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Abstract

The methodology of today’s theoretical physics consists in introducing

first all known forces by separate definitions independent of their origin, ar-

riving then to quantum mechanics after postulating the particle’s wave, and

is then followed by attempts to infer interactions of particles and fields pos-

tulating the invariance of the wave equation under gauge transformations,

allowing the addition of minimal substitutions.

The origin of the limitations of our standard theoretical model is the

assumption that the energy of a particle is concentrated at a small volume

in space. The limitations are bridged by introducing artificial objects and

constructions like particles wave, gluons, strong force, weak force, bosons,

gravitons, dark matter, dark energy, big bang, etc.

The present approach models subatomic particles such as electrons and

positrons as focal points in space where continuously fundamental particles

are emitted and absorbed, fundamental particles where the energy of the

electron or positron is stored as rotations defining longitudinal and transver-

sal angular momenta (fields). Interaction laws between angular momenta

of fundamental particles are postulated in that way, that the basic laws

of physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation, bending of

particles and interference of photons, Bragg, etc.) can be derived from

the postulates. This methodology makes sure, that the approach is in ac-

cordance with the basic laws of physics, in other words, with well proven

experimental data.

Due to the dynamical description of the particles the present approach

has not the limitations of the standard model and is not forced to introduce

artificial objects or constructions.

odomann@yahoo.com
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1 Introduction.

An axiomatic approach was used for the deduction of the “Emission & Regeneration”

Field Theory. To find the laws of interactions between the angular momenta of Fun-

damental Particles (FPs) a recursive procedure was followed until the well proven laws

of physics, which describe the forces between particles, were obtained.

Fig. 1 shows shematically the difference between the present approach and the

mainstream theory.

Interactions between
fundamental particles

                               Basic laws (Coulomb, Ampere, 
                               Lorentz, Maxwell, Gravitation)

Particle wave postulate (de Broglie)

Quantum mechanics (Schroedinger)
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Figure 1: Methodology followed by the present approach

The approach is based on the following main conceptual steps:

The energy of an electron or positron is modeled as being distributed in the space

around the particle‘s radius ro and stored in fundamental particles (FPs) with longitu-

dinal and transversal angular momenta. FPs are emitted continuously with the speed

ve s̄e and regenerate the electron or positron continuously with the speed vr s̄. There

are two types of FPs, one type that moves with light speed and the other type that
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moves with nearly infinite speed relative to the focal point of the electron or positron.

The concept is shown in Fig. 2.
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Figure 2: Particle as focal point in space

Electrons and positrons emit and are regenerated always by different types of FPs

(see sec. 12) resulting the accelerating and decelerating electrons and positrons which

have respectively regenerating FPs with light and infinite speed.

The density of FPs around the particle‘s radius ro has a radial distribution and

follows the inverse square distance law.

The concept is shown in Fig. 3

Field magnitudes dH̄ are defined as square roots of the energy stored in the FPs.

Interaction laws between the fields dH̄ of electrons and positrons are defined to obtain

pairs of opposed angular momenta J̄n on their regenerating FPs, pairs that generate

linear momenta p̄FP responsible for the forces.

Based on the conceptual steps, equations for the vector fields dH̄ are obtained

that allow the deduction of all experimentally proven basic laws of physics, namely,

Coulomb, Ampere, Lorentz, Gravitation, Maxwell, Bragg, Stern Gerlach and the flat-

tening of galaxies’ rotation curve.

Note: In this approach

Basic Subatomic Particles (BSPs) are:

• for v < c the electron and the positron

• for v = c the neutrino
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Figure 3: Regenerating Fundamental Particles of a BSP

Complex Subatomic Particles (CSPs) are:

• for v < c the proton, the neutron and nuclei of atoms.

• for v = c the photon.

BSPs and CSPs with speeds v < c emit and are regenerated by FPs that are

provided by the emissions of other BSPs and CSPs with speeds v < c.

BSPs and CSPs with v = c don’t emit and are not regenerated by FPs and move

therefore independent from other particles.

2 Space distribution of the energy of basic sub-

atomic particles.

The total energy of a basic subatomic particle (BSP) with constant v 6= c is

E =
√
E2
o + E2

p Eo = m c2 Ep = p c p =
m v√
1− v2

c2

(1)

The total energy E = Ee is split in

Ee = Es + En with Es =
E2
o√

E2
o + E2

p

and En =
E2
p√

E2
o + E2

p

(2)
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and differential emitted dEe and regenerating dEs and dEn energies are defined

dEe = Ee dκ = ν Je dEs = Es dκ = ν Js dEn = En dκ = ν Jn (3)

with the distribution equation

dκ =
1

2

ro
r2
dr sinϕ dϕ

dγ

2π
(4)

The distribution equation dκ gives the part of the total energy of a BSP moving

with v 6= c contained in the differential volume dV = dr rdϕ r sinϕ dγ.

The concept is shown in Fig. 4.
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Figure 4: Unit vector s̄e for an emitted FP and unit vectors s̄ and n̄
for a regenerating FP of a BSP moving with v 6= c

The differential energies are stored as rotations in the FPs which define the longi-

tudinal angular momenta J̄e = Je s̄e of emitted FPs and the longitudinal J̄s = Js s̄

and transversal J̄n = Jn n̄ angular momenta of regenerating FPs (see also Fig. 2).

The rotation sense in moving direction of emitted longitudinal angular momenta

J̄e defines the sign of the charge of a BSP. Rotation senses of J̄e and J̄s are always

opposed. The direction of the transversal angular momentum J̄n is the direction of a

right screw that advances in the direction of the velocity v and is independent of the

sign of the charge of the BSP.

Conclusion: The elementary charge is replaced by the energy (or mass) of a resting

electron (Ee = 0.511 MeV ). The charge of a complex SP (e.g. proton) is given by the

difference between the constituent numbers of BSPs with positive J̄
(+)
e and negative

J̄
(−)
e that integrate the complex SP, multiplied by the energy of a resting electron. As
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examples we have for the proton with n+ = 919 and n− = 918 and a binding energy

of EBprot = −0.43371 MeV a charge of (n+ − n−) ∗ 0.511 = 0.511 MeV , and for the

neutron with n+ = 919 and n− = 919 and a binding energy of EBneutr = 0.34936 MeV

a charge of (n+ − n−) ∗ 0.511 = 0.0 MeV .

The unit of the charge thus is the Joule (or kg). The conversion from the electric

current Ic (Ampere) to the mass current Im is given by

Im =
m

q
Ic = 5, 685631378 · 10−12 Ic

[
kg

s

]
(5)

with m the electron mass in kilogram and q the elementary charge in Coulomb.

Note: The Lorentz invariance of the charge from today’s theory has its equivalent in

the invariance of the difference between the constituent numbers of BSPs with positive

J̄
(+)
e and negative J̄

(−)
e that integrate the complex SP, multiplied by the energy of a

resting electron. In the present paper the denomination charge will be used according

the previous definition.

3 Definition of the field magnitudes dHs and dHn.

The field dH at a point in space is defined as that part of the square root of the energy

of a BSP that is given by the distribution equation dκ. The differential values dE and

dH refere to the differential volume dV = dr r dϕ r sinϕ dγ (see also eq. (2)). For

the emitted field we have

dH̄e = He dκ s̄e with H2
e = Ee (6)

The longitudinal component of the regenerating field at a point in space is defined

as

dH̄s = Hs dκ s̄ with H2
s = Es =

E2
o√

E2
o + E2

p

(7)

The transversal component of the regenerating field at a point in space is defined

as

dH̄n = Hn dκ n̄ with H2
n = En =

E2
p√

E2
o + E2

p

(8)

For the total field magnitude He it is

H2
e = H2

s + H2
n with H2

e = Ee (9)
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The vector s̄e is an unit vector in the moving direction of the emitted FP (Fig.

4). The vector s̄ is an unit vector in the moving direction of the regenerating FP. The

vector n̄ is an unit vector transversal to the moving direction of the regenerating FP

and oriented according the right screw rule relative to the velocity v̄ of the BSP.

Conclusion: BSPs are structured particles with emitted and regenerating FPs

with longitudinal and transversal angular momenta. The rotation sense of the angu-

lar momenta of the emitted FPs defines the sign of the charge of the BSP and the

transversal angular momenta of the regenerating FPs define the mechanical and mag-

netic moments.

4 Interaction laws for field components and gener-

ation of linear momentum.

The interaction laws for the field components dH̄s and dH̄n are derived from the follow-

ing interaction postulates for the longitudinal J̄s and transversal J̄n angular momenta.

1) If two fundamental particles from two static BSPs cross, their longitudinal ro-

tational momenta Js generate the following transversal rotational momentum

J̄ (s)
n1

= − sign(J̄s1) sign(J̄s2) (
√
Js1 s̄1 ×

√
Js2 s̄2) (10)

If both sides of eq. (10) are multiplied with
√
νs1 dκ1 and

√
νs2 dκ2, with νs the

rotational frequency, results the differential energy

dE(s)
n1

=
∣∣∣ √νs1 Js1 dκ1 s̄1 ×

√
νs2 Js2 dκ2 s̄2

∣∣∣ (11)

or

dE(s)
n1

= | dHs1 s̄1 × dHs2 s̄2 | with dHsi s̄i =
√
νsi Jsi dκi s̄i (12)

If at the same time two other fundamental particles from the same two static BSPs

generate a transversal rotational momentum −J̄ (s)
n1 , so that the components of the pair

are equal and opposed, the generated linear momentum on the two BSPs is

dp =
1

c
dE(s)

p with dE(s)
p =

∣∣∣∣∣
∫ ∞
rr1

dHs1 s̄1 ×
∫ ∞
rr2

dHs2 s̄2

∣∣∣∣∣ (13)

2) If two fundamental particles from two moving BSPs cross, their transversal
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rotational momenta Jn generate the following rotational momentum.

J̄
(n)
1 = − sign(J̄s1) sign(J̄s2) (

√
Jn1 n̄1 ×

√
Jn2 n̄2) (14)

If both sides of the equation are multiplied with
√
νn1 dκ1 and

√
νn2 dκ2, with νn

the rotational frequency, and the absolute value is taken, it is

dE
(n)
1 = | dHn1 n̄1 × dHn2 n̄2 | with dHni

n̄i =
√
νni

Jni
dκi n̄i (15)

If at the same time two other fundamental particles from the same two moving

BSPs cross, and their transversal rotational momenta generate a rotational momentum

−J̄ ′(n)1 , so that the components of the pair are equal and opposed, the generated linear

momentum on the two BSPs is

dp =
1

c
dE(n)

p with dE(n)
p =

∣∣∣∣∣
∫ ∞
rr1

dHn1 n̄1 ×
∫ ∞
rr2

dHn2 n̄2

∣∣∣∣∣ (16)

3) If a FP 1 with an angular momentum J̄1 crosses with a FP 2 with a longitudinal

angular momentum J̄s2 , the orthogonal component of J̄1 to J̄s2 is transferred to the

FP 2, if at the same instant between two other FPs 3 and 4 an orthogonal component

is transferred which is opposed to the first one. (see Fig. 11)

5 Fundamental equations for the calculation of lin-

ear momenta between subatomic particles.

The Fundamental equations for the calculation of linear momenta according to the

interaction postulates are:

a) The equation for the calculation of linear momentum between two static BSPs

according postulate 1) is

dpstat s̄R =
1

c

∮
R

{
d̄l · (s̄e1 × s̄s2)

2πR

∫ ∞
r1

He1 dκr1

∫ ∞
r2

Hs2 dκr2

}
s̄R (17)

where He1 dκr1 s̄e1 is the longitudinal field of the emitted FPs of particle 1 and

Hs2 dκr2 s̄s2 is the longitudinal field of the regenerating FPs of particle 2. The unit

vector s̄R is orthogonal to the plane that contains the closed path with radius R.

The linear momentum generated between two static BSPs is the origin of all move-

ments of particles. The law of Coulomb is deduced from eq. (17) and because of its

importance is analyzed in sec. 7.
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b) The equation for the calculation of linear momentum between two moving BSPs

according to postulate 2) is

dpdyn s̄R =
1

c

∮
R

{
d̄l · (n̄1 × n̄2)

2πR

∫ ∞
r1

Hn1 dκr1

∫ ∞
r2

Hn2 dκr2

}
s̄R (18)

where Hn1 dκr1n̄1 is the transversal field of the regenerating FPs of particle 1 and

Hn2 dκr2n̄2 is the transversal field of the regenerating FPs of particle 2.

The laws of Lorentz, Ampere and Bragg are deduced from equation (18).

c) The equations for the calculation of the induced linear momentum between a

moving and a static probe BSPp according to postulate 3) are

dp
(s)
ind s̄R =

1

c

∮
R

{
d̄l · s̄
2πR

∫ ∞
rr

Hs dκrr

∫ ∞
rp

Hsp dκrp

}
s̄R (19)

dp
(n)
ind s̄R =

1

c

∮
R

{
d̄l · n̄
2πR

∫ ∞
rr

Hn dκrr

∫ ∞
rp

Hsp dκrp

}
s̄R (20)

The upper indexes (s) or (n) denote that the linear momentum d
′
pind on the static

probe BSPp (subindex sp) is induced by the longitudinal (s) or transversal (n) field

component of the moving BSP.

The Maxwell and the gravitation laws are deduced from equations (19) and (20).

The total linear momentum for all equations is given by

p̄ =

∫
σ

dp s̄R (21)

where
∫
σ

symbolizes the integration over the whole space.

Conclusion: All forces can be expressed as rotors from the vector field dH̄ gener-

ated by the longitudinal and transversal angular momenta of the two types of funda-

mental particles defined in chapter 1.

dF̄ =
dp

dt
=

1

8 π

√
m ro rot

d

dt

∫ ∞
rr

dH̄ (22)

6 Force quantification and the radius of a BSPs.

The relation between the force and the linear momentum for all the fundamental equa-

tions of chapter 5 is given by

F̄ =
∆p

∆t
s̄R with ∆p = p− 0 = p (23)
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The force is quantized in force quanta

F = ∆p ν with ν =
1

∆t
(24)

and ∆p the quantum of action.

The time ∆t between the two BSPs is defined as

∆t = K ro1 ro2 where K = 5.4271 · 104
[ s
m2

]
(25)

is a constant and ro1 and ro2 are the radii of the BSPs.

The constant K results when eqs. (17) and (18) are equalized respectively with the

Coulomb and the Ampere equations

Fstat =
1

4πεo

Q1 Q2

d 2
Fdyn =

µo
2π

I1 I2
d

(26)

The radius ro of a particle is given by

ro =
~ c
E

with E =
√
E2
o + E2

p for BSPs with v 6= c (27)

and

E = ~ω for BSPs with v = c (28)

and is derived from the quantified far field of the irradiated energy of an oscillating

BSP [10].

7 Analysis of linear momentum between two static

BSPs.

In this section the static eq.(17) is analyzed in order to explain

• why BSPs of equal sign don’t repel in atomic nuclei

• how gravitation forces are generated

• why atomic nuclei radiate

Although the analysis is based only on the static eq.(17) for two BSPs, neglecting

the influence of the important dynamic eq.(18) that explains for instance the magnetic

moment of nuclei, it shows already the origin of the above listed phenomena.

With the integration limits shown in Fig. 5 and considering that for static BSPs it

is ro1 = ro2 = ro and m1 = m2 = m, the integration limits are

12
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Figure 5: Integration limits for the calculation of the linear momentum
between two static basic subatomic particles at the distance d

ϕmin = arcsin
ro
d

ϕmax = π − ϕmin for d ≥
√
r2o + r2o (29)

ϕmin = arccos
d

2 ro
ϕmax = π − ϕmin for d <

√
r2o + r2o (30)

and eq.(17) transforms to

pstat =
m c r2o
4 d 2

∫ ϕ1max

ϕ1min

∫ ϕ2max

ϕ2min

| sin3(ϕ1 − ϕ2)| dϕ2 dϕ1 (31)

The double integral becomes zero for d → 0 because the integration limits ap-

proximate each other taking the values ϕmin = π
2

and ϕmax = π
2
. For d � ro the

double integral becomes a constant because the integration limits tend to ϕmin = 0

and ϕmax = π.

Fig.6 shows the curve of eq.(17) where five regions can be identified with the help

of d/ro = γ from the integration limits:

1. From 0� γ � 0.1 where pstat = 0

2. From 0.1� γ � 1.8 where pstat ∝ d 2

3. From 1.8� γ � 2.1 where pstat ≈ constant

4. From 2.1� γ � 518 where pstat ∝ 1
d

5. From 518� γ �∞ where pstat ∝ 1
d 2 (Coulomb)

The first and second regions are where the BSPs that form the atomic nucleus

are confined and in a dynamic equilibrium. BSPs of different sign of charge don’t mix

in the nucleus because of the different signs their longitudinal angular momentum of

the emitted FPs have.
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Figure 6: Linear momentum pstat as function of γ = d/ro between two static
BSPs with maximum at γ = 2

For BSPs that are in the first region, the attracting or repelling forces are zero

because the angle β between their longitudinal rotational momentum is β = π + ϕ1 −
ϕ2 = π . BSPs that migrate outside the first region are reintegrated or expelled with

high speed when their FPs cross with FPs of the remaining BSPs of the atomic nucleus

because the angle β < π.

Fig.7 shows two neutrons where at neutron 1 the migrated BSP ”b” is reintegrated,

inducing at neutron 2 the gravitational linear momentum according postulate 3) of sec

4.

At stable nuclei all BSPs that migrate outside the first region are reintegrated, while

at unstable nuclei some are expelled in all possible combinations (electrons, positrons,

hadrons) together with neutrinos and photons maintaining the energy balance.

As the force described by eq. (20) induced on other particles during reintegration

has always the direction and sense of the reintegrating particle (right screw of J̄n)

independent of its charge, BSPs that are reintegrated induce on other atomic nuclei

the gravitation force. The inverse square distance law for the gravitation force results

from the inverse square distance law of the radial density of FPs that transfer their

angular momentum from the moving to the static BSPs according postulate 3) of sec.
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4. Gravitation force is thus a function of the number of BSPs that migrate and are

reintegrated in the time ∆t (migration current), and the reintegration velocity.

The third region gives the width of the tunnel barrier through which the ex-

pelled particles of atomic nuclei are emitted. As the reintegration process of BSPs that

migrate outside the first region depend on the special dynamic polarization of the re-

maining BSPs of the atomic nucleus, particles are not always reintegrated but expelled

when the special dynamic polarization is not fulfilled. The emission is quantized and

follows the exponential radioactive decay law.

The fourth region is a transition region to the Coulomb law.

The transition value γtrans = 518 to the Coulomb law was determined by comparing

the tangents of the Coulomb equation and the curve from Fig.6. At γtrans = 518 the

ratio of their tangents begin to deviate from 1.

At the transition distance dtrans, where γtrans = 518, the inverse proportionality to

the distance dtrans from the neighbor regions must give the same force Ftrans

Ftrans =
1

∆t

K
′

dtrans
=

1

∆t

K
′
F

d 2
trans

(32)

with K
′

and K
′
F the proportionality factors of the fourth and fifth regions.
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The transition distance for a Carbon nucleus C12 is, with mp and mn the mass of

the proton and neutron respectively,

dtrans = γ ro = γ
~ c
Eo

= 518
~ c

6 (mp +mn) c2
= 9.0724 fm (33)

The fifth region is where the Coulomb law is valid.

8 Ampere bending (Bragg law).

With the fundamental eq. (18) from sec. 5 for parallel currents the force density

generated between two straight parallel currents of BSPs due to the interactions of

their transversal angular momenta is calculated in [10] and gives

F

∆l
=

b

c ∆ot

r2o
64 m

Im1 Im2

d

∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (34)

with
∫ ∫

Ampere
= 5.8731.

In the case of the bending of a BSP the interaction is now between one BSP moving

with speed v2 and one reintegrating BSP of a nucleon that moves with the speed v1

parallel to v2. The reintegration of a migrated BSP is described in sec. 7.

The concept is shown in Fig. 8
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mh

Figure 8: Bending of BSPs
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For v � c it is

ρx =
Nx

∆x
=

1

2 ro
Im = ρ m v ∆ot = K r2o p = F ∆ot (35)

We get for the force

F =
b

4 ∆ot

5.8731

64 c

√
m v1

√
m v2

d
∆l (36)

We have defined a density ρx of BSPs for the current so that one BSP follows

immediately the next without space between them. As we want the force between one

pair of BSPs of the two parallel currents we take ∆l = 2 ro.

The interaction between the two parallel BSPs takes place along a distance ∆
′′
l =

v2 ∆
′′
t giving a total bending momentum pb = F ∆

′′
t. With all that we get

pb =
b

2 K ro

5.8731

64 c

m v1
d

∆
′′
l (37)

which is independent of the speed v2. In [10] the speed of a reintegrating BSP is

deduced giving v1 = k c with k = 7.4315 · 10−2. We get

pb =
b

2 K ro

5.8731

64 c

m k c

d
∆

′′
l (38)

If we now write the bending equation with the help of tan η = 2 sin θ for small η

and with 2 d = dA we get

sin θ =
pb

2 pi
=

(
5.8731 b m v1
64 c K ro h

∆
′′
l

)
h

2 pi dA
n (39)

To get the Bragg law the expression between brackets must be constant and equal

to the unit what gives for the constant interaction distance ∆
′′
l

∆
′′
l =

64 c K ro h

5.8731 b m k c
= 8.9357 · 10−9 m (40)

We get for the bending momentum and force

pb =
h

dA
n Fb =

1

2

h

d ∆ot
=

1

2

n Eo
d

(41)

The bending force is quantized in energy quanta equal to the rest energy Eo of a

BSP.

Conclusion: We have derived the Bragg equation without the concept of particle-

wave introduced by de Broglie. Numerical results obtained using the quantized ir-

radiated energy instead of the particle-wave are equivalent, different is the physical

interpretation of the underlying phenomenon.
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8.1 Dark matter and dark energy.

In section 7 we have seen in Fig. 7 that the origin of the gravitation force is the induced

force due to the reintegration of migrated BSPs in the direction of the two gravitating

bodies. When a BSP is reintegrated to a neutron, the two BSPs of different signs that

interact, produce an equivalent current in the direction of the positive BSP as shown

in Fig. 9.
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-
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Neutron 1 2Neutron 

RF
RF1M
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Figure 9: Resulting current due to reintegration of migrated BSPs

As the numbers of positive and negative BSPs that migrate in one direction at one

neutron are equal, no average current should exists in that direction in the time ∆t. It

is

∆R = ∆+
R + ∆−R = 0 (42)

We now assume, that because of the energy interchange between the two neutrons a

synchronization exists between the reintegration of BSPs of equal sign in the orthogonal

direction of the two neutrons, resulting in parallel currents of equal signs that generate

an attracting force between the neutrons. Thus the resulting attractive force between

the two neutrons is produced by the induced force and the currents of reintegrating

BSPs.

FT = FG + FR with FG = G
M1 M2

d2
and FR = R

M1 M2

d
(43)

To obtain an equation for the force FR we start with eq. (38) from sec. 8 which
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was calculated for one pair of BSPs.

pb =
1

2

(
5.8731

64

b m k

K ro
∆

′′
l

)
1

d
n =

h

2 d
n (44)

with b = 0.25, K = 5.4274 · 104 s/m2, ro = 3.8590 · 10−13 m and

k = 7.4315 · 10−2 ∆
′′
l = 8.9357 · 10−9 m ∆o t = 8.0821 · 10−21 s (45)

The force for one pair of BSPs is given by

dFR =
pb

∆ot
=

1

2

h νo
d

=
1

2

Eo
d

n = 1 (46)

or

dFR =
pb

∆ot
=
KDark

d
with KDark =

1

2

h

∆ot
= 4.09924 · 10−14 Nm (47)

The total force is

FR =
KDark

d
∆R1 ∆R2 = R

M1 M2

d
(48)

We get

∆R1 ∆R2 =
R

KDark

M1 M2 (49)

or

∆R1 ∆R2 = γ2R M1 M2 with γ2R =
R

KDark

(50)

and

∆R = γR M (51)

The total attraction force gives

FT = FG + FR =

[
G

d2
+
R

d

]
M1 M2 (52)

For sub-galactic distances the induced force FG is predominant, while for galactic

distances the force of parallel reintegrating BSPs FR predominates, as shown in Fig.

10.
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Figure 10: Gravitation forces at sub-galactic and galactic distances.

Calculation example:

For the sun with vorb = 220 km/s and M2 = M� = 2 · 1030 kg and a distance to

the core of the Milky Way of d = 25 · 1019 m we get a centrifugal force of

Fc = M2
v2orb
d

= 3.872 · 1020 N (53)

With the mass of the core of the Milky Way of M1 = 4 · 106 M� and

Fc = FT ≈ FR = R
M1 M2

d
we get R = 6.05 · 10−27 Nm/kg2 (54)

and with

FG = FR we get dgal =
G

R
= 1.103 · 1016 m (55)

justifying our assumption for FT ≈ FR because the distance between the sun and

the core of the Milky Way is d� dgal.

We also have that

γR =

√
R

KDark

= 3.842 · 10−7 kg−1 (56)

Note: The flattening of galaxies´ rotation curve was derived based on the assump-

tion that the gravitation force is composed of an induced component and a component

due to parallel currents of reintegrating BSPs and, that for galactic distances the in-

duced component can be neglected.
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Dark energy: We also may assume that the synchronization of the reintegrating

BSPs in the orthogonal direction of the two neutrons results in parallel currents of

opposed signs, generating a repulsive force between the two neutrons what is called

dark energy .

9 Induction between a moving and a probe BSP.

In the present approach the energy of a BSP is distributed in space around the radius

(focal point) of the BSP. The carriers of the energy are the FPs with their angular

momenta, FPs that are continuously emitted and regenerate the BSP. At a free moving

BSP each angular momentum of a FP is balanced by an other angular momentum of

a FP of the same BSP.

The concept is shown in Fig. 11.
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Figure 11: Linear momentum balance between static and moving BSPs

Opposed transversal angular momenta dH̄n and−dH̄n from two FPs that regenerate

the BSP produce the linear momentum p̄ of the BSP. If a second static probe BSPp

appropriates with its regenerating angular momenta (dH̄sp) angular momenta (dH̄n)

from FPs of the first BSP according postulate 3) of sec. 4, angular momenta that built

a rotor different from zero in the direction of the second BSPp generating dp̄ip , the first

BSP loses energy and its linear momentum changes to p̄− dp̄ip . The angular momenta
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appropriated at point P by the probe BSPp generating the linear momentum dp̄ip are

missing now at the first BSP to compensate the angular momenta at the symmetric

point P
′
. The linear momenta at the two symmetric points are therefore equal and

opposed d
′
p̄i = −dp̄ip because of the symmetry of the energy distribution function

dκ(π − θ) = dκ(θ).

As the closed linear integral
∮
dH̄n dl̄ generates the linear momentum p̄ of a BSP,

the orientation of the field dH̄n (right screw in the direction of the velocity) must be

independent of the sign of the BSP, sign that is defined by J̄
(±)
e .

10 Quantification of irradiated energy and move-

ment.

10.1 Quantification of irradiated energy.

To express the energy irradiated by a BSP as quantified in angular momenta over time

we start with

E = Ee = Es + En =
√
E2
o + E2

p ∆t = Krorop ro =
~ c
Ee

rop =
~ c
Eo

(57)

with ro the radius of the moving particle and rop the radius of the resting probe

particle. It is

∆t = Krorop
rop
rop

= Kr2op
ro
rop

= ∆ot
ro
rop

(58)

with

∆ot = ∆t(v=0) = K
~2 c2

E2
o

= 8.082097 · 10−21 s with K = 5.4274 · 104 s/m2 (59)

We now define Ee ∆t and get

Ee ∆t = K
~2 c2

Eo
= K

h2

4 π2 m
= h (60)

equation that is valid for every speed 0 ≤ v ≤ c of the BSP giving

Ee ∆t = Eo ∆ot = h (61)

where h is the Planck constant.
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Note: In the equation Ee ∆t = h the energy Ee is the total energy of the moving

particle and the differential time ∆t is the time the differential momentum ∆p is active

to give the force F = ∆p/∆t between the moving and the probe particle.

In connection with the quantification of the energy E = J ν the following cases are

possible:

• A common frequency νg exists and the angular momentum J is variable.

• A common angular momentum Jg exists and the frequency ν is variable.

The concept is shown in Fig. 12.

h
r

h
r

h
r

h
r

h
r

h
r

photon

h
r

h
r neutrino

v
r

ev
r

rv
r

rv
r

nJ
r

nJ
r

elemp
r

positronelectron /

v
r

ev
r

eJ
r

eJ
r

sJ
r

sJ
r J  variableandíCommon  g

r

í  variableand hCommon 
r

cu
rr

±cu
rr

±

Figure 12: Quantification of linear momentum

We define for a common angular momentum Jg = h the equivalent angular frequen-

cies ν, νo and νp with the following equations

E = Ee = h ν ν =
1

∆t
and Ep = p c = h νp (62)

and

Eo = m c2 = h νo νo =
1

∆ot
= 1.2373 · 1020 s−1 (63)

23



We have already defined the angular frequencies νe, νs and νn for the FPs with the

following equations

Ee = Es + En and dEe = dEs + dEn (64)

With a common angular momentum Jg = h it is

dEe = Ee dκ = h νe dEs = Es dκ = h νs dEn = En dκ = h νn (65)

The relation between the angular frequencies of FPs and the equivalent angular

frequencies is

ν =
∑
i

νei =
∑
i

νsi +
∑
i

νni
=
√
ν2o + ν2p (66)

If all FPs have the same angular frequency νei = νsi = νni
= νFP we get

ν = Ne νFP = Ns νFP + Nn νFP =
√
ν2o + ν2p (67)

with N the corresponding total number of FPs of the BSP. If we multiply the

equation with h we get

h ν = Ne h νFP = Ns h νFP + Nn h νFP = h
√
ν2o + ν2p (68)

or

E = Ee = Es + En =
√
E2
o + E2

p (69)

with EFP = h νFP the energy of one FP.

10.1.1 Fundamental equations expressed as functions of the powers ex-

changed by the BSPs.

We define the quantized emission of energy for a BSP with v 6= c defining the power as

Pe =
Ee
∆t

= Ee ν ν =
1

∆t
(70)

Pe =
Ee
∆t

=
1

∆t

√
E2
o + E2

p =
√
P 2
o + P 2

p = Es ν + En ν = Ps + Pn (71)

where

Po = Eo ν Pp = Ep ν Ps = Es ν Pn = En ν (72)
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For the differential powers we get

dPe = ν Ee dκ dPs = ν Es dκ dPn = ν En dκ (73)

Now we show that the fundamental equations of sec 5 for the generation of linear

momentum can be expressed as functions of the powers of their interacting BSPs.

With

dE = E dκ dH =
√
E dκ = H dκ and

H√
∆t

=
√
E ν =

√
P (74)

the equations for the Coulomb, Ampere and induction forces of sec. 5 can be

transformed to

d
′
F s̄R =

d
′
p

∆t
s̄R ∝

1

c

∮
R

{∫ ∞
r1

H1√
∆t

dκr1

∫ ∞
r2

H2√
∆t

dκr2

}
s̄R (75)

and expressed as a function of the powers of the interacting BSPs

d
′
F s̄R =

d
′
p

∆t
s̄R ∝

1

c

∮
R

{∫ ∞
r1

√
P1 dκr1

∫ ∞
r2

√
P2 dκr2

}
s̄R (76)

It is also possible to define differential energy fluxes for BSPs. We start with

dPe = ν Ee dκ dPs = ν Es dκ dPn = ν En dκ (77)

and with

dκ =
1

2

ro
r2
dr sinϕ dϕ

dγ

2π
and dA = r2 sinϕ dϕ dγ (78)

The concept is shown in Fig. 13.

The cumulated differential energy flux is∫ ∞
r

dPe = ν E

∫ ∞
r

dκ = ν E
1

2

ro
r

sinϕ dϕ
dγ

2π
J s−1 (79)

The cumulated differential energy flux density is∫ ∞
r

dSe =
1

dA

∫ ∞
r

dPe = ν Ee
1

4π

ro
r3

J

m2 s
(80)

To get the total cumulated energy flux through a sphere with a radius r we make

25



Electron

jd

cve =
r

r

gd
h

dS

dA

j

Figure 13: Emitted Energy flux density dS of a moving electron

ro = r and integrate over the whole surface A = 4π r2 of the sphere and get

4π r2
∫ ∞
r

dSe = ν Ee
J

m2 s
(81)

Note: The differential energy flux density is independent of ϕ and γ and therefore

independent of the direction of the speed v. This is because of the relativity of the

speed v that does not define who is moving relative to whom.

10.1.2 Physical interpretation of an electron and positron as radiating and

absorbing FPs:

The emitted differential energy is

dEe = Ee dκ =
h

∆t

1

2

ro
r2
dr sinϕ dϕ

dγ

2π
(82)

With the help of Fig. 13 we see that the area of the sphere is A = 4πr2, and we get

dEe =
h

∆t A
ro dr sinϕ dϕ dγ (83)

We now define

dEe = σh ro dr sinϕ dϕ dγ with σh =
h

∆t A
(84)

where σh is the current density of fundamental angular momentum h.

We can also write

dEe = σh dA with dA = ro dr sinϕ dϕ dγ (85)
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10.2 Energy and density of Fundamental Particles.

10.2.1 Energy of Fundamental Particles.

The emission time of photons from isolated atoms is approximately τ = 10−8 s what

gives a length for the train of waves of L = c τ = 3 m. The total energy of the emitted

photon is Et = h νt and the wavelength is λt = c/νt. We have defined (see Fig. 12),

that the photon is composed of a train of FPs with alternated angular momenta where

the distance between two consecutive FPs is equal λt/2. The number of FPs that build

the photon is therefore L/(λt/2) and we get for the energy of one FP

EFP =
Et λt
2 L

=
h

2 τ
= 3.313 · 10−26 J = 2.068 · 10−7 eV (86)

and for the angular frequency of the angular momentum h

νFP =
EFP
h

=
1

2 τ
= 5 · 107 s−1 (87)

The number NFPo of FPs of an resting BSP (electron or positron) is

NFPo =
Eo
EFP

= 2.4746 · 1012 (88)

Note: The frequency νt represents a linear frequency where the relation with the

velocity v and the wavelength λt is given by v = λt νt. The frequency νFP represents

the angular frequency of the angular momentum h.

The momentum generated by a pair of FPs with opposed angular momenta is

pFP =
2 EFP
c

= 2.20866 · 10−34 kg m s−1 (89)

The angular momentum of a FP is h = ρ p and we get

ρ =
h

pFP
= 3.0 m (90)

Note: Isolated FPs have only angular momenta, they have no linear momenta

and therefore cannot generate a force through the change of linear momenta . Linear

momentum is generated only out of pairs of FPs with opposed angular momentum. It

makes no sense to define a dynamic mass for FPS because they have no linear inertia,

which is a product of the energy stored in FPs with opposed angular momenta. FPs

that meet in space interact changing the orientation of their angular momenta but

conserving each its energy EFP = 3.313 · 10−26 J .
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10.2.2 Density of Fundamental Particles.

We have defined that

dE = E dκ = E
1

2

ro
r2
dr sinϕ dϕ

dγ

2π
and dV = r2 dr sinϕ dϕ dγ (91)

resulting for the energy density

ω =
dE

dV
=

E

4π

ro
r4

J m−3 (92)

The density of FPs we define as

ωFP =
ω

EFP
=

1

4π

E

EFP

ro
r4

m−3 (93)

with EFP = h νFP = 3.313 · 10−26 J .

The concept is shown in Fig. 3

The energy emitted by a BSP is equal to the sum of the energies of the regenerating

FPs with longitudinal (s) and transversal (n) angular momenta. The corresponding

densities are

ω
(s)
FP =

1

4π

Es
EFP

ro
r4

ω
(n)
FP =

1

4π

En
EFP

ro
r4

m−3 (94)

As Ee = Es + En we get

ω
(e)
FP = ω

(s)
FP + ω

(n)
FP m−3 (95)

The number dNFP of FPs in a volume dV is given with

dNFP = ωFP dV and with dV = r2 dr sinϕ dϕ dγ (96)

we get

dNFP =
1

2π

E

EFP
dκ (97)

With the definition of µFP = EFP/c
2, where µFP is the dynamic mass of a FP, we

get for the density of the mass

ωµ =
µFP dNFP

dV
= µFP ωFP kg m−3 (98)

The rest mass m of a BSP expressed as a function of the dynamic mass µFP of its
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FPs is

m = NFPo µFP =
νo
νFP

µFP (99)

Note: In the present theory all BSPs are expressed through FPs with the Energy

EFP , the angular frequency νFP and the dynamic mass µFP .

10.3 Quantification of movement.

An isolated moving BSP has a potential energy

E = Es + En (100)

which is a function of the relative speed v to the selected reference coordinate. The

potential energy will manifest when the isolated moving BSP interacts with a BSP

which is static in the selected coordinate system.

The time variation ∆t derived for the variation dp of the momentum for the

Coulomb, Ampere and Induction forces between two BSPs, we use also as time varia-

tion to describe the movement of a BSP that moves with constant speed v = ∆x/∆t

where dp = 0.

The energy En is responsible for the movement of the BSP and the number of FPs

that generate the movement during the time ∆t is

N
(n)
FP =

En
EFP

(101)

The total momentum of a BSP moving with constant speed v is therefore

p = m v = N
(n)
FP pFP = m

∆x

∆t
(102)

with pFP defined in eq. (89). For ∆x we get

∆x = N
(n)
FP pFP

∆t

m
(103)

For v = 0 we get

v = 0 En = 0 N
(n)
FP = 0 ∆x = 0 (104)

For v → c we get with ∆t = K r2o with ro the radius of the moving BSP

v → c Ep →∞ En →∞ N
(n)
FP →∞ ∆t→ 0 (105)
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lim
v→c

∆x = lim
v→c

2 K ~2 c
m Ep

= 0 for v → c (106)

lim
v→c

∆x

∆t
= v (107)

Note: For the isolated BSP moving with constant speed v we have no static probe

BSP with radius rop that measures the force between them, force that is zero because

dp = 0. There is no difference between the two BSPs and the equation ∆t = K ro rop

becomes ∆t = K r2o with ro the radius of the moving BSP.

11 Quantification of forces between BSPs and CSPs.

In [10] the speed v = k c was derived with which migrated BSP are reintegrated

generating the Coulomb force and the two components of the gravitation force. In sec.

10.2.1 we have seen that the momentum generated by one pair of FPs with opposed

angular momenta is

pFP =
2 EFP
c

= 2.20866 · 10−34 kgms−1 (108)

We define now an elementary momentum

pelem = m k c = 2.0309 · 10−23 kgms−1 (109)

The number of pairs of FPs required to generate the momentum pelem in the time

∆ot is

pelem
pFP

= 9.1951 · 1010 (110)

In the following subsections we express all known forces quantized in elementary

linear momenta pelem.

11.1 Quantification of the Coulomb force.

From the general eq. (20) from sec. 5 for the induced force, the Coulomb force between

two BSPs was deduced in [10] giving

F2 =
a m c r2o
4 ∆ot d 2

∫ ∫
Coulomb

with

∫ ∫
Coulomb

= 2.0887 (111)

30



We now write the equation as follows

F2 = NC(d)
1

∆ot
pelem = NC(d) νo pelem pelem = m k c a = 8.774 · 10−2 (112)

with

NC(d) =
a r2o

4 k d 2

∫ ∫
Coulomb

= 9.1808 · 10−26
1

d2
(113)

νC(d) = NC(d) νo gives the number of elementary linear momenta pelem during the

time ∆ot resulting in the force F2.

For an inter-atomic distance of d = 10−10 m we get NC = 9.1808 · 10−6 resulting a

frequency of elementary momenta of

νC(d) = NC(d) νo = 1.1359 · 1015 s−1 for d = 10−10 m (114)

11.2 Quantification of the Ampere force between straight in-

finite parallel conductors.

From the general eq. (18) from sec. 5 the Ampere force between two parallel conductors

was derived in [10] arriving to

F

dl
=

b

c ∆t

r2o
64 m

Im1 Im2

d

∫ ∫
Ampere

with

∫ ∫
Ampere

= 5.8731 (115)

and b = 0.25. We now write the equation in the following form assuming that the

velocity of the electrons is v << c so that ∆t ≈ ∆ot and the currents are Im ≈ ρx m v,

where ρx = Nx/∆x is the linear density of electrons that move with speed v in the

conductors.

F = NA(d, Im1 , Im2 , ∆l) νo pelem pelem = k m c νo =
1

∆ot
(116)

with

NA(d, Im1 , Im2 , ∆l) =
b r2o

64 k m2 c2
Im1 Im2

d

∫ ∫
Ampere

∆l (117)

or

NA(d, Im1 , Im2 , ∆l) = 6.1557 · 1017 Im1 Im2

d
∆l (118)
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For a distance of 1m between parallel conductors with a length of ∆l = 1m and

currents of 1A we get NA = 6.1557 · 1017. The frequency of elementary momenta for

this particular case

νA = NA(d, Im1 , Im2 , ∆l) νo = 7.6158 · 1037 s−1 (119)

11.3 Quantification of the induced force between aligned rein-

tegrating BSPs.

From the general eq. (20) from sec. 5 for the induced force, the force between a pair

of aligned reintegrating BSPs was deduced in [10] giving

Fi =
k m c

4 K d 2

∫ ∫
Induction

with

∫ ∫
Induction

= 2.4662 (120)

This equation was derived for two BSPs of two bodies, for which the gravitation

force must be

FG = Fi ∆G1 ∆G2 = G
M1 M2

d 2
with G = 6.6726 · 10−11 (121)

where ∆Gi
is the number of reintegrating BSPs of Mi independent of the sign of a

BSPs. It is

∆G = |∆+
G|+ |∆

−
G| (122)

We get that

∆G1 ∆G2 = G
4 K M1 M2

m k c
∫ ∫

Induction

(123)

and

∆G1 ∆G2 = 2.8922 · 1017 M1 M2 = γ2G M1 M2 (124)

and

∆G = γG M with γG = 5.3779 · 108 kg−1 (125)

Eq. (120) we can write with ∆ot = K r2o and pelem = k m c as

Fi = Ni νo pelem with Ni =
r2o

4 d 2

∫ ∫
Induction

(126)
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We get for the total induced gravitation force FG

FG = Fi ∆G1 ∆G2 = NG νo pelem with NG = Ni ∆G1 ∆G2 (127)

Finally we get

FG = NG(M1,M2, d) νo pelem with NG = 2.6555 · 10−8
M1 M2

d2
(128)

The frequency with which elementary momenta are generated is

νG = NG(M1,M2, d) νo = 3.2856 · 1012 M1 M2

d2
(129)

For the earth with a mass of M⊕ = 5.974 · 1024 kg and the sun with a mass of

M� = 1.9889 · 1030 kg and a distance of d = 147.1 · 109 m we get a frequency of

νG = 1.8041 · 1045 s−1 for aligned reintegrating BSPs.

11.4 Quantification of Ampere force between parallel reinte-

grating BSPs.

From sec. 8.1 we have for a pair of parallel reintegrating BSPs eq. (46) which is

dFR =
pb

∆ot
=

1

2

h

∆ot

1

d
(130)

which we can write as

dFR = N νo pelem with pelem = k m c and N =
1

2

h

k m c d
(131)

where

k = 7.4315 · 10−2 (132)

For ∆R1 and ∆R2 BSPs we get for the total force

FR = dFR ∆R1 ∆R2 = NR νo pelem with NR = N ∆R1 ∆R2 (133)
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and with ∆R1 ∆R2 = γ2R M1 M2 with γR = 3.842 · 10−7 we get

FR = NR(M1,M2, d,∆l) νo pelem with NR = 2.4080 · 10−24
M1 M2

d
(134)

The frequency with which pairs of FPs cross in space is

νR = NR(M1,M2, d,∆l) νo = 2.9792 · 10−4
M1 M2

d
s−1 (135)

For the earth with a mass of M⊕ = 5.974 · 1024 kg and the sun with a mass of

M� = 1.9889 · 1030 kg and a distance of d = 147.1 · 109 m we get a frequency of νR =

2.4063 · 1040 s−1 for parallel reintegrating BSPs. The frequency νG = 1.8041 · 1045 s−1

for aligned BSPs is nearly 105 times grater than the frequency for parallel reintegrating

BSPs and so the corresponding forces.

11.5 Quantification of the total gravitation force.

The total gravitation force is given by the sum of the induced force between aligned

reintegrating BSPs and the force between parallel reintegrating BSPs.

FT = FG + FR = [NG(M1,M2, d) + NR(M1,M2, d,∆l)] pelem νo (136)

or

FT = FG + FR = pelem νo

[
2.6555 · 10−8

d2
+

2.4080 · 10−24

d

]
M1 M2 (137)

We define the distance dgal as the distance for which FG = FR and get

dgal =
2.6555 · 10−8

2.4080 · 10−24
= 1.103 · 1016 m (138)
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12 Conventions introduced for BSPs.

Fig. 14 shows the convention used for the two types of electrons and positrons intro-

duced.

The accelerating positron emits FPs with high speed ve =∞ and positive longitu-

dinal angular momentum J̄ +
s (∞+) and is regenerated by FPs with low speed vr = c

and negative longitudinal angular momentum J̄ −s (c−).

The decelerating electron emits FPs with low speed ve = c and negative longitudinal

angular momentum J̄ −s (c−) and is regenerated by FPs with high speed vr = ∞ and

positive longitudinal angular momentum J̄ +
s (∞+).

The emitted FPs of the accelerating positron regenerate the decelerating electron

and the emitted FPs of the decelerating electron regenerate the accelerating positron.

BSP ngAccelerati

BSP ngDecelerati

BSP Positive BSP Negative

BSP NegativeBSP Positive

Figure 14: Conventions for BSPs

Fig. 15 a) shows a neutron with the internal and external rays for emitted and

regenerating FPs. The complex SP is formed by accelerating positrons and decelerating

electrons.

Fig. 15 b) shows a proton with the net external rays for emitted and regenerating

FPs. The complex SPs is formed by accelerating positrons and decelerating electrons.
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Figure 15: Neutron and proton
composed of accelerating positrons and decelerating electrons
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Fig. 16 shows a neutron with one migrated BSP and the net external field.
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Figure 16: Neutron with migrated BSP

13 Flux density of FPs and scattering of particles.

13.1 Flux density of FPs.

At each BSP the flux density of emitted FPs is equal to the flux density of regenerating

FPs although the different speeds of the FPs.

In a complex SP formed by more than one BSP (Fig.15), a mutual internal regener-

ation between the BSPs of the complex SP exists. Part of the emitted positive rays of

FPs with J̄
(+)
e of the positive BSPs of the complex SP regenerate the negative BSPs of

the complex SP, and part of the emitted negative rays of FPs with J̄
(−)
e of the negative

BSPs regenerate the positive BSPs. The other part of the emitted and regenerating

rays of FPs respectivelly radiate into space and regenerate from space.

At a complex SP with equal number of positive and negative BSPs Fig.15 a) the

flux density of FPs radiated into space with positive angular momenta is equal to the

flux density of FPs radiated into space with negative angular momenta. The same is

valid for the flux density of regenerating FPs.

At a complex SP with different number of positive and negative BSPs Fig.15 b)

the flux density of FPs radiated into space with positive angular momenta is not equal

to the flux density of FPs radiated into space with negative angular momenta. If the

complex SP has more positive BSPs in the nucleous, the flux density of FPs radiated
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into space with positive angular momenta is bigger than the flux density of FPs radiated

into space with negative angular momenta and vice versa.

13.2 Scattering of particles.

Elastic scattering.

There are two types of elastic scatterings according the smallest scattering distance

ds that is reached between the scattering partners.

”Electromagnetic” scatering we have when the smallest scattering distance ds is in

the fifth region of the linear momentum curve pstat of Fig.6 where the Coulomb force

is valid.

”Mechanical” scatering we have when the smallest scattering distance ds is in the

fourth region of Fig.6.

Plastic or destructive scattering.

Plastic or destructive scattering we have when the smallest scattering distance ds

enters the third and second region of the linear momentum curve pstat of Fig.6.

The internal distribution of the BSPs is modified and the acceleration disturbs the

internal mutual regeneration between the BSPs. The angular momenta of each BSP

of the scattering partners interact heavily, and new basic configurations of angular

momenta are generated, configurations that are balanced or unbalanced (stable or

unstable).

In today’s point-like representation the energy of a BSP is concentrated at a point

and scattering with a second BSP requires the emission of a particle (gauge boson) to

overcome the distance to the second BSP which then absorbs the particle. The energy

violation that results in the rest frame is restricted in time through the uncertainty

principle and the maximum distance is calculated assigning a mass to the interchanged

particle (Feynman diagrams).

Conclusion: In the present approach the emission of FPs by BSPs is continuous

and not restricted to the instant particles are scattered. In the rest frame of the scat-

tering partners no energy violation occurs. When particles are destructively scattered,

during a transition time the angular momenta of all their FPs interact heavily accord-

ing to the three interaction postulates defined in chapter 4 and new basic arrangements

of angular momenta are produced, resulting in balanced and unbalanced configurations

of angular momenta that are stable or unstable, configurations of quarks, hadrons, lep-

tons and photons. The interacting particles (force carriers) for all types of interactions

(electromagnetic, strong, weak, gravitation) are the FPs with their longitudinal and

transversal angular momenta.
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14 Spin of level electrons and the formation of ele-

ments

In sec. 12 two types of electrons and positrons were identified according the velocities

of their regenerating and emitting fundamental particles; they were named accelerating

and decelerating BSPs.

We know, that orbital electrons form pairs with opposed spins in each individual

atomic level. This is interpreted in the present model that two electrons of any indi-

vidual orbit must be of opposed type, namely accelerating and decelerating electrons.

For each type of level electron, a corresponding opposed type of positron must

exist in the atomic nucleus, to allow that the emitted fundamental particles of one can

regenerate the other. This leads to the conclusion, that protons and neutrons are also

composed of BSPs of different types.

Neutron: Composed of 919 electrons and 919 positrons. The 919 electrons are com-

posed of 459 accelerating, 459 decelerating and 1 acc/dec electrons. The 919

positrons are composed of 459 accelerating, 459 decelerating and 1 dec/acc positrons.

Proton; Composed of 918 electrons and 919 positrons. The 918 electrons are com-

posed of 459 accelerating and 459 decelerating electrons. The 919 positrons are

composed of 459 accelerating, 459 decelerating and 1 acc/dec positrons.

The definition of two types of electrons and positrons has let to protons that are

formed of BSPs that complement each other and which are of two types:

• Protons formed of accelerating positrons and decelerating electrons and

• Protons formed of decelerating positrons and accelerating electrons

The level electron associated to a proton is of the same type as the electrons of the

proton. Elements in the Periodic Table are classified according to the growing number

of protons in their nuclei and with level electrons that alternate their spin. In the

present approach the elements of the periodic table are built with alternating types of

protons and the two types of electrons with opposed spin from our standard theory are

replaced by the accelerating and decelerating electrons.

The concept is shown in Fig. 17.
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Figure 17: Level electrons of Hydrogen and Helium Atoms

14.1 Stern-Gerlach experiment and the spin of the electron.

In the Stern-Gerlach experiment neutral particles are shot through a strong inhomoge-

neous magnetic field and observed deflections are attributed in standard theory to the

magnetic angular momentum of the external unpaired electron. Stern-Gerlach experi-

ments with charged particles are not possible because of the strong Lorentz force that

makes impossible to verify the spin and supposed associated magnetic momentum of

an isolated electron.

In the present approach there are two types of electrons and positrons that explain

the two different states electrons take in energy levels of atoms, states that in standard

theory are attributed to the spin of the electron. It remains the question how to

explain with the present approach the deflections of neutral particles in the Stern-

Gerlach experiment.

In the present approach the deflections are attributed to the interactions between

the two parallel currents of BSPs, namely, the currents I1 and −I1 that generate the

magnetic inhomogeneous field and the currents im due to reintegration of BSPs at the

nuclei of the neutral particles of the atomic ray (see Fig. 18). The interactions between

parallel currents of BSPs are quantized in energy quanta equal to the rest energy of an
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electron, what explains the quantization of the deflection of the atoms of the ray.

The bending momentum and force for pairs of parallel currents were deduced in

sec. 8 eq. (41) and are

pb =
h

dA
n Fb =

1

2

h

d ∆ot
=

1

2

Eo
d
n (139)

In the Stern-Gerlach experiment the pairs of currents are formed by the current Im

and the reintegrating current im = k m c/(2 ro) = 2.6313 · 10−11 kg s−1.

The concept is shown in Fig. 18.

The resulting forces are given by the different possible combinations of the currents

I1 and the reintegrating currents im.
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Figure 18: Stern-Gerlach experiment

At a) the forces are shown which can appear individually or combined depending

of how many regenerating BSPs interact simultaneously with the currents I1.

At b) a top view of a) is shown with the regenerating currents im of the atomic

nucleus which are parallel to the currents I1, and the resulting forces Fb.

At c) a sequential Stern-Gerlach experiment is shown where the particles +Z from

SG1 are passed through SG2 and where only particles +Z are obtained if a homo-

geneous magnetic field Hz is applied between SG1 and SG2. The explanation given

by standard theory is that the magnetic momentum of the valence electron must hold

unchanged during the pass from SG1 to SG2.

The present approach explains the up or down deflection in an SG device with the
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special combination of the interacting currents I1 and im, which are defined by the

special configuration the orbital electrons and reintegrating BSPs of the atom have,

when entering the inhomogeneous magnetic field of the SG device. To have the same

combination of interacting currents with the same deflection at a second SG device, it

is necessary to hold the configuration of the orbital electrons and reintegrating BSPs of

the atoms applying the homogeneous magnetic field Hz between the two SG devices.

The approach concludes that the deflections are a characteristic only of complex

particles like the neutrons, protons, and atoms and not a characteristic of BSPs like

electrons, positrons and neutrinos, which have no reintegrating BSPs.

To introduce in standard theory the spin of an electron the assumption is made,

that at the Ag atom for instance, 46 of the electrons form together with the nucleus a

close inner core of total angular momentum zero and that the one remaining electron

has no orbital angular momentum. This would mean that the remaining level electron

is static without the possibility to compensate with its centrifugal force the attracting

force of the nucleus and collapse.

An other argument against the spin of an electron is that all theoretical efforts

made to explain the magnetic moment of an electron as a rotating charge have let to

not acceptable conclusions.

15 BSP with light speed.

BSPs with speeds v 6= c emit and are regenerated continuously by fundamental par-

ticles that have longitudinal and transversal angular momenta. With v → c, eq. (7)

becomes zero and so the longitudinal field dH̄s and the corresponding angular momen-

tum J̄s. According eq. (8) only the transversal field dH̄n and the corresponding angular

momentum J̄n remain. With v → c, the BSP reduces to a pair of FPs with opposed

transversal angular momenta J̄n, with no emission (no charge) nor regeneration.

The concept is shown in Fig. 19

Fig. 19 shows at a) a BSP with parallel p̄
‖
c linear momentum and at b) with

transversal p̄⊥c linear momentum. At c) a possible configuration of a photon is shown as

a sequence of BSPs with light speed with alternated transversal linear momentums p̄⊥c ,

which gives the wave character, and intercalated BSPs with longitudinal momentums

p̄
‖
c that gives the particle character to the photon.

Conclusion: BSPs with light speed are composed of pairs of FPs with opposed

angular momenta J̄n, they don’t emit and are not regenerated by FPs. They are not

bound to en environment that supplies continuously FPs to regenerate them. The

potential linear momentum p̄c of each pair of opposed angular momenta can have any

orientation relative to the speed c̄. BSPs with light speed can be identified with the
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Figure 19: Different forms of BSP with light speed

neutrinos.

15.1 Redshift of the energy of a complex BSP with light speed

(photon) in the presence of matter.

Fig. 20 shows a sequence of BSPs with light speed (photon) with their potential linear

momenta p before and after the interaction with the ray of regenerating FPs of the

BSPs of matter. When the regenerating rays are approximately perpendicular to the

trajectory of the opposed dHn (dots and crosses) fields of the photon, part of the energy

of the dHn field is absorbed by the regenerating FPs of the ray and carried to the BSPs

of the matter. The photon doesn’t change its direction and loses energy to the BSPs of

the matter shifting its frequency to the red. The inverse process is not possible because

the BSPs of the photon (opposed dHn fields) have no regenerating rays of FPs that

can carry energy from the BSPs of matter and shift the frequency to the violet.
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The process of loss of energy is according the interaction law 3) of sec. 4 which

postulates that pairs of regenerating FPs with longitudinal angular momenta from a

BSP can adopt opposed pairs of transversal angular momentum from another BSP (see

Fig. 11). As photons have no regenerating FPs they can only leave pairs of transversal

angular momentum to other BSPs and lose energy. During the red shift, two adjacent

opposed potential linear momenta of the photon compensate partially by passing part

of their opposed linear momenta to the BSP of matter.

The energy exchanged between a photon and an electron is

Ei =
h c

λi
Eb =

p2b
2 mp

(140)

The frequency shift of the photon is with Ei = Eo + Eb

∆ν = νi − νo =
1

h
(Ei − Eo) =

Eb
h

z =
∆ν

νi
(141)

where Ei = h c/λi is the energy before the interaction, Eo = h c/λo the energy

after the interaction and Eb the energy carried to the BSP of matter.

Light that comes from far galaxies loses energy to cosmic matter resulting in a red

shift approximately proportional to the distance between galaxy and earth (Big Bang).

Light is not bent by gravitation nor by a bending target, it is reflected and refracted

by a target.
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15.1.1 Cosmic Microwave Background radiation.

From Fig. 20 we have learned how a photon passes energy to matter shifting its fre-

quency to red. The transfer of energy takes place according postulate 8 from rays

that not necessarily hit directly matter. If we put on the place of the matter the

microwave detector of the COBE satellite we see how microwave radiation from radi-

ating bodies that are not placed directly in front of the detector lenses can reach the

detector. What is measured at the FIRAS (Far-InfraRed Absolute Spectrophotome-

ter), a spectrophotometer (Spiderweb Bolometer) used to measure the spectrum of the

CMB, is the energy lost by microwave rays that pass in front of the detector lenses.

The so called Cosmic- Background Radiation is not energy that comes from microwave

rays that have their origin in the far space in a small space angle around the detector

axis. As the loss of energy from rays of photons to the microwave detector that don’t

hit directly the detector is very low, the detector must be cooled down to very low

temperatures to detect them.

16 Findings of the proposed approach.

The main findings of the proposed model [10], from which the present paper is an

extract, are:

• The energy of a BSP is stored as rotations in FPs defining the longitudinal

angular momenta of the emitted fundamental particles. The rotation sense of

the longitudinal angular momenta of emitted fundamental particles defines the

sign of the charge of the BSP.

• All the basic laws of physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation,

bending of particles and interference of photons, Bragg) are derived from one

vector field generated by the longitudinal and transversal angular momenta of

fundamental particles, laws that in today’s theoretical physics are introduced by

separate definitions.

• The interacting particles (force carriers) for all types of interactions (electro-

magnetic, strong, weak, gravitation) are the FPs with their longitudinal and

transversal angular momenta.

• Quantification and probability are inherent to the approach.

• The incremental time to generate the force out of linear momenta is quantized.

• Gravitation has its origin in the induced momenta when BSPs that have migrated

outside their nuclei are reintegrated.
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• The gravitation force is composed of an induced component and a component

due to parallel currents of reintegrating BSPs. For galactic distances the induced

component can be neglected, what explains the flattening of galaxies´ rotation

curve. (dark matter).

• The photon is a sequence of BSPs with potentially opposed transversal linear mo-

menta, which are generated by transversal angular momenta of FPs that comply

with specific symmetry conditions.

• Permanent magnets are explained through closed energy flows at static BSPs

stored in transversal angular momenta of FPs.

• The addition of a wave to a particle (de Broglie) is effectively replaced by a

relation between the particles radius and its energy. Deflection of particles such

as the electron is now a result of the quantified bending linear momenta between

BSPs.

• The uncertainty relation of quantum mechanics form pairs of canonical conju-

gated variables between ”energy and space” and ”momentum and time”. The

Schrödinger equation results as the particular time independent case of a more

general wave differential equation where the wave function is differentiated two

times towards time and one towards space.

• The new quantum mechanics theory, based on wave function derived from the

radius-energy relation, is in accordance with the quantum mechanics theory based

on the correspondence principle.

• The present approach has no energy violation in a virtual process at a vertex of

a Fynmann diagram.

• As the model relies on BSPs permitting the transmission of linear momenta at

infinite speed via FPs, it is possible to explain that entangled photons show no

time delay when they change their state.

• The two possible states of the electron spin are replaced by the two types of

electrons defined by the present theory, namely the accelerating and decelerating

electrons.

• The splitting of the atomic beam in the Stern-Gerlach experiment is explained

with the interaction of parallel moving BSPs, interaction that is quantized in

energy quanta of one resting electron.
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Auflage 1989. AULA-Verlag Wiesbaden.

5. Max Schubert / Gerhard Weber. Quantentheorie, Grundlagen und Anwen-

dungen. Spektrum, Akad. Verlag 1993.

6. Harald Klingbeil. Electromagnetische Feldtheorie. 2. überarbeitete Auflage

2011, Vieweg + Teubner Verlag.

7. Benenson · Harris · Stocker · Lutz. Handbook of Physics. Springer Verlag

2001.

8. B.R. Martin & G. Shaw. Particle Physics. John Wiley & Sons 2003.

9. Stephen G. Lipson. Optik. Springer Verlag 1997.

10. Osvaldo Domann. “Emission & Regeneration” Field Theory. June 2003.

www.odomann.com.

47

http://www.odomann.com

	Introduction.
	Space distribution of the energy of basic subatomic particles.
	Definition of the field magnitudes  dHs  and  dHn .
	Interaction laws for field components and generation of linear momentum.
	Fundamental equations for the calculation of linear momenta between subatomic particles.
	Force quantification and the radius of a BSPs.
	Analysis of linear momentum between two static BSPs.
	Ampere bending (Bragg law).
	Dark matter and dark energy.

	Induction between a moving and a probe BSP.
	Quantification of irradiated energy and movement.
	Quantification of irradiated energy.
	Fundamental equations expressed as functions of the powers exchanged by the BSPs.
	Physical interpretation of an electron and positron as radiating and absorbing FPs:

	Energy and density of Fundamental Particles.
	Energy of Fundamental Particles.
	Density of Fundamental Particles.

	Quantification of movement.

	Quantification of forces between BSPs and CSPs.
	Quantification of the Coulomb force.
	Quantification of the Ampere force between straight infinite parallel conductors.
	Quantification of the induced force between aligned reintegrating BSPs.
	Quantification of Ampere force between parallel reintegrating BSPs.
	Quantification of the total gravitation force.

	Conventions introduced for BSPs.
	Flux density of FPs and scattering of particles.
	Flux density of FPs.
	Scattering of particles.

	Spin of level electrons and the formation of elements
	Stern-Gerlach experiment and the spin of the electron.

	BSP with light speed.
	Redshift of the energy of a complex BSP with light speed (photon) in the presence of matter.
	Cosmic Microwave Background radiation.


	Findings of the proposed approach.
	Bibliography

