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In the present study, using the Fourier analyze method and considering the Bianchi-type I spacetime, we investigate
the dynamics of photon in the torsion gravity, and show that the free-space Maxwell equations give the same results.
Furthermore, we also discuss the harmonic oscillator behavior of the solutions.
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1. Introduction

The Duffin-Kemmer-Petiau(DKP) equation is an eli-
gible relativistic wave equation that describes spin-0
and spin-1 bosons with the advantage over standard
relativistic equations[l]. A detailed investigation of
DKP equation can be found in Refs. [2, 3, 4]. Next,
Akhiezer and Berestetskii[5], in 1965, discussed an ap-
plication of the DKP field to scalar QED. More re-
cently, there have been new interests in DKP theory: it
has been applied to QCD by Gribov[6] and to covari-
ant Hamiltonian dynamics by Kanatchikov[7]. On the
other hand, it has been studied in curved spacetimel[1],
discussed in casual approach[8] and investigated with
5D Galilean covariance[9]. There also have been given
detailed proofs of the equivalance between DKP and
Klein-Gordon fields[10], and some points regarding DKP
interaction with electromagnetic field[11].

The torsion gravity (or teleparallel gravity) is an
alternative approach to gravitation and corresponds
to a gauge theory for the translation group based on
Weitzenbock geometry[12]. In this theory, gravitation
is attributed to torsion[13] which plays the role of a
force[14], and the curvature tensor vanishes identically.
The interesting place of torsion gravity is that, due to
its gauge structure, it can reveal a more convenient
approach to consider some specific problems.

The wave equation for spin-0 and spin-1 bosons in
torsion gravity is defined as[15]

{w# (au —~ ;Kwﬁsaﬁ> ~ m} T =0. (1)

Here K,ap and S’ are the torsion tensor and spin
tensor, respectively. Next, the S-matrices obey the fol-
lowing algebraic relations

B(@ g0 gle) 4 gle) gb) gla) — gla)p(b)(c) _~_5(C)n(b)(a).(2)

Here a,b,c = 0,1,2,3, and 1 is the metric tensor of
Minkowski spacetime with signature (+,—,—,—). The
Latin alphabet will be used to indicate Minkowski in-
dexes, while Riemann-Cartan indexes will be indicated
by Greek letters.

The DKP equation is very similar to Dirac’s equation
but the algebraic properties of ¢ matrices, which have
no inverses, make it more difficult to deal with. These
matrices are given by the definition:

B = AHRl+Iey", (3)

and they are related to flat Minkowski spacetime as
BH(x) = hé)ﬁ(i) with a tetrad frame that satisfies

G = hi B iy ) (4)

In relativistic quantum mechanics, the counterpart
of the Maxwell equations can be described by tak-
ing zero-mass limit of the DKP equation. Unal, in
1997, showed that the wave equation of massless spin-1
particle in flat space-time is equivalent to free space
Maxwell equations[16]. Then, Unal and Sucu solved
the general relativistic massless-DKP (mDKP) equa-
tions in Robertson-Walker space-time written in spher-
ical coordinates[17]. By using the same technique, in
Einstein’s theory of general relativity, the mDKP equa-
tion had been solved for various spacetimes and showed
the mDKP equation is equivalent to free space Maxwell
equations[18; 19, 20, 21]. In the method, the S-matrices
are written as a direct product of Pauli spin matrices
with unit matrix and this definition leads to a spinor
which is related to complex combination of the electric
and magnetic fields. On the other hand, the quantum
mechanical solution is important to discuss the wave-
particle duality of electromagnetic fields, since the par-
ticle nature of the electromagnetic field can be analyzed
only by a quantum mechanical equation. Furthermore,
the mDKP equation removes the unavoidable usage of
(34 1) D spacetime splitting formalism for the Maxwell
equations|22].

The mDKP equation in torsion gravity is given as

1
igt (aﬂ — 2K,mﬁsaﬁ) ¥ =0, (5)

where S* are now:

BH = o' RI+1QcH, (6)



with o = (I, 7). Next, the spin tensor can be defined
as

48 = {p", B}, (7)
and the torsion tensor is written as

Kff’)(“) — —Kff)(b) - ha(“)hﬂ(b)Kﬂag, (8)
or

KO = 17 {15, — 0,0}, )
with Christoffel symbols

(e} 1 «
T = 59 (Ougpy + 0vgpu — pgyw). (10)

In the present work, we investigate the behavior of
the massless spin-1 particles by examining mDKP equa-
tion in the Bianchi-type I universe in teleparallel grav-
ity. The work is organized as follow: in the next section
investigate the mDKP equation in torsion gravity ex-
plicitly and obtain its second order form for a given ge-
ometry. In section 3, we discuss the free-space Maxwell
equations the Bianchi-type I universe. In section 4, we
find oscillating frequency of the photon. Finally, we dis-
cuss our results.

2. DMassless spin-1 particles in torsion
gravity

The line-element of the Bianchi-type I universe is
ds? = —dt* + A%dz® 4+ B*dy® + C%d2?, (11)

where A, B and C are functions of ¢ alone and these
expansion factors could be determined via field equa-
tions in Einstein’s theory of general relativity or torsion
gravity. We know that the non-trivial tetrad field in-
duces a torsion gravity structure on spacetime which is
directly related to the presence of the gravitational field.
Using the relation (4), we obtain the tetrad components:

he,, = 6300 + A6T6L + BOSS2 + C6557 (12)
and its inverse is
hot = 6001 + A~15Lst + BT1620k + C 136 (13)

The line-element given by eqn. (11) can be reduced to
the flat Friedmann-Robertson-Walker line element in a
special case. Defining A = B = C = T(t) and trans-
forming the line-element (11) from ¢, z,y, z coordinates

to the spherical coordinates, we obtain
ds* = dt? — T?(t)[dr? + r2(d6* + sin”® 0d¢?)],  (14)

according to:

x = rsinfcosg,
= rsinfsin ¢,
z = rcosé. (15)

The Friedmann-Robertson-Walker spacetime has re-
ceived considerable interests in the relativistic cosmol-
ogy. Maybe one of the most important features of this
model is, as predicted by inflation[23, 24, 25], the flat-
ness which agrees with the observed cosmic microwave
background radiation.

By using the definition of Christoffel symbols given
by the equation (10), the non-vanishing components are
found as

F(l)l = AA, ng = BB, (16)
0 - 1 1 A
I'gs = ce, Fop =T = A’ (17)
B C
Fg2 = Fgo = B’ FS:& = Fgo = o’ (18)

where a dot indicates the derivative with respect to t.
Thence, the surviving components of the torsion tensor
are obtained as

KOO — _gMO _ _j (19)
KFO@ _ g0 _ _p (20)
EO® - PO _ _¢, (21)

or in another form we find

Ko = Kion = AA, (22)
Kaso = Kopa = BB, (23)
K330 = K303 = CC. (24)

By making use of eqn. (6) we get

Bl =2I®1), (25)
fl=cl@I+I®ol, (26)
B=cI+I2d% (27)
B =0l +Ixd. (28)

Now, we obtain the mDKP equation as:
B°0; + (9, + AAS®Y) + %9, + BBS™)

+83%(0. + 0'0503)} T=0, (29)

where
50) _ 50) sm = 1w
b A 9
g0 Lgm o g -



and
1~ 1 ~
01 _ L 3(o1) 02 _ * &(02)
S AS , S BS ;
1 ~
03 _ 2 5(03) 1
S C’S (31)

Then, eqn. (29) can be re-written as

1 .~
2(I@1)0; + Z(a“) @I +1®0M)(0, +AS)

1 .
+—(P I +T®7c?)0,+ BS?)

(2)
5!

1 .~
+5(a<3> @I +1®0%)(0, 4+ CS))¥ =0. (32)
Next, after using the standard representation of Pauli
spin matrices, and defining the 4-component wave-
function as

(=)

(33)
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Eqn. (32) gives the following equations

A B 20
(28t+08 +A+B+C> Eo

A B\ _ 1 i\ =
(28t+A+B>:1+(A6zBﬁy):3O, (36)

8ol

A B 2C
—|—<26t C@ +A+B+C> 23 =0. (37)
Here, one can see that we have =; = Z5. Then, by
making use of this relation, we find
A B C
<8t+08 +2A+2B+C>
1 1 _ A B B

1 i _ A B)\_
(Aaw+Bay>:o+2<at+A+ ):

1 1 -
+ <A0¢6 - Bay> 23 =0, (39)
A B)_
() (b
1 A B  C
_ = —— 4+ — 4+ = |=3=0. 4
—l—(@t CaZ+2A+2B+C> 3=0 (40)
After defining the following new wave functions
= = -0t + iQ2,
Er = Ep= Q3a
23 = Q'44i0? (41)
Eqns. (38), (39) and (40) transform into another forms:

A C\ o iy i s
<8t+A+C>Q + 500 - 20,00 =0 (42)

B C i i
o2 Q- 20,0+ 0,08 = 4
(at C) 50 0,03 =0 (43)

AV B\ s, a0 G o1
<8t+A+B>Q + 200 - 20,01 =0 (44)

After this step, now we perform the following Fourier
transformation,

O (R ) = /ei??FW(?,t)d%, (45)

873

where m = 1,2, 3. Hence, we find

A C ks k1
= F?-Z2ply 23 = 4
<3t+ 2 + C) C + 1 0, (46)
B C 1 ]{?3 9 Zkg 3
(at+B+C>F +CF BF_O, (47)
A B k1 ko
SRR [ R R 4
<8t+ 1 + B) 1 5 0. (48)
By defining
Rm
Fm = —_H™ 49
NaT (49)
with R! = A, R? = B and R3 = C, we get
- Bks Cks
1 2 3 _
H! + AOH ABH =0, (50)
o Mg Chigs g (51)

BC AB
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We can write these equations in a general form[26];

H3 — “Z2H' =0 (52)

1 3
—— ™M k(R H™. (53)
_gn:l

To solve this equation exactly, for suitable symmetry,
we can use spherical coordinates. From this point of
view, H™ should be written in terms of spherical coor-
dinates. The components of k in spherical coordinates
are defined as

k1 = ksinfcosy,
ko = ksinfsiny,
ks = kcosd, (54)

or in matrix representations

sinfcosp sinfsing cosf
cosfcosp cosfsing —sinf
—sing cos ¢ 0
k ko ks
k k A
kski  kak
= %, e TE | (55)
_ k2 E1 0
1 ki
where
k% = k3 4+ k3. (56)
On the other hand, we define also
HY | = ﬁkj e TR H? |. (57)
H? Eookog o’
o1

Ergo we have

H™ = 0,
. k2 — k2 .
HY = 28 L) g3
(B) =
. ko k1
He = —2H14 —HQ 58
and we obtain
H = —k (aH® + BH?) (59)
He =k (vH? + aH¥) (60)
where
k1kok
Vg = S (B A7), (61)
V=9B=— (A2k2 + B%k2). (62)

ki

Here the parameter ~ is determined by
A? a?

’Y:W+ﬁ» (63)

with

A% = Z (Z)Q (64)

A? is a generalization of the dispersion relation w? =

|k|*. After eliminating H¥ from equations (59) and
(60), we obtain the following second order differential
equation:

HY — gHﬁ + [AQ + kB (g)} H? =0. (65)

In an explicit form, this result can be re-written as

B BA BC AK3 BRI,
+<A_A?_A0>k [B+A "
K2 kZ k2 2kykgks [
+{A2++C2+A30ki BB

— A?)(AAK3 + BBE?)
A2k3 + B2k?

) 2
—AA — (B

} H? =0. (66)

‘We mentioned before that if we define
A(t) = B(t) =C(t) =T(t), (67)

the Bianchi-type I model transforms into the flat Friedmann-
Robertson-Walker spacetime. Hence, under this limit,
eqn. (66) is reduced to

T?HO + TTH® + (k2 + k2 + k3)H® = 0. (68)
Now, by defining conformal time as

o 10

ot Tan (69)
we get
0?HY
e + (B 4+ k2 +E)H? =0. (70)

It is easy to see that this equation has the following
solution,

H0 — Meq:i\/k?-l—kg-‘rkgn (71)

where M is a normalization constant.

3. The free-space Maxwell equations in
the Bianchi-type I universe

The interaction of electromagnetic and gravitational
fields is described by the Maxwell equations in a given
background and source. In the absence of an electro-
magnetic source these equations are written as

1 vy
ﬁ(\/ng )71/ - Oa (72)



and
Fpl/,a + Fo’,u,,l/ + FVo’,p, =0, (73)

where F* = gFAY — 9¥ A*. Here we investigate the
Maxwell equations for the line-element given by eqn.
(11) to show the correspondence between the mDKP
equation in torsion gravity and the Maxwell equations.
The covariant and covariant field strengths, F*” and

F,, , in the general coordinates are
FOU = %E(l), Fo1 = —AEW,
F?2 = lE<2’>, Fyy = —BE?,
B
F% = éE(B), Fo3 = —CE®,
1 ,
F12 = EB(S), Fi» = ABB®),
—1
F13 = A—CB@’), Fi3 = —ACB®,
1
F3 = B—OB(U, Fy3 = BCBW, (74)

where E(® and B® are the components of the elec-
tric and magnetic fields in the local Lorentz frame. In
terms of these components, Maxwell equations can be
expanded as

EM E®) E®)

B E®
[BCO: + 0,(BC)] < _E® > +C0, ( B®) >

EQ®)
_Baz< s ):o, (76)

B® E®)
[ACO, + 0:(AC)] < 12®) ) - C0, < _B® >

(1)
rao. (o ) =0 @

B® B
[ABatJrat(AB)]( e > —Aay( i )
0

E®2)
+B6‘m( o > _

By defining a complex spinor =:

. (78)

=

EM 4+iBM
E® +iB® |, (79)
E® +4iBG)

[11
o

w

(1 [ [
|

and making a suitable Fourier transformation:

1 K
E(F,t) = ok / Fret kT am(z 1), (80)

for the spinor form of the Maxwell equations we find
ErSt 4 ka2 4 k3S3 =0, (81)

A C\o 1, o1, 1 5

B C 1 1
(at +5+ g) 3!+ 5k3%2 - EkQ%P’ =0, (83)

A B\ ., 1 1
o3 2 ol _
<8t + 1 + ) Ry — k137 + =kS 0. (84)

To eliminate % + %, % + % and % + % terms, we can
define:

g = R i=1,2,3 85
= ( ) (85)
with R' = A, R? = B and R?® = C. Thence, we get
: B C
1 _— 2 _— 3 —
1Y +Ack3% AB/@Q% 0 (86)
. A C
2 _ 1 _— 3 —
x Ckg?R + 1 kiR 0 (87)
: B A
3 _ = 2 el 1 _
x ACIQ?R + Ckg?)? 0 (88)

These three equations are exactly the same results as
obtained torsion gravity (see equs. (50), (51) and (52)).

4. The oscillation region

A general method to find the frequency spectrum is to
impose the condition on functions which are the solu-
tions of differential equation. The functions must be
bounded for all values as usually done in quantum me-
chanics, this procedure gives the quantization of fre-
quency. Since we didn’t solve the mDKP equation ex-
actly, we will restrict ourselves to discuss how we can
obtain the oscillation region of the photon.

The general method for obtaining the oscillation re-
gion is to write the differential equation that does not in-
clude the first derivative and simulate this to the second
order differential equation that describes the harmonic
oscillator. Here we define

HO(t) = B (t)®(1). (89)

Next, by making use of this definition in eqn. (65), we
obtain

O(t) +w?(t)d(t) = 0, (90)
where
2 5 3 5 : 2 o
w :25—4<5> +A +k660(ﬁ>. (91)



Hence the oscillation region is:

. . 2
B 3(B a
- 26_4<ﬁ> +A2+k680<6><w
Bos(BY
o
25_34<ﬁ> 4—A2+k6&)(ﬂ>. (92)

5. Conclusions

In this work we mainly focused on the Duffin-Kemmer-
Petiau theory in torsion gravity for the generalized
Bianchi-type I universe. We have obtained a second
order relativistic wave-equation that describes massless
spin-1 particles coupled to the gravitational field. The
method of separation of variables and the Fourier trans-
formation has been used due to the symmetry of the
generalized Bianchi-type I spacetime. Also, the oscilla-
tory behavior of the result has been discussed. Further-
more, we show that the massless Duffin-Kemmer-Petiau
equation in torsion gravity and the free-space Maxwell
equations agree with each other and give the same re-
sults. This interesting feature strongly motivates us
to use the massless Duffin-Kemmer-Petiau equation in
torsion gravity to investigate the dynamics of light. An-
other motivation is that the results obtained can be
used to discuss the Photon production in some special
spacetime models.
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