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Abstract: Let R be any ring and let S = R1 ∪ R2 be the union of any two subrings of R.

Since in general S is not a subring of R but R1 and R2 are algebraic structures on their own

under the binary operations inherited from the parent ring R, S is recognized as a bialgebraic

structure and it is called a biring. The purpose of this paper is to present some properties

of such bialgebraic structures.
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§1. Introduction

Generally speaking, the unions of any two subgroups of a group, subgroupoids of a groupoid,

subsemigroups of a semigroup, submonoids of a monoid, subloops of a loop, subsemirings of a

semiring, subfields of a field and subspaces of a vector space do not form any nice algebraic

structures other than ordinary sets. Similarly, if S1 and S2 are any two subrings of a ring

R, I1 and I2 any two ideals of R, the unions S = S1 ∪ S2 and I = I1 ∪ I2 generally are

not subrings and ideals of R, respectively [2]. However, the concept of bialgebraic structures

recently introduced by Vasantha Kandasamy [9] recognises the union S = S1 ∪ S2 as a biring

and I = I1 ∪ I2 as a bi-ideal. One of the major advantages of bialgebraic structures is the

exhibition of distinct algebraic properties totally different from those inherited from the parent

structures. The concept of birings was introduced and studied in [9]. Other related bialgebraic

structures introduced in [9] included binear-rings, bisemi-rings, biseminear-rings and group

birings. Agboola and Akinola in [1] studied bicoset of a bivector space. Also, we refer the

readers to [3-7]. In this paper, we will present and study some properties of birings.
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§2. Definitions and Elementary Properties of Birings

Definition 2.1 Let R1 and R2 be any two proper subsets of a non-empty set R. Then, R =

R1 ∪R2 is said to be a biring if the following conditions hold:

(1) R1 is a ring;

(2) R2 is a ring.

Definition 2.2 A biring R = R1 ∪R2 is said to be commutative if R1 and R2 are commutative

rings. R = R1 ∪R2 is said to be a non-commutative biring if R1 is non-commutative or R2 is

non-commutative.

Definition 2.3 A biring R = R1∪R2 is said to have a zero element if R1 and R2 have different

zero elements. The zero element 0 is written 01 ∪ 02 (notation is not set theoretic union) where

0i, i = 1, 2 are the zero elements of Ri. If R1 and R2 have the same zero element, we say that

the biring R = R1 ∪R2 has a mono-zero element.

Definition 2.4 A biring R = R1 ∪R2 is said to have a unit if R1 and R2 have different units.

The unit element u is written u1 ∪u2, where ui, i = 1, 2 are the units of Ri. If R1 and R2 have

the same unit, we say that the biring R = R1 ∪R2 has a mono-unit.

Definition 2.5 A biring R = R1 ∪R2 is said to be finite if it has a finite number of elements.

Otherwise, R is said to be an infinite biring. If R is finite, the order of R is denoted by o(R).

Example 1 Let R = {0, 2, 4, 6, 7, 8, 10, 12} be a subset of Z14. It is clear that (R,+, ·) is not

a ring but then, R1 = {0, 7} and R2 = {0, 2, 4, 6, 8, 10, 12} are rings so that R = R1 ∪ R2 is a

finite commutative biring.

Definition 2.6 Let R = R1 ∪ R2 be a biring. A non-empty subset S of R is said to be a

sub-biring of R if S = S1 ∪ S2 and S itself is a biring and S1 = S ∩R1 and S2 = S ∩R2.

Theorem 2.7 Let R = R1∪R2 be a biring. A non-empty subset S = S1∪S2 of R is a sub-biring

of R if and only if S1 = S ∩R1 and S2 = S ∩R2 are subrings of R1 and R2, respectively.

Definition 2.8 Let R = R1 ∪R2 be a biring and let x be a non-zero element of R. Then,

(1) x is a zero-divisor in R if there exists a non-zero element y in R such that xy = 0;

(2) x is an idempotent in R if x2 = x;

(3) x is nilpotent in R if xn = 0 for some n > 0.

Example 2 Consider the biring R = R1 ∪R2, where R1 = Z and R2 = {0, 2, 4, 6} a subset of

Z8.

(1) If S1 = 4Z and S2 = {0, 4}, then S1 is a subring of R1 and S2 is a subring of R2. Thus,

S = S1 ∪ S2 is a bi-subring of R since S1 = S ∩R1 and S2 = S ∩R2.

(2) If S1 = 3Z and S2 = {0, 4}, then S = S1 ∪ S2 is a biring but not a bi-subring of R

because S1 6= S ∩R1 and S2 6= S ∩R2. This can only happen in a biring structure.

Theorem 2.9 Let R = R1 ∪ R2 and S = S1 ∪ S2 be any two birings and let I = I1 ∪ I2 and

J = J1 ∪ J2 be sub-birings of R and S, respectively. Then,
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(1) R× S = (R1 × S1) ∪ (R2 × S2) is a biring;

(2) I × J = (I1 × J1) ∪ (I2 × J2) is a sub-biring of R× S.

Definition 2.10 Let R = R1 ∪R2 be a biring and let I be a non-empty subset of R.

(1) I is a right bi-ideal of R if I = I1 ∪ I2, where I1 is a right ideal of R1 and I2 is a right

ideal of R2;

(2) I is a left bi-ideal of R if I = I1 ∪ I2, where I1 is a left ideal of R1 and I2 is a left ideal

of R2;

(3) I = I1 ∪ I2 is a bi-ideal of R if I1 is an ideal of R1 and I2 is an ideal of R2.

Definition 2.11 Let R = R1 ∪ R2 be a biring and let I be a non-empty subset of R. Then,

I = I1 ∪ I2 is a mixed bi-ideal of R if I1 is a right (left) ideal of R1 and I2 is a left (right) ideal

of R2.

Theorem 2.12 Let I = I1 ∪ I2, J = J1 ∪ J2 and K = K1 ∪K2 be left (right) bi-ideals of a

biring R = R1 ∪R2. Then,

(1) IJ = (I1J1) ∪ (I2J2) is a left(right) bi-ideal of R;

(2) I ∩ J = (I1 ∩ J1) ∪ (I2 ∩ J2) is a left(right) bi-ideal of R;

(3) I + J = (I1 + J1) ∪ (I2 + J2) is a left(right) bi-ideal of R;

(4) I × J = (I1 × J1) ∪ (I2 × J2) is a left(right) bi-ideal of R;

(5) (IJ)K =
(
(I1J1)K1

)
∪
(
(I2J2)K2

)
= I(JK) =

(
I1(J1K1)

)
∪
(
I2(J2K2)

)
;

(6) I(J+K) =
(
I1(J1 +K1)

)
∪
(
I2(J2 +K2)

)
= IJ+IK = (I1J1 +I1K1)∪(I2J2 +I2K2);

(7) (J+K)I =
(
(J1 +K1)I1

)
∪
(
(J2 +K2)I2

)
= JI+KI = (J1I1 +K1I1)∪(J2I2 +K2I2).

Example 3 Let R be the collection of all 2× 2 upper triangular and lower triangular matrices

over a field F and let

R1 =






 a 0

b c


 : a, b, c ∈ F



 ,

R2 =






 a b

0 c


 : a, b, c ∈ F



 ,

I1 =






 a 0

0 0


 : a ∈ F



 ,

I2 =






 0 0

0 a


 : a ∈ F



 .

Then, R = R1 ∪ R2 is a non-commutative biring with a mono-unit


 1 0

0 1


 and I = I1 ∪ I2

is a right bi-ideal of R = R1 ∪R2.

Definition 2.13 Let R = R1∪R2 and S = S1∪S2 be any two birings. The mapping φ : R→ S
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is called a biring homomorphism if φ = φ1 ∪ φ2 and φ1 : R1 → S1 and φ2 : R2 → S2 are ring

homomorphisms. If φ1 : R1 → S1 and φ2 : R2 → S2 are ring isomorphisms, then φ = φ1∪φ2 is a

biring isomorphism and we write R = R1∪R2
∼= S = S1∪S2. The image of φ denoted by Imφ =

Imφ1 ∪ Imφ2 = {y1 ∈ S1, y2 ∈ S2 : y1 = φ1(x1), y2 = φ2(x2) for some x1 ∈ R1, x2 ∈ R2}. The

kernel of φ denoted by

Kerφ = Kerφ1 ∪Kerφ2 = {a1 ∈ R1, a2 ∈ R2 : φ1 (a1) = 0 and φ2 (a2) = 0} .

Theorem 2.14 Let R = R1∪R2 and S = S1∪S2 be any two birings and let φ = φ1∪φ2 : R→ S

be a biring homomorphism. Then,

(1) Imφ is a sub-biring of the biring S;

(2) Kerφ is a bi-ideal of the biring R;

(3) Kerφ = {0} if and only if φi, i = 1, 2 are injective.

Proof (1) It is clear that Imφ = Imφ1 ∪ Imφ2, where φ1 : R1 → S1 and φ2 : R2 → S2 are

ring homomorphisms, is not an empty set. Since Imφ1 is a subring of S1 and Imφ2 is a subring

of S2, it follows that Imφ = Imφ1 ∪ Imφ2 is a biring. Lastly, it can easily be shown that

Imφ ∩ S1 = Imφ1 ,Imφ ∩ S2 = Imφ2 and consequently, Imφ = Imφ1 ∪ Imφ2 is a sub-biring

of the biring S = S1 ∪ S2.

(2) The proof is similar to (1).

(3) It is clear. 2
Let I = I1 ∪ I2 be a left bi-ideal of a biring R = R1 ∪ R2. We know that R1/I1 and

R2/I2 are factor rings and therefore (R1/I1) ∪ (R2/I2) is a biring called factor-biring. Since

φ1 : R1 → R1/I1 and φ2 : R2 → R2/I2 are natural homomorphisms with kernels I1 and I2,

respectively, it follows that φ1 ∪ φ2 = φ : R → R/I is a natural biring homomorphism whose

kernel is Kerφ = I1 ∪ I2.

Theorem 2.15(First Isomorphism Theorem) Let R = R1 ∪ R2 and S = S1 ∪ S2 be any two

birings and let φ1 ∪ φ2 = φ : R → S be a biring homomorphism with kernel K = Kerφ =

Kerφ1 ∪Kerφ2. Then, R/K ∼= Imφ.

Proof Suppose that R = R1∪R2 and S = S1∪S2 are birings and suppose that φ1∪φ2 = φ :

R→ S is a biring homomorphism with kernel K = Kerφ = Kerφ1 ∪Kerφ2. Then, K is a bi-

ideal of R, Imφ = Imφ1∪Imφ2 is a bi-subring of S and R/K = (R1/Kerφ1)∪(R2/Kerφ2) is a

biring. From the classical rings (first isomorphism theorem), we haveRi/Kerφi
∼= Imφi, i = 1, 2

and therefore, R/K = (R1/Kerφ1) ∪ (R2/Kerφ2) ∼= Imφ = Imφ1 ∪ Imφ2. 2
Theorem 2.16(Second Isomorphism Theorem) Let R = R1 ∪ R2 be a biring. If S = S1 ∪ S2

is a sub-biring of R and I = I1 ∪ I2 is a bi-ideal of R, then

(1) S + I is a sub-biring of R;

(2) I is a bi-ideal of S + I;

(3) S ∩ I is a bi-ideal of S;

(4) (S + I)/I ∼= S/(S ∩ I).
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Proof Suppose that R = R1 ∪ R2 is a biring, S = S1 ∪ S2 a sub-biring and I = I1 ∪ I2 a

bi-ideal of R.

(1) S + I = (S1 + I1)∪ (S2 + I2) is a biring since Si + Ii are subrings of Ri, where i = 1, 2.

Now, R1 ∩ (S + I) =
(
R1 ∩ (S1 + I1)

)
∪
(
R1 ∩ (S2 + I2)

)
= S1 + I1. Similarly, we have

R2 ∩ (S + I) = S2 + I2. Thus, S + I is a sub-biring of R.

(2) and (3) are clear.

(4) It is clear that (S+I)/I =
(
(S1 +I1)/I1

)
∪
(
(S2 +I2)/I2

)
is a biring since (S1 +I1)/I1

and (S2 + I2)/I2 are rings. Similarly, S/(S ∩ I) =
(
S1/(S1 ∩ I1)

)
∪
(
S2/(S2 ∩ I2)

)
is a biring.

Consider the mapping φ = φ1 ∪ φ2 : S1 ∪ S2 →
(
(S1 + I1)/I1

)
∪
(
(S2 + I2)/I2

)
. It is clear

that φ is a biring homomorphism since φi : Si → (Si + Ii)/Ii, i = 1, 2 are ring homomorphisms.

Also, since Kerφi = Si ∩ Ii, i = 1, 2, it follows that Kerφ = (S1 ∩ I1) ∪ (S2 ∩ I2). The required

result follows from the first isomorphism theorem. 2
Theorem 2.17(Third Isomorphism Theorem) Let R = R1 ∪R2 be a biring and let I = I1 ∪ I2
and J = J1 ∪ J2 be two bi-ideals of R such that Ji ⊆ Ii, i = 1, 2. Then,

(1) I/J is a bi-ideal of R/J ;

(2) R/I ∼= (R/J)/(I/J).

Proof Suppose that I = I1∪I2 and J = J1∪J2 are two bi-ideals of the biring R = R1∪R2

such that Ji ⊆ Ii, i = 1, 2.

(1) It is clear that R/J = (R1/J1)∪(R2/J2) and I/J = (I1/J1)∪(I2/J2) are birings. Now,

(R1/J1) ∩
(
(I1/J1) ∪ (I2/J2)

)
=
(
(R1/J1) ∩ (I1/J1)

)
∪
(
(R1/J1) ∩ (I2/J2)

)
= I1/J1 (since

Ji ⊆ Ii ⊆ Ri, i = 1, 2). Similarly, (R2/J2) ∩
(
(I1/J1) ∪ (I2/J2)

)
= I2/J2. Consequently, I/J is

a sub-biring of R/J and in fact a bi-ideal.

(2) Let us consider the mapping φ = φ1 ∪ φ2 : (R1/J1) ∪ (R2/J2) → (R1/I1) ∪ (R2/I2).

Since φi : Ri/Ji → Ri/Ii, i = 1, 2 are ring homomorphisms with Kerφi = Ii/Ji, it follows

that φ = φ1 ∪ φ2 is a biring homomorphism and Kerφ = Kerφ1 ∪Kerφ2 = (I1/J1) ∪ (I2/J2).

Applying the first isomorphism theorem, we have
(
(R1/J1)/(I1/J1)

)
∪
(
(R2/J2)/(I2/J2)

)
∼=

(R1/I1) ∪ /(R2/I2). 2
Definition 2.18 Let R = R1 ∪R2 be a biring and let I = I1 ∪ I2 be a bi-ideal of R. Then,

(1) I is said to be a principal bi-ideal of R if I1 is a principal ideal of R1 and I2 is a

principal ideal of R2;

(2) I is said to be a maximal (minimal) bi-ideal of R if I1 is a maximal (minimal) ideal of

R1 and I2 is a maximal (minimal) ideal of R2;

(3) I is said to be a primary bi-ideal of R if I1 is a primary ideal of R1 and I2 is a primary

ideal of R2;

(4) I is said to be a prime bi-ideal of R if I1 is a prime ideal of R1 and I2 is a prime ideal

of R2.

Example 4 Let R = R1 ∪R2 be a biring, where R1 = Z, the ring of integers and R2 = R[x],

the ring of polynomials over R. Let I1 = (2) and I2 = (x2 + 1). Then, I = I1 ∪ I2 is a principal

bi-ideal of R.
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Definition 2.19 Let R = R1 ∪ R2 be a biring and let I = I1 ∪ I2 be a bi-ideal of R. Then, I

is said to be a quasi maximal (minimal) bi-ideal of R if I1 or I2 is a maximal (minimal) ideal.

Definition 2.20 Let R = R1 ∪ R2 be a biring. Then, R is said to be a simple biring if R has

no non-trivial bi-ideals.

Theorem 2.21 Let φ = φ1 ∪φ2 : R→ S be a biring homomorphism. If J = J1 ∪J2 is a prime

bi-ideal of S, then φ−1(J) is a prime bi-ideal of R.

Proof Suppose that J = J1 ∪J2 is a prime bi-ideal of S. Then, Ji, i = 1, 2 are prime ideals

of Si. Since φ−1(Ji), i = 1, 2 are prime ideals of Ri, we have I = φ−1(J1) ∪ φ−1(J2) to be a

prime bi-ideal of R. 2
Definition 2.22 Let R = R1 ∪R2 be a commutative biring. Then,

(1) R is said to be a bidomain if R1 and R2 are integral domains;

(2) R is said to be a pseudo bidomain if R1 and R2 are integral domains but R has zero

divisors;

(3) R is said to be a bifield if R1 and R2 are fields. If R is finite, we call R a finite bifield.

R is said to be a bifield of finite characteristic if the characteristic of both R1 and R2 are finite.

We call R a bifield of characteristic zero if the characteristic of both R1 and R2 is zero. No

characteristic is associated with R if R1 or R2 is a field of zero characteristic and one of R1 or

R2 is of some finite characteristic.

Definition 2.23 Let R = R1 ∪ R2 be a biring. Then, R is said to be a bidivision ring if R is

non-commutative and has no zero-divisors that is R1 and R2 are division rings.

Example 5 (1) Let R = R1 ∪R2, where R1 = Z and R2 = R[x] the ring of integers and the

ring of polynomials over R, respectively. Since R1 and R2 are integral domains, it follows that

R is a bidomain.

(2) The biring R = R1 ∪R2 of Example 1 is a pseudo bidomain.

(3) Let F = F1 ∪ F2 where F1 = Q(
√
p1), F2 = Q(

√
p2) where pi, i = 1, 2 are different

primes. Since F1 and F2 are fields of zero characteristics, it follows that F is a bi-field of zero

characteristic.

Theorem 2.24 Let R = R1 ∪ R2 be a biring. Then, R is a bidomain if and only if the zero

bi-ideal (0) = (01) ∪ (02) is a prime bi-ideal.

Proof Suppose that R is a bidomain. Then, Ri, i = 1, 2 are integral domains. Since the

zero ideals (0i) in Ri are prime, it follows that (0) = (01) ∪ (02) is a prime bi-ideal.

Conversely, suppose that (0) = (01)∪ (02) is a prime bi-ideal. Then, (0i), i = 1, 2 are prime

ideals in Ri and hence Ri, i = 1, 2 are integral domains. Thus R = R1 ∪R2 is a bidomain. 2
Theorem 2.25 Let F = F1 ∪ F2 be a bi-field. Then, F [x] = F1[x] ∪ F2[x] is a bidomain.

Proof Since F1 and F2 are fields which are integeral domains, it follows that F1[x] and

F2[x] are integral domains and consequently, F [x] = F1[x] ∪ F2[x] is a bidomain. 2
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§3. Further Properties of Birings

Except otherwise stated in this section, all birings are assumed to be commutative with zero

and unit elements.

Theorem 3.1 Let R be any ring and let S1 and S2 be any two distinct subrings of R. Then,

S = S1 ∪ S2 is a biring.

Proof Suppose that S1 and S2 are two distinct subrings of R. Then, S1 6⊆ S2 or S2 6⊆ S1

but S1 ∩ S2 6= ∅. Since S1 and S2 are rings under the same operations inherited from R, it

follows that S = S1 ∪ S2 is a biring. 2
Corollary 3.2 Let R1 and R2 be any two unrelated rings that is R1 6⊆ R2 or R2 6⊆ R1 but

R1 ∩R2 6= ∅. Then, R = R1 ∪R2 is a biring.

Example 6 (1) Let R = Z and let S1 = 2Z, S2 = 3Z. Then, S = S1 ∪ S2 is a biring.

(2) Let R1 = Z2 and R2 = Z3 be rings of integers modulo 2 and 3, respectively. Then,

R = R1 ∪R2 is a biring.

Example 7 Let R = R1∪R2 be a biring, where R1 = Z, the ring of integers and R2 = C[0, 1],

the ring of all real-valued continuous functions on [0, 1]. Let I1 = (p), where p is a prime number

and let I2 = {f(x) ∈ R2 : f(x) = 0}. It is clear that I1 and I2 are maximal ideals of R1 and

R2, respectively. Hence, I = I1 ∪ I2 is a maximal bi-ideal of R.

Theorem 3.3 Let R = {0, a, b} be a set under addition and multiplication modulo 2. Then, R

is a biring if and only if a and b (a 6= b) are idempotent (nilpotent) in R.

Proof Suppose that R = {0, a, b} is a set under addition and multiplication modulo 2 and

suppose that a and b are idempotent (nilpotent) in R. Let R1 = {0, a} and R2 = {0, b}, where

a 6= b. Then, R1 and R2 are rings and hence R = R1∪R2 is a biring. The proof of the converse

is clear. 2
Corollary 3.4 There exists a biring of order 3.

Theorem 3.5 Let R = R1 ∪R2 be a finite bidomain. Then, R is a bi-field.

Proof Suppose that R = R1 ∪ R2 is a finite bidomain. Then, each Ri, i = 1, 2 is a finite

integral domain which is a field. Therefore, R is a bifield. 2
Theorem 3.6 Let R = R1 ∪R2 be a bi-field. Then, R is a bidomain.

Proof Suppose that R = R1 ∪R2 is a bi-field. Then, each Ri, i = 1, 2 is a field which is an

integral domain. The required result follows from the definition of a bidomain. 2
Remark 1 Every finite bidivision ring is a bi-field.

Indeed, suppose that R = R1 ∪ R2 is a finite bidivision ring. Then, each Ri, i = 1, 2 is a
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finite division ring which is a field. Consequently, R is a bi-field.

Theorem 3.7 Every biring in general need not have bi-ideals.

Proof Suppose that R = R1 ∪R2 is a biring and suppose that Ii, i = 1, 2 are ideals of Ri.

If I = I1 ∪ I2 is such that Ii 6= I ∩Ri, where i = 1, 2, then I cannot be a bi-ideal of R. 2
Corollary 3.8 Let R = R1 ∪R2 be a biring and let I = I1 ∪ I2, where Ii, i = 1, 2 are ideals of

Ri. Then, I is a bi-ideal of R if and only if Ii = I ∩Ri, where i = 1, 2.

Corollary 3.9 A biring R = R1 ∪R2 may not have a maximal bi-ideal.

Theorem 3.10 Let R = R1 ∪R2 be a biring and let M = M1 ∪M2 be a bi-ideal of R. Then,

R/M is a bi-field if and only if M is a maximal bi-ideal.

Proof Suppose that M is a maximal bi-ideal of R. Then, each Mi, i = 1, 2 is a maximal

ideal in Ri, i = 1, 2 and consequently, each Ri/Ii is a field and therefore R/M is a bi-field.

Conversely, suppose that R/M is a bi-field. Then, each Ri/Mi, i = 1, 2 is a field so that

each Mi, i = 1, 2 is a maximal ideal in Ri. Hence, M = I1 ∪ I2 is a maximal bi-ideal. 2
Theorem 3.11 Let R = R1 ∪ R2 be a biring and let P = P1 ∪ P2 be a bi-ideal of R. Then,

R/P is a bidomain if and only if P is a prime bi-ideal.

Proof Suppose that P is a prime bi-ideal of R. Then, each Pi, i = 1, 2 is a prime ideal in

Ri, i = 1, 2 and so, each Ri/Pi is an integral domain and therefore R/P is a bidomain.

Conversely, suppose that R/P is a bidomain. Then, each Ri/Pi, i = 1, 2 is an integral

domain and therefore each Pi, i = 1, 2 is a prime ideal in Ri. Hence, P = P1 ∪ P2 is a prime

bi-ideal. 2
Theorem 3.12 Let R = R1 ∪ R2 be a biring and let I = I1 ∪ I2 be a bi-ideal of R. If I is

maximal, then I is prime.

Proof Suppose that I is maximal. Then, Ii, i = 1, 2 are maximal ideals of Ri so that Ri/Ii

are fields which are integral domains. Thus, R/I = (R1/I1) ∪ (R2/I2) is a bidomain and by

Theorem 3.11, I = I1 ∪ I2 is a prime bi-ideal. 2
Theorem 3.13 Let φ : R → S be a biring homomorphism from a biring R = R1 ∪ R2 onto a

biring S = S1 ∪ S2 and let K = Kerφ1 ∪Kerφ2 be the kernel of φ.

(1) If S is a bi-field, then K is a maximal bi-ideal of R;

(2) If S is a bidomain, then K is a prime bi-ideal of R.

Proof By Theorem 2.7, we have R/K = (R1/Kerφ1) ∪ (R2/Kerφ2) ∼= Imφ = Imφ1 ∪
Imφ2 = S1 ∪ S2 = S. The required results follow by applying Theorems 3.10 and 3.11. 2
Definition 3.14 Let R = R1 ∪ R2 be a biring and let N(R) be the set of nilpotent elements

of R. Then, N(R) is called the bi-nilradical of R if N(R) = N(R1) ∪ N(R2), where N(Ri),
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i = 1, 2 are the nilradicals of Ri.

Theorem 3.15 Let R = R1 ∪R2 be a biring. Then, N(R) is a bi-ideal of R.

Proof N(R) is non-empty since 01 ∈ N(R1) and 02 ∈ N(R2). Now, if x = x1∪x2, y1∪y2 ∈
N(R) and r = r1 ∪ r2 ∈ R where xi, yi ∈ N(Ri), ri ∈ Ri, i = 1, 2, then it follows that

x− y, xr ∈ N(R). Lastly, R1 ∩
(
N(R1)∪N(R2)

)
=
(
R1 ∩N(R1)

)
∪
(
R1 ∩N(R2)

)
= N(R1).

Similarly, we have R2 ∩
(
N(R1) ∪N(R2)

)
= N(R2). Hence, N(R) is a bi-ideal. 2

Definition 3.16 Let I = I1 ∪ I2 and J = J1 ∪ J2 be any two bi-ideals of a biring R = R1 ∪R2.

The set (I : J) is called a bi-ideal quotient of I and J if (I : J) = (I1 : J1) ∪ (I2 : J2), where

(Ii : Ji), i = 1, 2 are ideal quotients of Ii and Ji. If I = (0) = (01) ∪ (02), a zero bi-ideal,

then
(
(0) : J

)
=
(
(01) : J1

)
∪
(
(02) : J2

)
which is called a bi-annihilator of J denoted by

Ann(J). If 0 6= x ∈ R1 and 0 6= y ∈ R2, then Z(R1) =
⋃
x
Ann(x) and Z(R2) =

⋃
y
Ann(y),

where Z(Ri), i = 1, 2 are the sets of zero-divisors of Ri.

Theorem 3.17 Let R = R1 ∪ R2 be a biring and let I = I1 ∪ I2 and J = J1 ∪ J2 be any two

bi-ideals of R. Then, (I : J) is a bi-ideal of R.

Proof For 0 = 01 ∪ 02 ∈ R, we have 01 ∈ (I1 : J1) and 02 ∈ (I2 : J2) so that (I : J) 6= ∅.
If x = x1 ∪ x2, y = y1 ∪ y2 ∈ (I : J) and r = r1 ∪ r2 ∈ R, then x − y, xr ∈ (I : J) since

(Ii : Ji), i = 1, 2 are ideals of Ri. It can be shown that R1 ∩
(
(I1 : J1) ∪ (I2 : J2)

)
= (I1 : J1)

and R2 ∩
(
(I1 : J1) ∪ (I2 : J2)

)
= (I2 : J2). Accordingly, (I : J) is a bi-ideal of R. 2

Example 8 Under addition and multplication modulo 6, consider the biring R = {0, 2, 3, 4},
where R1 = {0, 3} and R2 = {0, 2, 4}. It is clear that Z(R) 6= Z(R1) ∪ Z(R2). Hence, for

0 6= z = x ∪ y ∈ R, 0 6= x ∈ R1 and 0 6= y ∈ R2, we have

⋃
z=x∪y

Ann(z) 6=
(⋃

x
Ann(x)

)
∪
(
⋃
y
Ann(y)

)
.

Definition 3.18 Let I = I1 ∪ I2 be any bi-ideal of a biring R = R1 ∪ R2. The set r(I)

is called a bi-radical of I if r(I) = r(I1) ∪ r(I2), where r(Ii), i = 1, 2 are radicals of Ii. If

I = (0) = (01) ∪ (02), then r(I) = N(R).

Theorem 3.19 If R = R1 ∪ R2 is a biring and I = I1 ∪ I2 is a bi-ideal of R, then r(I) is a

bi-ideal.

References

[1] Agboola A.A.A. and Akinola L.S., On the Bicoset of a Bivector Space, Int. J. Math.

Comb., 4(2009), 1-8.

[2] Davvaz B., Fundamentals of Ring Theory, Yazd University, Yazd , 2006.

[3] Jun Young Bae, Biideals in BCK/BCI-bialgebras, Kyungpook Math. J., 48(2008), 577-584.



Some Properties of Birings 33

[4] Jun Young Bae and Lee Kyoung Ja., Ideal theory in BCK/BCI-bialgebras, Adv. Stud.

Contemp. Math. (Kyungshang) 20(2010), 481-488.
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