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1. Introduction

The Duffin-Kemmer-Petiau(DKP) equation is an eli-
gible relativistic wave equation that describes spin-0
and spin-1 bosons with the advantage over standard
relativistic equations[1]. A detailed investigation of
DKP equation can be found in Refs. [2, 3, 4]. Next,
Akhiezer and Berestetskii[5], in 1965, discussed an ap-
plication of the DKP field to scalar QED. More re-
cently, there have been new interests in DKP theory: it
has been applied to QCD by Gribov[6] and to covari-
ant Hamiltonian dynamics by Kanatchikov[7]. On the
other hand, it has been studied in curved spacetime[1],
discussed in casual approach[8] and investigated with
5D Galilean covariance[9]. There also have been given
detailed proofs of the equivalance between DKP and
Klein-Gordon fields[10], and some points regarding DKP
interaction with electromagnetic field[11].

The torsion gravity (or teleparallel gravity) is an
alternative approach to gravitation and corresponds
to a gauge theory for the translation group based on
Weitzenböck geometry[12]. In this theory, gravitation
is attributed to torsion[13] which plays the role of a
force[14], and the curvature tensor vanishes identically.
The interesting place of torsion gravity is that, due to
its gauge structure, it can reveal a more convenient
approach to consider some specific problems.

The wave equation for spin-0 and spin-1 bosons in
torsion gravity is defined as[15]{

iβµ

(
∂µ − 1

2
KµαβS

αβ

)
−m

}
Ψ = 0. (1)

Here Kµαβ and Sαβ are the torsion tensor and spin
tensor, respectively. Next, the β -matrices obey the fol-
lowing algebraic relations

β(a)β(b)β(c)+β(c)β(b)β(a) = β(a)η(b)(c)+β(c)η(b)(a).(2)

Here a, b, c = 0, 1, 2, 3, and ηab is the metric tensor of
Minkowski spacetime with signature (+,−,−,−). The
Latin alphabet will be used to indicate Minkowski in-
dexes, while Riemann-Cartan indexes will be indicated
by Greek letters.

The DKP equation is very similar to Dirac’s equation
but the algebraic properties of βa matrices, which have
no inverses, make it more difficult to deal with. These
matrices are given by the definition:

βµ = γµ⊗I+I⊗γµ, (3)

and they are related to flat Minkowski spacetime as
βµ(x) = hµ

(i)β̃
(i) with a tetrad frame that satisfies

gµν = h(i)
µ h(j)

ν η(i)(j). (4)

In relativistic quantum mechanics, the counterpart
of the Maxwell equations can be described by tak-
ing zero-mass limit of the DKP equation. Unal, in
1997, showed that the wave equation of massless spin-1
particle in flat space-time is equivalent to free space
Maxwell equations[16]. Then, Unal and Sucu solved
the general relativistic massless-DKP (mDKP) equa-
tions in Robertson-Walker space-time written in spher-
ical coordinates[17]. By using the same technique, in
Einstein’s theory of general relativity, the mDKP equa-
tion had been solved for various spacetimes and showed
the mDKP equation is equivalent to free space Maxwell
equations[18, 19, 20, 21]. In the method, the β -matrices
are written as a direct product of Pauli spin matrices
with unit matrix and this definition leads to a spinor
which is related to complex combination of the electric
and magnetic fields. On the other hand, the quantum
mechanical solution is important to discuss the wave-
particle duality of electromagnetic fields, since the par-
ticle nature of the electromagnetic field can be analyzed
only by a quantum mechanical equation. Furthermore,
the mDKP equation removes the unavoidable usage of
(3 + 1)D spacetime splitting formalism for the Maxwell
equations[22].

The mDKP equation in torsion gravity is given as

iβµ

(
∂µ − 1

2
KµαβS

αβ

)
Ψ = 0, (5)

where βµ are now:

βµ = σµ⊗I+I⊗σµ, (6)
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with σµ = (I,−→σ ). Next, the spin tensor can be defined
as

4Sµν = {βµ, βν} , (7)

and the torsion tensor is written as

K(b)(a)
µ = −K(a)(b)

µ = hα(a)hβ(b)Kµαβ , (8)

or

K(b)(a)
µ = hν(b)

{
Γα
µνh

(a)
α − ∂µh

(a)
ν

}
, (9)

with Christoffel symbols

Γα
µν =

1

2
gαβ(∂µgβν + ∂νgβµ − ∂βgµν). (10)

In the present work, we investigate the behavior of
the massless spin-1 particles by examining mDKP equa-
tion in the Bianchi-type I universe in teleparallel grav-
ity. The work is organized as follow: in the next section
investigate the mDKP equation in torsion gravity ex-
plicitly and obtain its second order form for a given ge-
ometry. In section 3, we discuss the free-space Maxwell
equations the Bianchi-type I universe. In section 4, we
find oscillating frequency of the photon. Finally, we dis-
cuss our results.

2. Massless spin-1 particles in torsion
gravity

The line-element of the Bianchi-type I universe is

ds2 = −dt2 +A2dx2 +B2dy2 + C2dz2, (11)

where A , B and C are functions of t alone and these
expansion factors could be determined via field equa-
tions in Einstein’s theory of general relativity or torsion
gravity. We know that the non-trivial tetrad field in-
duces a torsion gravity structure on spacetime which is
directly related to the presence of the gravitational field.
Using the relation (4), we obtain the tetrad components:

ha
µ = δa0δ

0
µ +Aδa1δ

1
µ +Bδa2δ

2
µ + Cδa3δ

3
µ (12)

and its inverse is

h µ
a = δ0aδ

µ
0 +A−1δ1aδ

µ
1 +B−1δ2aδ

µ
2 + C−1δ3aδ

µ
3 (13)

The line-element given by eqn. (11) can be reduced to
the flat Friedmann-Robertson-Walker line element in a
special case. Defining A = B = C = T (t) and trans-
forming the line-element (11) from t, x, y, z coordinates
to the spherical coordinates, we obtain

ds2 = dt2 − T 2(t)[dr2 + r2(dθ2 + sin2 θdϕ2)], (14)

according to:

x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ. (15)

The Friedmann-Robertson-Walker spacetime has re-
ceived considerable interests in the relativistic cosmol-
ogy. Maybe one of the most important features of this
model is, as predicted by inflation[23, 24, 25], the flat-
ness which agrees with the observed cosmic microwave
background radiation.

By using the definition of Christoffel symbols given
by the equation (10), the non-vanishing components are
found as

Γ0
11 = AȦ, Γ0

22 = BḂ, (16)

Γ0
33 = CĊ, Γ1

01 = Γ1
10 =

Ȧ

A
, (17)

Γ2
02 = Γ2

20 =
Ḃ

B
, Γ3

03 = Γ3
30 =

Ċ

C
, (18)

where a dot indicates the derivative with respect to t .
Thence, the surviving components of the torsion tensor
are obtained as

K
(0)(1)
1 = −K

(1)(0)
1 = −Ȧ, (19)

K
(0)(2)
2 = −K

(2)(0)
2 = −Ḃ, (20)

K
(0)(3)
3 = −K

(3)(0)
3 = −Ċ, (21)

or in another form we find

K110 = K101 = AȦ, (22)

K220 = K202 = BḂ, (23)

K330 = K303 = CĊ. (24)

By making use of eqn. (6) we get

β0 = 2(I ⊗ I), (25)

β1 = σ1 ⊗ I + I ⊗ σ1, (26)

β2 = σ2 ⊗ I + I ⊗ σ2, (27)

β3 = σ3 ⊗ I + I ⊗ σ3. (28)

Now, we obtain the mDKP equation as:[
β0∂t + β1(∂x + ȦAS01) + β2(∂y + ḂBS02)

+β3(∂z + ĊCS03)
]
Ψ = 0, (29)

where

β(0) = β̃(0), β(1) =
1

A
β̃(1),

β(2) =
1

B
β̃(2), β(3) =

1

C
β̃(3), (30)
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and

S01 =
1

A
S̃(01), S02 =

1

B
S̃(02),

S03 =
1

C
S̃(03). (31)

Then, eqn. (29) can be re-written as

[2(I ⊗ I)∂t +
1

A
(σ(1) ⊗ I + I ⊗ σ(1))(∂x + ȦS̃01)

+
1

B
(σ(2) ⊗ I + I ⊗ σ(2))(∂y + ḂS̃02)

+
1

C
(σ(3) ⊗ I + I ⊗ σ(3))(∂z + ĊS̃03)]Ψ = 0. (32)

Next, after using the standard representation of Pauli
spin matrices, and defining the 4-component wave-
function as

Ψ =


Ξ0

Ξ1

Ξ2

Ξ3

 . (33)

Eqn. (32) gives the following equations(
2∂t +

2

C
∂z +

Ȧ

A
+

Ḃ

B
+

2Ċ

C

)
Ξ0

+

(
1

A
∂x − i

B
∂y

)
(Ξ1 + Ξ2) +

(
Ȧ

A
− Ḃ

B

)
Ξ3 = 0, (34)

(
1

A
∂x +

i

B
∂y

)
Ξ0 +

(
Ȧ

A
+

Ḃ

B

)
Ξ1

+

(
2∂t +

Ȧ

A
+

Ḃ

B

)
Ξ2 +

(
1

A
∂x − i

B
∂y

)
Ξ3 = 0, (35)

(
1

A
∂x +

i

B
∂y

)
Ξ0 +

(
Ȧ

A
+

Ḃ

B

)
Ξ2

+

(
2∂t +

Ȧ

A
+

Ḃ

B

)
Ξ1 +

(
1

A
∂x − i

B
∂y

)
Ξ3 = 0, (36)

(
Ȧ

A
− Ḃ

B

)
Ξ0 +

(
1

A
∂x +

i

B
∂y

)
(Ξ1 + Ξ2)

+

(
2∂t −

2

C
∂z +

Ȧ

A
+

Ḃ

B
+

2Ċ

C

)
Ξ3 = 0. (37)

Here, one can see that we have Ξ1 = Ξ2 . Then, by
making use of this relation, we find(

∂t +
1

C
∂z +

Ȧ

2A
+

Ḃ

2B
+

Ċ

C

)
Ξ0

+

(
1

A
∂x − i

1

B
∂y

)
Ξ1 +

(
Ȧ

A
− Ḃ

B

)
Ξ3 = 0, (38)

(
1

A
∂x +

i

B
∂y

)
Ξ0 + 2

(
∂t +

Ȧ

A
+

Ḃ

B

)
Ξ1

+

(
1

A
∂x − i

B
∂y

)
Ξ3 = 0, (39)

(
Ȧ

A
− Ḃ

B

)
Ξ0 +

(
1

A
∂x +

i

B
∂y

)
Ξ1

+

(
∂t −

1

C
∂z +

Ȧ

2A
+

Ḃ

2B
+

Ċ

C

)
Ξ3 = 0. (40)

After defining the following new wave functions

Ξ0 = −Ω1 + iΩ2,

Ξ1 = Ξ2 = Ω3,

Ξ3 = Ω1 + iΩ2 (41)

Eqns. (38), (39) and (40) transform into another forms:(
∂t +

Ȧ

A
+

Ċ

C

)
Ω2 +

i

C
∂zΩ

1 − i

A
∂xΩ

3 = 0 (42)

(
∂t +

Ḃ

B
+

Ċ

C

)
Ω1 − i

C
∂zΩ

2 +
i

B
∂yΩ

3 = 0 (43)

(
∂t +

Ȧ

A
+

Ḃ

B

)
Ω3 +

i

A
∂xΩ

2 − i

B
∂yΩ

1 = 0 (44)

After this step, now we perform the following Fourier
transformation,

Ωm(
−→
k , t) =

1

8π3

∫
ei
−→
k .−→x Fm(−→x , t)d3x, (45)

where m = 1, 2, 3. Hence, we find(
∂t +

Ȧ

A
+

Ċ

C

)
F 2 − k3

C
F 1 +

k1
A
F 3 = 0, (46)

(
∂t +

Ḃ

B
+

Ċ

C

)
F 1 +

k3
C
F 2 − ik2

B
F 3 = 0, (47)

(
∂t +

Ȧ

A
+

Ḃ

B

)
F 3 − k1

A
F 2 +

k2
B

F 1 = 0. (48)

By defining

Fm =
Rm

√
−g

Hm, (49)

with R1 = A , R2 = B and R3 = C , we get

Ḣ1 +
Bk3
AC

H2 − Ck2
AB

H3 = 0, (50)

Ḣ2 − Ak3
BC

H1 +
Ck1
AB

H3 = 0, (51)
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Ḣ3 − Bk1
AC

H2 +
Ak2
BC

H1 = 0. (52)

We can write these equations in a general form[26];

Ḣm =
1√
−g

3∑
n=1

εmnlkl(R
n)2Hn. (53)

To solve this equation exactly, for suitable symmetry,
we can use spherical coordinates. From this point of
view, Hm should be written in terms of spherical coor-
dinates. The components of k in spherical coordinates
are defined as

k1 = k sin θ cosφ,

k2 = k sin θ sinφ,

k3 = k cos θ, (54)

or in matrix representations sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0


=

 k1

k
k2

k
k3

k
k3k1

kk⊥

k3k2

kk⊥
−k⊥

k

− k2

k⊥

k1

k⊥
0

 , (55)

where

k2⊥ = k21 + k22. (56)

On the other hand, we define also Hr

Hθ

Hφ

 =

 k1

k
k2

k
k3

k
k3k1

kk⊥

k3k2

kk⊥
−k⊥

k

− k2

k⊥

k1

k⊥
0

 H1

H2

H3

 . (57)

Ergo we have

Ḣr = 0,

Ḣθ = −
(
k23 − k2⊥
kk⊥

)
Ḣ3,

Ḣφ = − k2
k⊥

Ḣ1 +
k1
k⊥

Ḣ2, (58)

and we obtain

Ḣθ = −k
(
αHθ + βHφ

)
(59)

Ḣφ = k
(
γHθ + αHφ

)
(60)

where

√
−gα =

k1k2k3
kk2⊥

(B2 −A2), (61)

√
−gβ =

1

k2⊥
(A2k22 +B2k21). (62)

Here the parameter γ is determined by

γ =
Λ2

βk2
+

α2

β
, (63)

with

Λ2 =
∑
i

(
ki
Ri

)2

. (64)

Λ2 is a generalization of the dispersion relation ω2 =
|k|2 . After eliminating Hφ from equations (59) and
(60), we obtain the following second order differential
equation:

Ḧθ − β̇

β
Ḣθ +

[
Λ2 + kβ∂0

(
α

β

)]
Hθ = 0. (65)

In an explicit form, this result can be re-written as

Ḧθ −

[(
Ȧ

B
− AḂ

B2
− AĊ

BC

)
k22

+

(
Ḃ

A
− BȦ

A2
− BĊ

AC

)
k21

] [
Ak22
B

+
Bk21
A

]−1

Ḣθ

+

{
k21
A2

+
k22
B2

+
k23
C2

+
2k1k2k3
ABCk2⊥

[
BḂ

−AȦ− (B2 −A2)(AȦk22 +BḂk21)

A2k22 +B2k21

]}
Hθ = 0. (66)

We mentioned before that if we define

A(t) = B(t) = C(t) = T (t), (67)

the Bianchi-type I model transforms into the flat Friedmann-
Robertson-Walker spacetime. Hence, under this limit,
eqn. (66) is reduced to

T 2Ḧθ + T Ṫ Ḣθ + (k21 + k22 + k23)H
θ = 0. (68)

Now, by defining conformal time as

∂

∂t
=

1

T

∂

∂η
, (69)

we get

∂2Hθ

∂η2
+ (k21 + k22 + k23)H

θ = 0. (70)

It is easy to see that this equation has the following
solution,

Hθ = Me∓i
√

k2
1+k2

2+k2
3η (71)

where M is a normalization constant.

3. The free-space Maxwell equations in
the Bianchi-type I universe

The interaction of electromagnetic and gravitational
fields is described by the Maxwell equations in a given
background and source. In the absence of an electro-
magnetic source these equations are written as

1√
−g

(
√
−gFµν),ν = 0, (72)
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and

Fµν,σ + Fσµ,ν + Fνσ,µ = 0, (73)

where Fµν = ∂µAν − ∂νAµ . Here we investigate the
Maxwell equations for the line-element given by eqn.
(11) to show the correspondence between the mDKP
equation in torsion gravity and the Maxwell equations.
The covariant and covariant field strengths, Fµν and
Fµν , in the general coordinates are

F 01 =
1

A
E(1), F01 = −AE(1),

F 02 =
1

B
E(2), F02 = −BE(2),

F 03 =
1

C
E(3), F03 = −CE(3),

F 12 =
1

AB
B(3), F12 = ABB(3),

F 13 =
−1

AC
B(2), F13 = −ACB(2),

F 23 =
1

BC
B(1), F23 = BCB(1), (74)

where E(i) and B(i) are the components of the elec-
tric and magnetic fields in the local Lorentz frame. In
terms of these components, Maxwell equations can be
expanded as

∂x

(
E(1)

B(1)

)
+ ∂y

(
E(2)

B(2)

)
+ ∂z

(
E(3)

B(3)

)
= 0, (75)

[BC∂t + ∂t(BC)]

(
B(1)

−E(1)

)
+ C∂y

(
E(3)

B(3)

)
−B∂z

(
E(2)

B(2)

)
= 0, (76)

[AC∂t + ∂t(AC)]

(
B(2)

E(2)

)
− C∂x

(
E(3)

−B(3)

)
+A∂z

(
E(1)

−B(1)

)
= 0, (77)

[AB∂t + ∂t(AB)]

(
B(3)

−E(3)

)
−A∂y

(
E(1)

B(1)

)
+B∂x

(
E(2)

B(2)

)
= 0. (78)

By defining a complex spinor Ξ:

Ξ =

 Ξ1

Ξ2

Ξ3

 =

 E(1) + iB(1)

E(2) + iB(2)

E(3) + iB(3)

 , (79)

and making a suitable Fourier transformation:

Ξm(
−→
k , t) =

1

(2π)3

∫
d3xei

−→
k .−→x ℑm(−→x , t), (80)

for the spinor form of the Maxwell equations we find

k1ℑ1 + k2ℑ2 + k3ℑ3 = 0, (81)(
∂t +

Ȧ

A
+

Ċ

C

)
ℑ2 − 1

C
k3ℑ1 +

1

A
k1ℑ3 = 0, (82)(

∂t +
Ḃ

B
+

Ċ

C

)
ℑ1 +

1

C
k3ℑ2 − 1

B
k2ℑ3 = 0, (83)(

∂t +
Ȧ

A
+

Ḃ

B

)
ℑ3 − 1

A
k1ℑ2 +

1

B
k2ℑ1 = 0. (84)

To eliminate Ȧ
A + Ċ

C , Ḃ
B + Ċ

C and Ȧ
A + Ḃ

B terms, we can
define:

ℑi =
Ri

√
−g

ℜi, (i = 1, 2, 3) (85)

with R1 = A , R2 = B and R3 = C . Thence, we get

ℜ̇1 +
B

AC
k3ℜ2 − C

AB
k2ℜ3 = 0 (86)

ℜ̇2 − A

BC
k3ℜ1 +

C

AB
k1ℜ3 = 0 (87)

ℜ̇3 − B

AC
k1ℜ2 +

A

BC
k2ℜ1 = 0 (88)

These three equations are exactly the same results as
obtained torsion gravity (see eqns. (50), (51) and (52)).

4. The oscillation region

A general method to find the frequency spectrum is to
impose the condition on functions which are the solu-
tions of differential equation. The functions must be
bounded for all values as usually done in quantum me-
chanics, this procedure gives the quantization of fre-
quency. Since we didn’t solve the mDKP equation ex-
actly, we will restrict ourselves to discuss how we can
obtain the oscillation region of the photon.

The general method for obtaining the oscillation re-
gion is to write the differential equation that does not in-
clude the first derivative and simulate this to the second
order differential equation that describes the harmonic
oscillator. Here we define

Hθ(t) = β
1
2 (t)Φ(t). (89)

Next, by making use of this definition in eqn. (65), we
obtain

Φ̈(t) + w2(t)Φ(t) = 0, (90)

where

w2 =
β̈

2β
− 3

4

(
β̇

β

)2

+ Λ2 + kβ∂0

(
α

β

)
. (91)
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Hence the oscillation region is:

−

√√√√ β̈

2β
− 3

4

(
β̇

β

)2

+ Λ2 + kβ∂0

(
α

β

)
< ω

<

√√√√ β̈

2β
− 3

4

(
β̇

β

)2

+ Λ2 + kβ∂0

(
α

β

)
. (92)

5. Conclusions

In this work we mainly focused on the Duffin-Kemmer-
Petiau theory in torsion gravity for the generalized
Bianchi-type I universe. We have obtained a second
order relativistic wave-equation that describes massless
spin-1 particles coupled to the gravitational field. The
method of separation of variables and the Fourier trans-
formation has been used due to the symmetry of the
generalized Bianchi-type I spacetime. Also, the oscilla-
tory behavior of the result has been discussed. Further-
more, we show that the massless Duffin-Kemmer-Petiau
equation in torsion gravity and the free-space Maxwell
equations agree with each other and give the same re-
sults. This interesting feature strongly motivates us
to use the massless Duffin-Kemmer-Petiau equation in
torsion gravity to investigate the dynamics of light. An-
other motivation is that the results obtained can be
used to discuss the Photon production in some special
spacetime models.

References

[1] J.T. Lunardi, B.M. Pimentel and R.G. Teixe-
ria, Geometrical Aspect of Quantum Fields: Proc.
(2000) Londrina Workshop (Londrina, Brazil) ed
A.A. Bytsenko, A.E. Golcaves and B.M. Pimentel
(Singapore: World Scientific) p.111 (2001).

[2] G. Petiau, University of Paris thesis (1936). Pub-
lished in Acad. Roy. de Belg., Classe Sci. Mem in
8o 16, No. 2 (1936)

[3] R.J. Duffin, Phys. Rev. 54, 1114 (1938)

[4] N. Kemmer, Proc. Roy. Soc. A 173, 91 (1939)

[5] A.I. Akhiezer and V.B. Berestetskii, Quantum Elec-
trodynamics (Interscience, 1965)

[6] V. Gribov, Eur. Phys. J. C10, 71 (1999)

[7] I.V. Kanatchikov, Rep. Math. Phys. 46, 107 (2000)

[8] J.T. Lunardi, L.A. Manzoni, B.M. Pimentel and
J.S. Valverde, Int. J. Mod. Phys. A17 (2002) 205-
228.

[9] M. de Montigny, F.C. Khanna, A.E. Santana, E.S.
Santos, J.D.M.Vienna, J.Phys. A 33, L273 (2000).

[10] V. Ya Fainberg and B.M. Pimentel, Theor. Math.
Phys. 124, 1234 (2000); Phys. Lett. A 271, 16
(2000); Braz. J. Phys. 30, 275 (2000)

[11] M. Nowakawski, Phys. Lett. 244, 329 (1998)
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