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Operator Exponentials for the Clifford Fourier
Transform on Multivector Fields

by

David Eelbode and Eckhard Hitzer

Abstract

This paper briefly reviews the notion of Clifford’s geometric algebras and vector to mul-
tivector functions; as well as the field of Clifford analysis (function theory of the Dirac
operator). In Clifford Fourier transformations (CFT) on multivector signals the complex
unit i ∈ C is replaced by a multivector square root of −1, which may be a pseudoscalar
in the simplest case. For these transforms we derive, via a multivector function represen-
tation in terms of monogenic polynomials, the operator representation of the CFTs by
exponentiating the Hamilton operator of a harmonic oscillator.
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§1. Introduction

The Clifford Fourier transform we refer to was originally introduced by B. Jancewicz

[20] for electro-magnetic field computations in Clifford’s geometric algebra G3 =

Cl(3, 0) of R3, replacing the imaginary complex unit i ∈ C by the central unit

pseudoscalar i3 ∈ G3, which squares to minus one. This type of CFT was subse-

quently expanded to G2, instead using i2 ∈ G2, and applied to image structure

computations by M. Felsberg [13]. J. Ebling and G. Scheuermann [12] applied

both these CFTs to the study of vector fields, as they occur in two and three

dimensional physical flows. E. Hitzer and B. Mawardi [19] extended these CFTs

to higher dimensions n = 2, 3(mod 4) and studied their properties, including the

physical uncertainty principle for multivector fields.
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Independently De Bie et al [9] showed how Fourier transforms can be general-

ized to Clifford algebras, by introducing an operator form for the complex Fourier

transform and generalizing it in the framework of Clifford analysis. This approach

relies on the existence of a particular realization for the Lie algebra sl(2), closely

connected to the Hamilton operator of a harmonic oscillator, which makes it pos-

sible to introduce a fractional Clifford Fourier transform (see [7]) and to study

radial deformations (see [8, 6])

In the present paper we show how the Clifford Fourier transforms (CFT) of

[19] on multivector fields in S(Rn,Gn) can be written in the form of an exponential

of the Hamilton operator of the harmonic oscillator in n dimensions and a constant

phase factor depending on the dimension. For the proof of this fundamental result

the properties of monogenic functions of degree k and of Clifford-Hermite functions

as an intermediate function representation, play a crucial role. The computation

of an integral transformation is thus replaced by the application of a differential

operator, which has profound physical meaning. We therefore expect our result

to be valuable not only as another way to represent and compute the CFT, but

beyond its mathematical aspect to shed new light on the closely related roles of

the harmonic oscillator and the CFT in nature, in particular in physics, and in its

wide field of technical applications.

We note that in quantum physics the Fourier transform of a wave function

is called the momentum representation, and that the multiplication of the wave

function with the exponential of the Hamilton operator times time represents the

transition between the Schrödinger- and the Heisenberg representations [22]. The

fact that the exponential of the Hamilton operator can also produce the change

from position to momentum representation in quantum mechanics adds a very

interesting facet to the picture of quantum mechanics.

The paper is structured as follows. Section 2 introduces the notion of Clifford’s

geometric algebras and basic methods of computation with vectors, multivectors

(general elements of a geometric algebra) and functions mapping vectors to multi-

vectors. Section 3 introduces the field of Clifford analysis (a function theory for the

Dirac operator). Section 4 reviews the notion of Clifford Fourier transformations

(CFT) and derives the operator representation of the CFTs by exponentiating the

Hamilton operator of a harmonic oscillator, hereby using a multivector function

representation in terms of monogenic polynomials.

§2. Clifford’s Geometric Algebra Gn

Let {e1, e2, . . . , en} denote an orthonormal basis for the real n-dimensional Eu-

clidean vector space Rn with n = 2, 3 (mod 4). The geometric algebra over Rn,
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denoted by means of Gn= Cl(n, 0), then has the graded 2n-dimensional basis

(2.1) {1, e1, e2, . . . , en, e12, e31, e23, . . . , in = e1e2 . . . en}.

The element in has a special meaning, as it is the so-called pseudo-scalar. This

element of the algebra Gn will play a crucial role in this paper (see below).

Remark 2.1. The fact that we begin by introducing orthonormal bases for both

the vector space Rn and for its associated geometric algebra Gn is only because we

assume readers to be familiar with these concepts. As is well-known, the definitions

of vector spaces and geometric algebras are generically basis independent [16]. The

definition of the vector derivative of section 2.1 is basis independent, too. Only

when we introduce the infinitesimal scalar volume element for integration over Rn

in section 4 we do express it with the help of a basis for the sake of computation.

All results derived in this paper are therefore manifestly invariant (independent

of the choice of coordinate systems).

The squares of vectors are positive definite scalars (Euclidean metric) and so are

all even powers of vectors:

(2.2) x2 ≥ 0 ⇒ xm ≥ 0 for m = 2m′ (m′ ∈ N) .

Therefore, given a multivector M ∈ Gn one has:

(2.3) xmM = M xm for m = 2m′ (m′ ∈ N) .

Note that for n = 2, 3 (mod 4) one has that

(2.4) i2n = −1, i−1n = −in, imn = (−1)
m
2 for m = 2m′ (m′ ∈ Z) .

similar to the complex imaginary unit. The grade selector is defined as 〈M〉k for

the k-vector part of M ∈ Gn, especially 〈M〉 = 〈M〉0. This means that each M

can be expressed as the sum of all its grade parts:

(2.5) M = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n.

The reverse of M ∈ Gn is defined by the anti-automorphism

(2.6) M̃ =

n∑
k=0

(−1)
k(k−1)

2 〈M〉k.

The square norm of M is defined by

(2.7) ‖M‖2 = 〈MM̃〉 ,
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which can also be expressed as M ∗ M̃ , in terms of the real-valued (scalar) inner

product

(2.8) M ∗ Ñ := 〈MÑ〉 .

Remark 2.2. For vectors a, b ∈ Rn ⊂ Gn the inner product is identical with the

scalar product (2.8),

(2.9) a · b = a ∗ b̃ = a ∗ b .

As a consequence we obtain the multivector Cauchy-Schwarz inequality

(2.10) |〈MÑ〉|2 ≤ ‖M‖2 ‖N‖2 ∀ M,N ∈ Gn.

§2.1. Multivector Functions, Vector Differential and Vector Derivative

Let f = f(x) be a multivector-valued function of a vector variable x in Rn. For an

arbitrary vector a ∈ Rn we then define1 the vector differential in the a direction

as

(2.11) a · ∇f(x) = lim
ε→0

f(x + εa)− f(x)

ε

provided this limit exists and is well defined.

Remark 2.3. For all a ∈ Rn, the operator a ·∇ is a scalar operator, which means

that the left and right vector differentials2 coincide, i.e.

(2.12) a · ∇̇ḟ(x) = ḟ(x) a · ∇̇.

Whenever there is not danger of ambiguity, the overdots in (2.12), (2.16), etc.,

may also be omitted.

The basis independent vector derivative ∇ is defined in [17, 18, 16] to have the

algebraic properties3 of a grade one vector in Rn and to obey equation (2.11) for

all vectors a ∈ Rn. This allows the following explicit representation.

1 Bracket convention: A · BC = (A · B)C 6= A · (BC) and A ∧ BC = (A ∧ B)C 6= A ∧ (BC)
for multivectors A,B,C ∈ Gn. The vector variable index x of the vector derivative is dropped:
∇x = ∇ and a · ∇x = a · ∇, but not when differentiating with respect to a different vector
variable (compare e.g. proposition 2.7).

2The Hestenes’ overdot symbols specify on which function the vector derivative is supposed
to act. Conventionally an operator applies to everything on its right, but the overdot notation
can also show application to functions on the left side of an operator. Since algebraically scalars
commute with all multivectors, the scalar character of the operator a · ∇ then ensures that the
right side of (2.12) is identical to the left side.

3In particular see e.g. proposition 18 of [17]. Based on these properties the full meaning of
propositions 2.7 and 2.8 in the current paper can be understood.
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Remark 2.4. The vector derivative ∇ can be expanded in a basis of Rn as

(2.13) ∇ =

n∑
k=1

ek∂k with ∂k =
∂

∂xk
, 1 ≤ k ≤ n.

Proposition 2.5 (Left and right linearity).

(2.14) ∇(f + g) = ∇f +∇g , (f + g)∇ = f∇+ g∇ .

Proposition 2.6. For f(x) = g(λ(x)), λ(x) ∈ R,

(2.15) a · ∇f = f a · ∇ = {a · ∇λ(x)}∂g
∂λ

.

Proposition 2.7 (Left and right derivative from differential).

(2.16) ∇f = ∇a (a · ∇f), ḟ∇̇ = (ȧ · ∇f)∇̇a .

Proposition 2.8 (Left and right product rules).

(2.17) ∇(fg) = (∇̇ḟ)g + ∇̇fġ = (∇̇ḟ)g +∇a f(a · ∇g) .

(2.18) (fg)∇ = f(ġ∇̇) + ḟg∇̇ = f(ġ∇̇) + (ȧ · ∇f) g ∇̇a .

Note that the multivector functions f and g in (2.17) and (2.18) do not necessarily

commute.

Differentiating twice with the vector derivative, we get the differential Laplace

operator ∇2. We can always write ∇2 = ∇·∇+∇∧∇, but for integrable functions

one has that ∇∧∇ = 0, which then leads to ∇2 = ∇·∇. As ∇2 is a scalar operator,

the left and right Laplace derivatives agree, i.e. ∇2f = f ∇2. More generally, all

even powers of the left and right vector derivative agree:

(2.19) ∇mf = f ∇m for m = 2m′ (m′ ∈ N) .

§3. Clifford analysis

The function theory for the operator ∇, often denoted by means of ∂x in the liter-

ature (and referred to as the Dirac operator), is known as Clifford analysis. This

is a multivariate function theory, which can be described as a higher-dimensional

version of complex analysis or a refinement of harmonic analysis on Rn. The latter

is a simple consequence of the fact that ∇2 yields the Laplace operator, the for-

mer refers to the fact that the functions on which ∇ acts take their values in the

geometric algebra Gn, which then generalizes the algebra C of complex numbers.
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Remark 3.1. Note that in classical Clifford analysis, for which we refer to e.g.

[2, 11, 14, 15], one usually works with the geometric algebra (also known as a

Clifford algebra) of signature (0, n), which lies closer to the idea of having complex

units (n non-commuting complex units e2j = −1, to be precise). However, in this

paper we have chosen to work with the geometric algebra Gn associated to the

Euclidean signature (n, 0) to stay closer to the situation as it is used in physics.

It is important to add that this has little influence on the final conclusions, as

most results in Clifford analysis (especially the ones we need in this paper) can be

formulated independent of the signature.

Clifford analysis can then essentially be described as the function theory for the

Dirac operator, in which properties of functions f(x) ∈ ker∇ are studied. In this

section, we will list a few properties. For the main part, we refer to the aforemen-

tioned references, or the excellent overview paper [10]. An important definition, in

which the analogues of holomorphic powers zk are introduced, is the following:

Definition 3.2. For all integers k ≥ 0, the vector space Mk(Rn,Gn) is defined

by means of

Mk(Rn,Gn) := Polk(Rn,Gn) ∩ ker∇ .(3.1)

This is the vector space of k-homogeneous monogenics on Rn, containing polyno-

mial null solutions for the Dirac operator.

As the Dirac operator ∇ is surjective on polynomials, see e.g. [11], one easily finds

for all k ≥ 1 that

dk := dimMk(Rn,Gn)

= dimPk(Rn,Gn)− dimPk−1(Rn,Gn)

= 2n
(
n+ k − 2

k

)
.(3.2)

It is trivial to see that d0 = dimGn. In view of the fact that the operator ∇ factor-

izes the Laplace operator, null solutions of which are called harmonics, it is obvious

that each monogenic polynomial is also harmonic. Indeed, denoting the space of

k-homogeneous (Gn-valued) harmonic polynomials by means of Hk(Rn,Gn), one

has for all k ∈ N that

Mk(Rn,Gn) ⊂ Hk(Rn,Gn) .(3.3)
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As ∇2 is a scalar operator, one can even decompose monogenic polynomials into

harmonic ones (using the basis for Gn):

Mk(x) =
∑
A

eAM
(A)
k (x)⇒∇2M

(A)
k (x) = 0 .(3.4)

This will turn out to be an important property, since we will use a crucial alge-

braic characterization of the space of real-valued harmonic polynomials in the next

section. Another crucial decomposition, which will be used in the next section, is

the so-called Fischer decomposition for Gn-valued polynomials on Rn (see e.g. [11]

for a proof):

Theorem 3.3. For any k ∈ N, the space Pk(Rn,Gn) decomposes into a direct

sum of monogenic polynomials:

Pk(Rn,Gn) =

k⊕
j=0

xjMk−j(Rn,Gn) .(3.5)

We will often rely on the fact that the operator ∇ and the one-vector x ∈ Gn
(considered as a multiplication operator, acting on Gn-valued functions) span the

Lie superalgebra osp(1, 2), which appears as a Howe dual partner for the spin

group (see [3] for more details). This translates itself into a collection of operator

identities, and we hereby list the most crucial ones for what follows. Note that

Ex :=
∑
j xj∂xj denotes the Euler operator on Rm, and {A,B} = AB+BA (resp.

[A,B] = AB − BA) denotes the anti-commutator (resp. the commutator) of two

operators A and B:

{x,∇} = 2
(
Ex + n

2

)
[∇2, ||x||2] = 4

(
Ex + n

2

)
{x,x} = 2||x||2 [∇, ||x||2] = 2x

{∇,∇}= 2∇2 [∇2,x] = 2∇

In particular, there also exists an operator which anti-commutes with the genera-

tors x and ∇ of osp(1, 2), see [1]. This operator, which is known as the Scasimir

operator in abstract representation theory (it factorizes the Casimir operator), is

related to the Gamma operator from Clifford analysis. To define this latter oper-

ator, we need a polar decomposition of the Dirac operator. Due to the change of

signature, mentioned in the remark above, we will find a Gamma operator which

differs from the one obtained in e.g. [11] by an overall minus sign. In order to

retain the most important properties of this operator, we will therefore introduce
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a new notation Γ∇, for the operator defined below4:

x∇ = Ex + Γ∇ :=

n∑
j=1

xj∂xj +
∑
i<j

eij(xi∂xj − xj∂xi) .(3.6)

Remark 3.4. Note that the operators dHx
ij := xi∂xj − xj∂xi appearing in the

definition for the Gamma operator are known as the angular momentum operators.

For n = 3, they are denoted by means of (Lx, Ly, Lz) and appear in quantum

mechanics as the generators of the Lie algebra so(3). In the next section, we will

need the higher-dimensional analogue.

Definition 3.5. The Scasimir operator is defined by means of

Sc :=
1

2
[x,∇] +

1

2
= Γ∇ −

n− 1

2
.(3.7)

This operator satisfies

{Sc,x} = 0 = {Sc,∇} = 0 ,(3.8)

which can easily be verified (although this is superfluous, as the operator is specif-

ically designed to satisfy these two conditions, see [1]). For example, one has that

{Sc,x} =
1

2
{[x,∇] + 1,x} =

1

2
[x,∇]x +

1

2
x[x,∇] + x = 0 ,

hereby using that [x2,∇] = −2x (see the relations above). Note also that the

spaces Mk(Rn,Gn) are eigenspaces for the Gamma operator Γ∇, which follows

from the polar decomposition (3.6):

Γ∇
(
Mk(x)

)
= −kMk(x)

(
∀Mk(x) ∈Mk(Rn,Gn)

)
.(3.9)

As a result, one also has that

Sc
(
Mk(x)

)
= −

(
k +

n− 1

2

)
Mk(x)

(
∀Mk(x) ∈Mk(Rn,Gn)

)
.(3.10)

In the next section, we will also need the following:

Lemma 3.6. If f(r) = f(||x||) denotes a scalar radial function on Rn, one has

for all Mk(x) ∈Mk(Rn,Gn) that

Sc
[
Mk(x)f(r)

]
= −

(
k +

n− 1

2

)
Mk(x)f(r) .

4One simply has that Γ∇ = −Γ.
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Proof: this follows from the fact that

Sc
[
Mk(x)f(r)

]
=

(
Γ∇ −

n− 1

2

)[
Mk(x)f(r)

]
= [Γ∇Mk(x)]f(r)− n− 1

2
Mk(x)f(r)

=−
(
k +

n− 1

2

)
Mk(x)f(r) .

We hereby used the fact that Γ∇[f(r)] = 0, which follows from dHx
ij(r) = 0 for all

i < j. �

§4. The Clifford Fourier Transform

Let us recall the following definition, for which we refer to [19]:

Definition 4.1 (Clifford Fourier Transform).

The Clifford Fourier Transform (CFT) of a function f(x) : Rn → Gn, with n =

2, 3 (mod 4), is the function

F{f} : Rn→Gn

ω 7→ F{f}(ω) :=
1

(2π)
n
2

∫
Rn
f(x)e−inω·xdnx ,(4.1)

where x,ω ∈ Rn and dnx = (dx1e1 ∧ dx2e2 ∧ · · · ∧ dxnen)i−1n . Also note that

in the formula above we have added the factor (2π)−
n
2 , which will simplify our

expression for the Gaussian eigenfunction (see below).

For a complete list of the properties of this integral transform, which acts on Gn-

valued functions, we refer to Table 1 (see [19]). However, in the present paper, the

following properties will play a crucial role:

Proposition 4.2.

For functions f(x) : Rn → Gn, the CFT satisfies the following:

(i) powers of x from the left:

F{xmf}(ω) = ∇mωF{f}(ω)imn , m ∈ N .

(ii) powers of a · x:

F{(a · x)mf}(ω) = (a · ∇ω)mF{f}(ω)imn , m ∈ N .

(iii) vector derivatives from the left:

F{∇mx f}(ω) = ωmF{f}(ω)imn , m ∈ N .
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Table 1. Properties of the Clifford Fourier transform (CFT) of Definition 4.1 with

n = 2, 3 (mod 4). Multivector functions (Multiv. Funct.) f, g, f1, f2 all belong to

L2(Rn,Gn), the constants are α, β ∈ Gn, 0 6= a ∈ R, a,ω0 ∈ Rn and m ∈ N.

Property Multiv. Funct. CFT

Left lin. αf(x)+β g(x) αF{f}(ω)+ βF{g}(ω)

x-Shift f(x− a) F{f}(ω) e−inω·a

ω-Shift f(x) einω0·x F{f}(ω − ω0)

Scaling f(ax) 1
|a|nF{f}(

ω
a )

Vec. diff. (a · ∇)mf(x) (a · ω)mF{f}(ω) imn
(a · x)m f(x) (a · ∇ω)m F{f}(ω) imn

Powers of x xmf(x) ∇mω F{f}(ω) imn
Vec. deriv. ∇mf(x) ωm F{f}(ω) imn

Plancherel
∫
Rn f1(x)f̃2(x) dnx

∫
Rn F{f1}(ω) ˜F{f2}(ω) dnω

sc. Parseval
∫
Rn ‖f(x)‖2 dnx

∫
Rn ‖F{f}(ω)‖2 dnω

(iv) directional derivatives:

F{(a · ∇x)mf}(ω) = (a · ω)mF{f}(ω)imn , m ∈ N .

In order to obtain an operator exponential expression for the CFT from above,

see definition 4.1, we need to construct a family of eigenfunctions which then

moreover serves as a basis for the function space S(Rn,Gn) of rapidly decreasing

test functions taking values in Gn. To do so, we need a series of results:

Proposition 4.3.

The Gaussian function G(x) := exp(− 1
2x

2) = exp(− 1
2 ||x||

2) on Rn defines an

eigenfunction for the CFT:

F{G(x)}(ω) :=
1

(2π)
n
2

∫
Rn

exp(−1

2
x2)e−inω·xdnx = G(ω) .

Proof: this follows from a similar property in [19], taking the rescaling factor

(2π)−
n
2 into account. �

Next, we prove that the Gaussian G(x) may be multiplied with arbitrary mono-

genic polynomials: this will still yield an eigenfunction for F . In order to prove

this, we recall formula (3.4):

Mk(x) ∈ Pk(Rn,Gn) ∩ ker∇ =⇒ Mk(x) =
∑
A

eAM
(A)
k (x) ,(4.2)
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with each M
(A)
k (x) ∈ Hk(Rn,R) a real-valued harmonic polynomial on Rn. This

allows us to focus our attention on harmonic polynomials. As is well-known, the

vector spaceHk(Rn,C) of k-homogeneous harmonic polynomials in n real variables

defines an irreducible module for the special orthogonal group SO(n) or its Lie

algebra so(n). This algebra is spanned by the
(
n
2

)
angular momentum operators

dHx
ij := xi(ej · ∇)− xj(ei · ∇) = xi∂xj − xj∂xi (1 ≤ i < j ≤ n),(4.3)

see remark 3.4. It then follows from general Lie theoretical considerations that the

vector space Hk(Rn,C) is generated by the repeated action of the negative root

vectors in so(m) acting on a unique highest weight vector. For the representation

space Hk(Rn,C), this highest weight vector is given by hk(x) := (x1 − ix2)k, see

e.g. [5, 14]. Without going into too much detail, it suffices to understand that this

implies that arbitrary elements in Hk(Rn,C) can always be written as

Hk(x) = L(dHx
ij)hk(x) ,

where L(dHx
ij) denotes some linear combination5 of products of the angular mo-

mentum operators dHx
ij . Note that the presence of the complex number field in the

argument above has no influence on the fact that we are working with functions

taking values in the real algebra Gn in this paper: it suffices to focus on the real

(or pure imaginary) part afterwards.

Theorem 4.4.

Given an arbitrary element Mk(x) ∈Mk(Rn,Gn), one has:

F{Mk(x)G(x)}(ω) = Mk(ω)G(ω)(−in)k .

Proof: in view of the decomposition (4.2), we have that

F{Mk(x)G(x)}(ω) =
∑
A

eAF{M (A)
k (x)G(x)}(ω) .

If we then write each scalar component M
(A)
k (x) as a linear combination of the

form

M
(A)
k (x) = L(A)(dHx

ij)hk(x) ,

we are clearly left with the analysis of terms of the following type (with 1 ≤ i <

j ≤ n arbitrary):

F{L(A)(dHx
ij)(x1 − ix2)kG(x)}(ω) .

5In a sense, each combination L(dHx
ij) can be seen as some sort of non-commutative polyno-

mial (the factors dHx
ij do not commute).
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Without loosing generality, we can focus our attention on a single operator dHx
ij ,

since any L(A)(dHx
ij) can always be written as a sum of products of these operators.

Invoking properties from proposition 4.2, it is clear that

F{dHx
ijhkG}(ω) =F

{
(xi(ej · ∇x)− xj(ei · ∇x))hkG

}
(ω)

= (ωj(ei · ∇ω)− ωi(ej · ∇ω))F
{
hkG

}
(ω)i2n

= dHω
ijF
{
hkG

}
(ω) ,

where dHω
ij denotes the angular momentum operator in the variable ω ∈ Rn. Next,

invoking the same proposition, we also have that

F
{
hkG

}
(ω) =F

{
(x1 − ix2)kG

}
(ω)

=
(
(e1 · ∇ω)− i(e2 · ∇ω)

)kF{G}(ω)ikn

=
(
(e1 · ∇ω)− i(e2 · ∇ω)

)k
G(ω)ikn .

It then suffices to note that(
(e1 · ∇ω)− i(e2 · ∇ω)

)k
exp(−1

2
||ω||2) = (−ω1 + iω2)k exp(−1

2
||ω||2)

to arrive at F
{
hkG

}
(ω) = (−1)khk(ω)G(ω)ikn. Together with what was found

above, this then proves the theorem. �

Remark 4.5. There exist alternative ways to prove the fact that harmonic poly-

nomials times a Gaussian kernel define eigenfunctions for the Fourier transform,

see e.g. the seminal work [23] by Stein and Weiss, but to our best knowledge the

proof above has not appeared in the literature yet.

In order to arrive at a basis of eigenfunctions for the space S(Rn,Gn), we need

more eigenfunctions for the CFT. For that purpose, we introduce the following

definition (recall that we have defined dk in the previous section).

Definition 4.6.

For a given monogenic polynomial M
(b)
k (x) ∈ Mk(Rn,Gn), where the index b ∈

{1, 2, . . . , dk} is used to label a basis for the vector space of monogenics of degree

k, we define the Clifford-Hermite eigenfunctions as

ϕa,b;k(x) := (∇− x)aM
(b)
k (x)G(x) .

Hereby, the index a ≥ 0 denotes an arbitrary non-negative integer.

Theorem 4.7.

For all indices (a, b; k) ∈ N× {1, . . . , dk} × N, one has that

F{ϕa,b;k}(ω) = ϕa,b;k(ω)(−in)a+k .
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Proof: this can again be proved using proposition 4.2. Indeed, we clearly have that

F{ϕa,b;k}(ω) =F{(∇x − x)aM
(b)
k (x)G(x)}(ω)

= (ω −∇ω)aF{M (b)
k (x)G(x)}(ω)ian

= (∇ω − ω)aM
(b)
k (ω)G(ω)(−in)k(−in)a

= ϕa,b;k(ω)(−in)a+k ,

where we have made use of theorem 4.4. �

Before we come to an exponential operator form for the CFT, we prove a few

additional results:

Lemma 4.8.

For all indices (a, b; k) ∈ N× {1, . . . , dk} × N, one has:

(∇+ x)ϕ2a,b;k(x) =−4aϕ2a−1,b;k(x)

(∇+ x)ϕ2a+1,b;k(x) =−2(n+ 2k + 2a)ϕ2a,b;k(x) .

Proof: this lemma can easily be proved by induction on the parameter a ∈ N,

hereby taking into account that

[∇+ x,∇− x] = 2[x,∇] = 4Sc− 2 ,

with Sc ∈ osp(1, 2) the Scasimir operator defined in (3.7). Indeed, for a = 0 we

immediately get that

(∇+ x)ϕ0,b;k = ∇̇G(ẋ)M
(b)
k (x) + xϕ0,b;k

=−xG(x)M
(b)
k (x) + xϕ0,b;k = 0 .

For a = 1, we get that

(∇+ x)ϕ1,b;k =
(
(∇− x)(∇+ x) + 2(2Sc− 1)

)
ϕ0,b;k

=−2(n+ 2k)ϕ0,b;k .

Here we have used the fact (3.10) that monogenic homogeneous polynomials are

eigenfunctions for the Scasimir operator, together with lemma 3.6. Let us then

for example consider a general odd index 2a + 1 (the case of an even index 2a is

completely similar):

(∇+ x)ϕ2a+1,b;k =
(
(∇− x)(∇+ x) + 2(2Sc− 1)

)
ϕ2a,b;k

=−4a(∇− x)ϕ2a−1,b;k + 2(∇− x)2a(2Sc− 1)ϕ0,b;k

=−2(2a+ n+ 2k)ϕ2a,b;k .
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Here, we have used the induction hypothesis and the fact that the operator Sc

commutes with an even power (∇− x), as it anti-commutes with each individual

factor. �

This lemma will now be used to construct another operator, for which our Clifford-

Hermite functions from definition 4.6 are again eigenfunctions.

Theorem 4.9.

For all indices (a, b; k) ∈ N× {1, . . . , dk} × N, one has:

(∇2 − x2)ϕa,b;k(x) = −(n+ 2a+ 2k)ϕa,b;k(x) .

Proof: first of all, we note that

(∇+ x)(∇− x) = ∇2 − x2 + [x,∇] ,

from which we note that the operator appearing in the theorem can also be written

as

∇2 − x2 = (∇+ x)(∇− x)− (2Sc− 1) .

Using lemma 4.8 and properties of the Scasimir operator, we get:

(∇2 − x2)ϕ2a,b;k =
(
(∇+ x)(∇− x)− (2Sc− 1)

)
ϕ2a,b;k

= (∇+ x)ϕ2a+1,b;k − (∇− x)2a(2Sc− 1)ϕ0,b;k

=−2(n+ 2k + 2a)ϕ2a,b;k + (n+ 2k)ϕ2a,b;k

=−(n+ 2k + 4a)ϕ2a,b;k

for the case of an even index 2a, and

(∇2 − x2)ϕ2a+1,b;k =
(
(∇+ x)(∇− x)− (2Sc− 1)

)
ϕ2a+1,b;k

= (∇+ x)ϕ2a+2,b;k + (∇− x)2a+1(2Sc+ 1)ϕ0,b;k

=−2(2a+ 2)ϕ2a+1,b;k − (n+ 2k − 2)ϕ2a+1,b;k

=−(n+ 2k + 4a+ 2)ϕ2a+1,b;k

for odd indices 2a+ 1. Together, this proves the theorem. �

In order to compare the eigenvalues of the Clifford-Hermite functions as eigen-

functions for the CFT and the operator from the theorem above (which is nothing

but the Hamiltonian of the harmonic oscillator), we mention the following remark-
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able property:

ϕa,b;k(ẋ)e−
π
4 (x2−∇̇2−n)in =

∞∑
j=0

1

j!
(x2 −∇2 − n)jϕa,b;k(x)

(
−π

4
in

)j
= ϕa,b;k(x)

∞∑
j=0

1

j!

(
−(a+ k)

π

2
in

)j
= ϕa,b;k(x)(−in)a+k .(4.4)

In the first line above, we have used the Hestenes’ overdot notation, to stress the

fact that the operator acts on x from the right. This is due to the fact that the

pseudoscalar in does not necessarily commute with the Clifford-Hermite eigenfunc-

tion.

It thus suffices to prove that these eigenfunctions provide a basis for the func-

tion space S(Rn,Gn) in order to arrive at the main result of our paper, which is

the exponential operator form for the CFT.

Proposition 4.10.

The space S(Rn,Gn) is spanned by the countable basis

B :=
{
ϕa,b;k(x) : (a, b; k) ∈ N× {1, . . . , dk} × N

}
.

Proof: in order to prove this, it suffices to show that we can express arbitrary

elements of P(Rn,Gn) ⊗ G(x) as a linear combination of the Clifford-Hermite

eigenfunctions. To do so, we can use the fact that we know the structure of the

space of Gn-valued polynomials in terms of the Fischer decomposition, see (3.5).

It thus suffices to note that

(∇− x)aM
(b)
k (x)G(x) = (−2)axaM

(b)
k (x)G(x) + L.O.T. ,

where L.O.T. refers to lower powers in x times the product of M
(b)
k (x) and the

Gaussian function. For a ∈ {0, 1}, this is trivial, as we for example have that

(∇− x)M
(b)
k (x)G(x) =−xM (b)

k (x)G(x) + ∇̇G(ẋ)M
(b)
k (x)

=−2xM
(b)
k (x)G(x) ,

and the rest follows from an easy induction argument. In case of an odd index

2a+ 1 for example, the induction hypothesis gives:

(∇− x)2a+1M
(b)
k (x)G(x) = (∇− x)

(
4ax2aM

(b)
k (x)G(x) + L.O.T.

)
,

where the first power in x appearing in L.O.T. is equal to (2a−2). This is due to the

fact that the operator (∇−x) can only raise by one, either from the multiplication
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by x or the action of ∇ on G(x), or lower by one, which comes from the action of

∇ on a power in x. Using the relation

∇xx = x∇x − (2Sc− 1) ,

it is then easily seen that we indeed arrive at the constant (−2)2a+1 for the leading

term in x. As all the leading terms are different, it follows that any function of

the form xaM
(b)
k (x)G(x) can indeed be expressed as a unique linear combination

of the Clifford-Hermite eigenfunctions. �

Bringing everything together, we have thus obtained from theorem 4.7, equation

(4.4), and proposition 4.10, the following final result:

Theorem 4.11 (CFT as exponential operator). The Clifford Fourier transform,

as an operator on S(Rn,Gn), can be defined by means of

F{f} : Rn→Gn
ω 7→ F{f}(ω) = f(ω̇)e−

π
4 (ω2−∇̇2

ω−n)in .

In other words, the CFT can be written as an exponential operator acting from

the right, involving the Hamiltonian ω2 − ∇̇2
ω, for the harmonic oscillator, and a

phase factor e
nπ
4 in which reduces to (i3 − 1)/

√
2 for n = 3 and to i2 for n = 2.

§5. Conclusion

The Clifford Fourier transform originated as a tool for electro-magnetic field pro-

cessing, applying Clifford’s geometric algebra and Clifford analysis to physics. The

Fourier transform itself being one of the most widely applied transformations in

mathematics. The harmonic oscillator and its Hamilton operator are fundamental

for the description of periodic harmonic motions both in classical and quantum

physics. In the latter the Fourier transform yields the momentum representation

and explains the uncertainty principle for fields (signals) and their Fourier trans-

formed counterparts. In this paper we found, that the multivector integral of the

Clifford Fourier transform has an equivalent form as the exponential of the Hamil-

ton operator of a harmonic oscillator. This interesting observation adds a fasci-

nating new facet to the mathematics of multivector integral transformations and

their wide ranging applications in physics and technology.

Possible future extensions are to multi-kernel CFTs, the quaternionic CFT

and its higher-dimensional analogues, like the spacetime Fourier transformation,

Hamilton operators for other systems than the harmonic oscillator, and better

understanding of the deep connections between seemingly separate ways [4] of
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generalizing the Fourier transform in Clifford’s geometric algebra and Clifford

analysis.
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semigroup, SIGMA 9 (2013), no. 010, 22 pages.

[9] H. De Bie and Y. Xu, On the Clifford-Fourier transform, International Mathematics Re-
search Notices 22 (2011), 5123–5163.

[10] R. Delanghe, Clifford analysis: history and perspective, Comp. Meth. Funct. Theory 1
(2001), 107–153 .

[11] R. Delanghe, F. Sommen, V. Souček, Clifford analysis and spinor valued functions, Kluwer
Academic Publishers, Dordrecht, 1992.

[12] J. Ebling and G. Scheuermann, Clifford Fourier transform on vector fields, IEEE Transac-
tions on Visualization and Computer Graphics, 11 (2005), no. 4, 469–479.
J. Ebling and G. Scheuermann, Clifford convolution and pattern matching on vector fields,
In Proceedings IEEE Visualization, Los Alamitos, CA. IEEE Computer Society 3 (2003),
193–200.

[13] M. Felsberg, Low-Level Image Processing with the Structure Multivector, PhD thesis,
Christian-Albrechts-Universität, Institut für Informatik und Praktische Mathematik, Kiel,
2002.

[14] J. Gilbert, M.A.M. Murray, Clifford algebras and Dirac operators in harmonic analysis,
Cambridge University Press, Cambridge, 1991.
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ISNM 89, Birkhäuser-Verlag, Basel, 1990.

[16] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus, Kluwer, Dordrecht, 1984.

[17] E. Hitzer, Vector Differential Calculus, Mem. Fac. Eng. Fukui Univ. 49 (2001), no. 2, 283–
298. Preprint: http://vixra.org/abs/1306.0116

[18] E. Hitzer, Multivector Differential Calculus, Adv. App. Cliff. Alg. 12 (2002), no. 2, 135–182.
DOI: 10.1007/BF03161244, Preprint: http://arxiv.org/abs/1306.2278

[19] E. Hitzer, B. Mawardi, Clifford Fourier Transform on Multivector Fields and Uncertainty
Principles for Dimensions n = 2 mod 4 and n = 3 mod 4, P. Angles (ed.), Adv. App.

http://vixra.org/abs/1306.0116
http://arxiv.org/abs/1306.2278


18 D. Eelbode and E. Hitzer

Cliff. Alg. 18 (2008), no. S3,4, 715–736 . DOI: 10.1007/s00006-008-0098-3, Preprint: http:
//vixra.org/abs/1306.0127 .

[20] B. Jancewicz, Trivector Fourier transformation and electromagnetic field, Journal of Math-
ematical Physics 31 (1990), no. 8, 1847–1852.

[21] B. Mawardi, E. Hitzer, Clifford Fourier Transformation and Uncertainty Principle for the
Clifford Geometric Algebra Cl3,0, Adv. App. Cliff. Alg. 16 (2006), no. 1, 41–61.

[22] F. Schwabl, Quantenmechanik, Springer, Berlin, 1990.

[23] E.M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton
University Press, Princeton, 1971.

http://vixra.org/abs/1306.0127
http://vixra.org/abs/1306.0127

	Introduction
	Clifford's Geometric Algebra Gn
	Multivector Functions, Vector Differential and Vector Derivative 

	Clifford analysis
	The Clifford Fourier Transform 
	Conclusion
	References

