong University Xi'an, Shaanxi, P.R.China yuanyi@mail.xjtu.edu.cn

Abstract Let p be a prime, n be any positive integer, $S_p(n)$ denotes the smallest integer

 $m \in \mathbb{N}^+$, where $p^n | m!$. In this paper, we study the mean value properties of

 $S_p(n)$, and give an interesting asymptotic formula for it.

Keywords: Smarandache function; Primitive numbers; Asymptotic formula

§1. Introduction and results

Let p be a prime, n be any positive integer, $S_p(n)$ denotes the smallest integer such that $S_p(n)!$ is divisible by p^n . For example, $S_3(1)=3$, $S_3(2)=6$, $S_3(3)=9$, $S_3(4)=9$, \cdots . In problem 49 of book [1], Professor F. Smarandache ask us to study the properties of the sequence $\{S_p(n)\}$. About this problem, Professor Zhang and Liu in [2] have studied it and obtained an interesting asymptotic formula. That is, for any fixed prime p and any positive integer n,

$$S_p(n) = (p-1)n + O\left(\frac{p}{\ln p} \cdot \ln n\right).$$

In this paper, we will use the elementary method to study the asymptotic properties of $S_p(n)$ in the following form:

$$\frac{1}{p} \sum_{n \le x} |S_p(n+1) - S_p(n)|,$$

where x be a positive real number, and give an interesting asymptotic formula for it. In fact, we shall prove the following result:

Theorem. For any real number $x \geq 2$, let p be a prime and n be any positive integer. Then we have the asymptotic formula

$$\frac{1}{p} \sum_{n \le x} |S_p(n+1) - S_p(n)| = x \left(1 - \frac{1}{p}\right) + O\left(\frac{\ln x}{\ln p}\right).$$

^{*}This work is supported by the Zaizhi Doctorate Foundation of Xi'an Jiaotong University.

§2. Proof of the Theorem

In this section, we shall complete the proof of the theorem. First we need following one simple Lemma. That is,

Lemma. Let p be a prime and n be any positive integer, then we have

$$|S_p(n+1) - S_p(n)| = \begin{cases} p, & \text{if } p^n \parallel m!; \\ 0, & \text{otherwise}, \end{cases}$$

where $S_p(n) = m$, $p^n \parallel m!$ denotes that $p^n \mid m!$ and $p^{n+1} \dagger m!$.

Proof. Now we will discuss it in two cases.

(i) Let $S_p(n)=m$, if $p^n\parallel m!$, then we have $p^n|m!$ and $p^{n+1}\dagger m!$. From the definition of $S_p(n)$ we have $p^{n+1}\dagger (m+1)!$, $p^{n+1}\dagger (m+2)!$, \cdots , $p^{n+1}\dagger (m+p)!$ and $p^{n+1}|(m+p)!$, so $S_p(n+1)=m+p$, then we get

$$|S_p(n+1) - S_p(n)| = p. (1)$$

(ii) Let $S_p(n) = m$, if $p^n | m!$ and $p^{n+1} | m!$, then we have $S_p(n+1) = m$, so

$$|S_p(n+1) - S_p(n)| = 0. (2)$$

Combining (1) and (2), we can easily get

$$|S_p(n+1) - S_p(n)| =$$

$$\begin{cases} p, & \text{if } p^n \parallel m!; \\ 0, & \text{otherwise.} \end{cases}$$

This completes the proof of Lemma.

Now we use above Lemma to complete the proof of Theorem. For any real number $x \ge 2$, by the definition of $S_p(n)$ and Lemma we have

$$\frac{1}{p} \sum_{n \le x} |S_p(n+1) - S_p(n)| = \frac{1}{p} \sum_{\substack{n \le x \\ p^n | m!}} p = \sum_{\substack{n \le x \\ p^n | m!}} 1,$$
(3)

where $S_p(n) = m$. Note that if $p^n \parallel m!$, then we have (see reference [3], Theorem 1.7.2)

$$n = \sum_{i=1}^{\infty} \left[\frac{m}{p^i} \right] = \sum_{i \le \log_p m} \left[\frac{m}{p^i} \right]$$

$$= m \cdot \sum_{i \le \log_p m} \frac{1}{p^i} + O\left(\log_p m\right)$$

$$= \frac{m}{n-1} + O\left(\frac{\ln m}{\ln n}\right). \tag{4}$$

From (4), we can deduce that

$$m = (p-1)n + O\left(\frac{p\ln n}{\ln p}\right). \tag{5}$$

So that

$$1 \le m \le (p-1) \cdot x + O\left(\frac{p \ln x}{\ln p}\right), \quad \text{if} \quad 1 \le n \le x.$$

Note that for any fixed positive integer n, if there has one m such that $p^n \parallel m!$, then $p^n \parallel (m+1)!, p^n \parallel (m+2)!, \cdots, p^n \parallel (m+p-1)!$. Hence there have p times of m such that $n = \sum\limits_{i=1}^{\infty} \left[\frac{m}{p^i}\right]$ in the interval $1 \leq m \leq (p-1) \cdot x + O\left(\frac{p \ln x}{\ln p}\right)$. Then from this and (3), we have

$$\frac{1}{p} \sum_{n \le x} |S_p(n+1) - S_p(n)| = \frac{1}{p} \sum_{\substack{n \le x \\ p^n || m!}} p = \sum_{\substack{n \le x \\ p^n || m!}} 1$$

$$= \frac{1}{p} \left((p-1) \cdot x + O\left(\frac{p \ln x}{\ln p}\right) \right)$$

$$= x \cdot \left(1 - \frac{1}{p}\right) + O\left(\frac{\ln x}{\ln p}\right).$$

This completes the proof of Theorem.

References

- [1] F.Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publ. House, 1993.
- [2] Zhang Wenpeng and Liu Duansen, primitive numbers of power p and its asymptotic property, Smaramche Notes Journal, 13 (2002) 173-175.
- [3] Pan Chengdong and Pan Chengbiao, The Elementary number Theory, Beijing University, Press Beijing, 2003.
- [4] Tom M.Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.