
Scientia Magna
Vol. 5 (2009), No. 3, 13-18

The product of divisors minimum and
maximum functions
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Abstract Let T (n) denote the product of divisors of the positive integer n. We introduce

and study some basic properties involving two functions, which are the minimum, resp. the

maximum of certain integers connected with the divisors of T(n).
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1. Let T (n) =
∏
i|n

i denote the product of all divisors of n. The product-of-divisors

minimum, resp. maximum functions will be defined by

T (n) = min{k ≥ 1 : n|T (k)} (1)

and
T∗(n) = max{k ≥ 1 : T (k)|n}. (2)

There are particular cases of the functions FA
f , GA

g defined by

FA
f (n) = min{k ∈ A : n|f(k)}, (3)

and its ”dual”
GA

g (n) = max{k ∈ A : g(k)|n}, (4)

where A ⊂ N∗ is a given set, and f, g : N∗ → N are given functions, introduced in [8] and [9].
For A = N∗, f(k) = g(k) = k! one obtains the Smarandache function S(n), and its dual S∗(n),
given by

S(n) = min{k ≥ 1 : n|k!} (5)

and
S∗(n) = max{k ≥ 1 : k!|n}. (6)

The function S∗(n) has been studied in [8], [9], [4], [1], [3]. For A = N∗, f(k) = g(k) = ϕ(k),
one obtains the Euler minimum, resp. maximum functions

E(n) = min{k ≥ 1 : n|ϕ(k)} (7)

studied in [6], [8], [13], resp., its dual

E∗(n) = max{k ≥ 1 : ϕ(k)|n}, (8)
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studied in [13].
For A = N∗, f(k) = g(k) = S(k) one has the Smarandache minimum and maximum

functions
Smin(n) = min{k ≥ 1 : n|S(k)}, (9)

Smax(n) = max{k ≥ 1 : S(k)|n}, (10)

introduced, and studied in [15]. The divisor minimum function

D(n) = min{k ≥ 1 : n|d(k)} (11)

(where d(k) is the number of divisors of k) appears in [14], while the sum-of-divisors minimum
and maximum functions

Σ(n) = min{k ≥ 1 : n|σ(k)} (12)

Σ∗(n) = max{k ≥ 1 : σ(k)|n} (13)

have been recently studied in [16].
For functions Q(n), Q1(n) obtained from (3) for f(k) = k! and A = set of perfect squares,

resp. A = set of squarefree numbers, see [10].
2. The aim of this note is to study some properties of the functions T (n) and T∗(n) given

by (1) and (2). We note that properties of T (n) in connection with ”multiplicatively perfect
numbers” have been introduced in [11]. For other asymptotic properties of T (n), see [7]. For
divisibility properties of T (σ(n)) with T (n), see [5]. For asymptotic results of sums of type∑
n≤x

1
T (n) , see [17].

A divisor i of n is called ”unitary” if
(
i, n

i

)
= 1. Let T ∗(n) be the product of unitary

divisors of n. For similar results to [11] for T ∗(n), or T ∗∗(n) (i.e. the product of ”bi-unitary”
divisors of n), see [2]. The product of ”exponential” divisors Te(n) is introduced in paper [12].
Clearly, one can introduce functions of type (1) and (2) for T (n) replaced with one of the above
functions T ∗(n), T ∗∗, Te(n), but these functions will be studied in another paper.

3. The following auxiliary result will be important in what follows.
Lemma 1.

T (n) = nd(n)/2, (14)

where d(n) is the number of divisors of n.
Proof. This is well-known, see e.g. [11].
Lemma 2.

T (a)|T (b), if a|b. (15)

Proof. If a|b, then for any d|a one has d|b, so T (a)|T (b). Reciprocally, if T (a)|T (b),
let γp(a) be the exponent of the prime in a. Clearly, if p|a, then p|b, otherwise T (a)|T (b) is
impossible. If pγp(b)‖b, then we must have γp(a) ≤ γp(b). Writing this fact for all prime divisors
of a, we get a|b.

Theorem 1. If n is squarefree, then

T (n) = n. (16)
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Proof. Let n = p1p2 . . . pr, where pi (i = 1, r) are distinct primes. The relation p1p2 . . . pr|T (k)
gives pi|T (k), so there is a d|k, so that pi|d. But then pi|k for all i = 1, r, thus p1p2 . . . pr = n|k.
Since p1p2 . . . pk|T (p1p2 . . . pk), the least k is exactly p1p2 . . . pr, proving (16).

Remark. Thus, if p is a prime, T (p) = p; if p < q are primes, then T (pq) = pq, etc.
Theorem 2. If a|b, a 6= b and b is squarefree, then

T (ab) = b. (17)

Proof. If a|b, a 6= b, then clearly T (b) =
∏
d|b

d is divisible by ab, so T (ab) ≤ b. Reciprocally,

if ab|T (k), let p|b a prime divisor of b. Then p|T (k), so (see the proof of Theorem 1) p|k. But b

being squarefree (i.e. a product of distinct primes), this implies b|k. The least such k is clearly
k = b.

For example, T (12) = T (2 · 6) = 6, T (18) = T (3 · 6) = 6, T (20) = T (2 · 10) = 10.
Theorem 3. T (T (n)) = n for all n ≥ 1. (18)
Proof. Let T (n)|T (k). Then by (15) one can write n|k. The least k with this property is

k = n, proving relation (18).
Theorem 4. Let pi (i = 1, r) be distinct primes, and αi ≥ 1 positive integers. Then

max

{
T

(
r∏

i=1

pαi
i

)
: i = 1, r

}
≤ T

(
r∏

i=1

pαi
i

)
≤

≤ l.c.m.[T (pα1
1 ), . . . , T (pαr

r )]. (19)

Proof. In [13] it is proved that for A = N∗, and any function f such that FN
∗

f (n) = Ff (n)
is well defined, one has

max{Ff (pαi
i ) : i = 1, r} ≤ Ff

(
r∏

i=1

pαi
i

)
. (20)

On the other hand, if f satisfies the property

a|b =⇒ f(a)|f(b)(a, b ≥ 1), (21)

then

Ff

(
r∏

i=1

pαi
i

)
≤ l.c.m.[Ff (pα1

1 ), . . . , Ff (pαr
r )]. (22)

By Lemma 2, (21) is true for f(a) = T (a), and by using (20), (22), relation (19) follows.
Theorem 5.

T (2n) = 2α, (23)

where α is the least positive integer such that

α(α + 1)
2

≥ n. (24)

Proof. By (14), 2n|T (k) iff 2n|kd(k)/2. Let k = pα1
1 . . . pαr

r , when d(k) = (α1+1) . . . (αr+1).
Since 22n|kd(k) = p

α1(α1+1)...(αr+1)
1 . . . p

αr(α1+1)...(αr+1)
r (let p1 < p2 < · · · < pr), clearly p1 = 2
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and the least k is when α2 = · · · = αr = 0 and α1 is the least positive integer with 2n ≤
α1(α1 + 1). This proves (23), with (24).

For example, T (22) = 4, since α = 2, T (23) = 4 again, T (24) = 8 since α = 3, etc.
For odd prime powers, the things are more complicated. For example, for 3n one has:
Theorem 6.

T (3n) = min{3α1 , 2 · 3α2}, (25)

where α1 is the least positive integer such that α1(α1+1)
2 ≥ n, and α2 is the least positive integer

such that α2(α2 + 1) ≥ n.
Proof. As in the proof of Theorem 5,

32n|pα1(α1+1)...(αr+1)
1 · pα2(α1+1)...(α1+1)

2 . . . pαr(α1+1)...(αr+1)
r ,

where p1 < p2 < · · · < pr, so we can distinguish two cases:
a) p1 = 2, p2 = 3, p3 ≥ 5;
b) p1 = 3, p2 ≥ 5.
Then k = 2α1 · 3α2 . . . pαr

r ≥ 2α1 · 3α2 in case a), and k ≥ 3α1 in case b). So for the least
k we must have α2(α1 + 1)(α2 + 1) ≥ 2n with α1 = 1 in case a), and α1(α1 + 1) ≥ 2n in case
b). Therefore α1(α1+1)

2 ≥ n and α2(α2 + 1) ≥ n, and we must select k with the least of 3α1 and
21 · 3α2 , so Theorem 6 follows.

For example, T (32) = 6 since for n = 2, α1 = 2, α2 = 1, and min{2 ·31, 32} = 6; T (33) = 9
since for n = 3, α1 = 2, α2 = 2 and min{2 · 32, 32} = 9.

Theorem 7. Let f : [1,∞) → [0,∞) be given by f(x) =
√

x log x. Then

f−1(log n) < T (n) ≤ n, (26)

for all n ≥ 1, where f−1 denotes the inverse function of f .
Proof. Since n|T (n), the right side of (26) follows by definition (1) of T (n). On the other

hand, by the known inequality d(k) < 2
√

k, and Lemma 1 (see (14)) we get T (k) < k
√

k, so
log T (k) <

√
k log k = f(k). Since n|T (k) implies n ≤ T (k), so log n ≤ log T (k) < f(k), and

the function f being strictly increasing and continuous, by the bijectivity of f , the left side of
(26) follows.

4. The function T∗(n) given by (2) differs in many aspects from T (n). The first such
property is:

Theorem 8. T∗(n) ≤ n for all n, with equality only if n = 1 or n = prime.
Proof. If T (k)|n, then T (k) ≤ n. But T (k) ≥ k, so k ≤ n, and the inequality follows.
Let us now suppose that for n > 1, T∗(n) = n. Then T (n)|n, by definition 2. On the other

hand, clearly n|T (n), so T (n) = n. This is possible only when n = prime.
Remark. Therefore the equality

T∗(n) = n(n > 1)

is a characterization of the prime numbers.
Lemma 3. Let p1, . . . , pr be given distinct primes (r ≥ 1). Then the equation

T (k) = p1p2 . . . pr
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is solvable if r = 1.
Proof. Since pi|T (k), we get pi|k for all i = 1, r. Thus p1 . . . pr|k, and Lemma 2 implies

T (p1 . . . pr)|T (k) = p1 . . . pr. Since p1 . . . pr|T (p1 . . . pr), we have T (p1 . . . pr) = p1 . . . pr, which
by Theorem 8 is possible only if r = 1.

Theorem 9. Let P (n) denote the greatest prime factor of n > 1. If n is squarefree, then

T∗(n) = P (n). (27)

Proof. Let n = p1p2 . . . pr, where p1 < p2 < · · · < pr. If T (k)|(p1 . . . pr), then clearly
T (k) ∈ {1, p1, . . . , pr, p1p2, . . . , p1p2 . . . pr}. By Lemma 3 we cannot have

T (k) ∈ {p1p2, . . . , p1p2 . . . pr},

so T (k) ∈ {1, p1, . . . , pr}, when k ∈ {1, p1, . . . , pr}. The greatest k is pr = P (n).
Remark. Therefore T∗(pq) = q for p < q. For example, T∗(2 · 7) = 7, T∗(3 · 5) = 5,

T∗(3 · 7) = 7, T∗(2 · 11) = 11, etc.
Theorem 10.

T∗(pn) = pα(p = prime), (28)

where α is the greatest integer with the property

α(α + 1)
2

≤ n. (29)

Proof. If T (k)|pn, then T (k) = pm for m ≤ n. Let q be a prime divisor of k. Then
q = T (q)|T (k) = 2m implies q = p, so k = pα. But then T (k) = pα(α+1)/2 with α the greatest
number such that α(α + 1)/2 ≤ n, which finishes the proof of (28).

For example, T∗(4) = 2, since α(α+1)
2 ≤ 2 gives αmax = 1.

T∗(16) = 4, since α(α+1)
2 ≤ 4 is satisfied with αmax = 2.

T∗(9) = 3, and T∗(27) = 9 since α(α+1)
2 ≤ 3 with αmax = 2.

Theorem 11. Let p, q be distinct primes. Then

T∗(p2q) = max{p, q}. (30)

Proof. If T (k)|p2q, then T (k) ∈ {1, p, q, p2, pq, p2q}. The equations T (k) = p2, T (k) = pq,
T (k) = p2q are impossible. For example, for the first equation, this can be proved as follows.
By p|T (k) one has p|k, so k = pm. Then p(pm) are in T (k), so m = 1. But then T (k) = p 6= p2.
For the last equation, k = (pq)m and pqm(pm)(qm)(pqm) are in T (k), which is impossible.

Theorem 12. Let p, q be distinct primes. Then

T∗(p3q) = max{p2, q}. (31)

Proof. As above, T (k) ∈ {1, p, q, pq, p2q, p3q, p2, p3} and T (k) ∈ {pq, p2q, p3q, p2} are
impossible. But T (k) = p3 by Lemma 1 gives kd(k) = p6, so k = pm, when d(k) = m + 1. This
gives m(m + 1) = 6, so m = 2. Thus k = p2. Since p < p2 the result follows.

Remark. The equation
T (k) = ps (32)
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can be solved only if kd(k) = p2s, so k = pm and we get m(m + 1) = 2s. Therefore k = pm,
with m(m + 1) = 2s, if this is solvable. If s is not a triangular number, this is impossible.

Theorem 13. Let p, q be distinct primes. Then

T∗(psq) =





max{p, q}, if s is not a triangular number,

max{pn, q}, if s = m(m+1)
2 .
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