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Abstract For any positive integer n, the famous Euler function φ(n) is defined as the number

of all integers m with 1 ≤ m ≤ n such that (m, n) = 1. In his book “Only problems, not

solutions” (see unsolved problem 52), Professor F.Smarandache asked us to find the smallest

positive integer k ≡ k(n), such that φk(n) = 1, where φ1(n) = φ(n), φ2(n) = φ(φ1(n)),

· · · , and φk(n) = φ(φk−1(n)). In this paper, we using the elementary method to study this

problem, and prove that for any positive integer n, k(n) = min{m : 2m ≥ n, m ∈ N}, where

N denotes the set of all positive integers.
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§1. Introduction and Results

For any positive integer n, the famous Euler function φ(n) is defined as the number of
all integers m with 1 ≤ m ≤ n such that (m,n) = 1. In his book “Only problems, not
solutions” (see unsolved problem 52), Professor F.Smarandache asked us to find the smallest
positive integer k ≡ k(n), such that φk(n) = 1, where φ1(n) = φ(n), φ2(n) = φ(φ1(n)),
· · · , and φk(n) = φ(φk−1(n)). That is, k(n) is the smallest number of iteration k such that
φk(n) = φ(φk−1(n)) = 1. About this problem, it seems that none had studied it yet, at least
we have not seen any related papers before. The problem is interesting, because it can help
us to know more properties of the Euler function. It is clear that φ(n) < n, if n > 1. So
φ1(n), φ2(n), φ3(n), · · · , φk(n) is a monotone decreasing sequence. Therefore, for any integer
n > 1, there must exist a positive integer k ≡ k(n) such that φk(n) = 1. In this paper, we using
the elementary method to study this problem, and find an exact function k = k(n) such that
for any integer n > 1, φk(n) = 1. That is, we shall prove the following conclusion:

Theorem. For any positive integer n > 1, we define k ≡ k(n) = min{m : 2m ≥ n, m ∈
N}, where N denotes the set of all positive integers. Then we have the identity

φk(n) = φ (φk−1(n)) = φk−1 (φ(n)) = 1,

where φ(n) is the Euler function.
Corollary. For any positive integer n > 1, Let k ≡ k(n) be the smallest positive integer

such that φk(n) = 1. Then we have

k ≡ k(n) = min{m : 2m ≥ n, m ∈ N}.
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§2. Proof of the theorem

In this section, we shall complete the proof of our theorem directly. For any integer n > 1,
let n = pα1

1 pα2
2 · · · pαr

r be the factorization of n into prime powers. Then from the properties of
the Euler function φ(n) we have

φ(n) = pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαr−1
r (pr − 1).

From this formula we know that if n be an even number, then φ(n) ≤ n
2 . If n > 1 be an odd

number, then φ(n) ≤ n − 1, and φ(1) = 1. So for any integer n ≥ 3 and k ≡ k(n) = min{m :
2m ≥ n, m ∈ N}, from the definition of k = k(n) we have φ1(n) = φ(n) ≤ n − 1, φ2(n) =
φ (φ(n)) ≤ 1

2φ(n) ≤ n−1
2 , · · · · · · , φk(n) ≤ 1

2φk−1(n) ≤ · · · ≤ n−1
2k−1 = 2(n−1)

2k ≤ 2
(
1− 1

n

)
. Since

φk(n) is a positive integer and 1 ≤ φk(n) ≤ 2
(
1− 1

n

)
< 2, so we must have φk(n) = 1.

For any positive integer n, Let u ≡ u(n) be the smallest positive integer such that φu(n) =
1. From the above we know that φk(n) = 1, so u(n) ≤ k(n). On the other hand, let n = 2m,
where m ≥ 1 be an integer. Then φ(n) = 2m−1, φ2(n) = 2m−2, · · · · · · , φm−1(n) = 2, φm(n) = 1.
So u(n) = m = k(n). Let n = 2m + 1 be a prime, then φ(n) = p − 1 = 2m, φm(n) = 2 and
φm+1(n) = 1. So u(n) = m + 1. This time, we also have k ≡ k(n) = min{s : 2s ≥ 2m + 1, s ∈
N} = m + 1. That is to say, there are infinite positive integers n > 1 such that u(n) = k(n).
Therefore, for any integer n > 1, k ≡ k(n) = min{m : 2m ≥ n, m ∈ N} be the smallest
positive integer such that φk(n) = 1. This completes the proof of our Theorem.

§3. Several similar problems

Now we consider the Dirichlet divisor function d(n), the number of all positive divisors of
n. For any integer n ≥ 3, it is clear that d(n) < n. Let d1(n) = d(n), d2(n) = d(d(n)), · · · · · · ,
dk(n) = d (dk−1(n)). So {d1(n), d2(n), · · · · · · , dk(n), · · · } is also a monotone decreasing
sequence. For any positive n > 1, let k = k(n) be the smallest positive integer such that
dk(n) = 2. Whether there exists a simple arithmetical function k = k(n) such that dk(n) = 2
for all n > 3. This is an open problem.

For any positive integer n > 1, let n = pα1
1 pα2

2 · · · pαr
r be the factorization of n into prime

powers. We define function Ω(n) = α1 +α2 + · · ·+αr and Ω(1) = 0. Similarly, find the smallest
positive integer k = k(n) such that Ωk(n) = 0, where Ω1(n) = Ω(n), Ωk(n) = Ω (Ωk−1(n)).

Here we can also give a simple arithmetical function for k(n). Let u1 = 1, u2 = 2u1 , · · · ,
uk+1 = 2uk . It is clear that {uk} be a strictly monotone increasing sequence. Now we define
k ≡ k(n) = min{m : um ≥ n, m ∈ N}, where N denotes the set of all positive integers. It
is easy to prove that Ωk(n) = 0. On the other hand, for any positive integer m > 1, we have
Ω(um) = um−1, and Ωm(um) = 0. Therefore, for any integer n > 1, k ≡ k(n) = min{m : um ≥
n, m ∈ N} be the smallest positive integer such that Ωk(n) = 0.

Whether there exists another more simple function k(n) such that Ωk(n) = 0 is an unsolved
problem.

Let n > 1 be an integer, and σ(n) be the sum of all positive divisors of n. It is clear that
σ(n) > n for any n > 1. So if n > 1, then {σ1(n), σ2(n), · · · , σk(n), · · · } must be a strictly
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monotone increasing sequence, where σ1(n) = σ(n), and σk(n) = σ (σk−1(n)). Now let N be
any fixed positive integer. For any integer n ≥ 2, find the smallest positive integer k = k(N)
such that σk(n) ≥ N .
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