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Abstract
We introduce the p-Arm theory which give rise to a new mathematical
object that we call the ”p-exponential” which is invariant under
p derivation. We calculate its derivate and we use this new
function to solve differential equations. Next, we
define its real and imaginary part which are
the p-cosinus and the p-sinus respectively.



Introduction

The Arm theory [1] gives a developpment on any p-th power function basis in changing of variable
in the Arm formula. But for functions in C[(u(z) — 20)P],p € N* there is an other way (the p-Arm
formula) to make this developpment : instead of changing the variable at the p-th powers, you can
also derivate p times which will finally give the same result. This is the main idea behind the p-Arm
theory.

The exponential function is the function which leaves invariant the operator in the Taylor formula
ie.:
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So in constructing the p-Arm theory, we see that we need a "p-exponential” e,” function which leaves
the operator of the p-Arm formula invariant :
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The p-Arm formula is not so much interesting itself because we already have the developpment by the
Arm-theory, but this formula give rise to the p-exponential which is very interesting to study.

In studying the derivate of the p-exponential, we see that this operator acts like a shift operator
on the p-exponential and we need a generalization of the ”p-exponential” to also include its derivate.
This generalized exponential function is :

o0 rPk+u
R — 0.4
TPV T o)

for p, x € N*. I know that there is already a generalized exponential function in the theory of the
fractional calculus (see [2]) which is given by
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but which one I introduce here is more generalized because (0.4) has a multiplication and a shift
whereas (0.5) has only a shift.



In the first section, we give the equivalent of the Arm formula for the p-Arm theory which we
naturally call the p-Arm formula for function in C[(u(z) — 20)P].

In the second section, we give the equivalent shifted Arm formula for the p-Arm theory which we
call the shifted p-Arm formula.

In the third section, we give the definition of the generalized exponential function. Next, we draw
the six first real p-exponentials which is a beautiful graph. In effect, we explain why the p-th derivate
of the p-exponential is itself. In this case, we calculate the derivate of the p-exponential. Thereby,
we give the relation between the p-exponential and the traditional exponential. This is why we use
this result to show that every function solving that its p-th derivate is itself can be expressed as a
linear combination of p-exponential and we give the example of p = 2. Then defining the complex p-
exponential, we give its real part called the p-cosinus and we draw the six first p-cosinus. Furthermore,
we define the p-sinus which is the imaginary part of the complex p-exponential and we draw the six
first of it. Finally, we define the p-tangent and we draw the six first p-tangent.



1 The p-Arm Formula

First we introduce the generalization to each basis u(z) of the well known Taylor formula which is
written in the basis u(z) = z for each basis of the space C[(u(z) — 29)P] =span{l, (u(z) — 20)?, (u(z) —
20)%, ...}

Theorem 1. Vu(z) € C(C) if 3z € C such that u(z) = zp € C then Vf(z) € C[(u(z) — 20)P]
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2 The Shifted p-Arm Formula

If you have a function f € C[(u(z — z0)?] & C[(u(z) — 20)P], you can know it if the coefficients on
the negative basis are zeros before the infinity.

Theorem 2. Yu(z) € C(C) if 3z € C such that u(z) = zy € C then
Vf(z) € Cl(u(2) — 20)] ® C[(u(z) — 20)7"]
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where the integer my(u, f) € N is given by :
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Inserting (2.13) in (1.6), we deduce

] pk

=0

from which we deduce (2.11) in changing k' = k — mp(u, f).
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Remark 1. If you consider the shifted p-Arm formula (2.11) for p = 2,u(z) = €** and z = 0, you

will check that : 0 o
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with mo(e'?, cos?) = 1.



The shifted p-Arm formula gives rise to a new mathematical function which make one the limit in
the formula (2.11).

3 The p-exponential

Definition 1. We define the generalised exponential function :
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for p,u € N*.
In the rest of this paper, we will call e, ,* = €,” the ”p-exponential”.

Now because we want see what are these new function, we draw the 6 first real p-exponentials :
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FIGURE 1 — The six first p-exponentials

We now explain why is this function interesting
Proposition 1. The p-exponential is a function such that
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for each 1 <1 < p.



Proof :
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The second part of (3.18) is trivial.
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Now, we calculate the derivative of the p-exponential

Proposition 2. The derivate of the p-exponential is given by :

where p € N*,
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Remark 2. Of course we have
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Remark 3. We see that because of (3.20), we have :
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for 1 < k <p. So the derivation acts like a shift operator on the p-exponential.

Now we show an interesting relation which link the p-exponential with the traditional exponential.

Proposition 3. The link between the p-exponential and the usual exponential is given by :
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or equivalently :
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Now we introduced the p-exponential, we can use it to solve somes differential equations. In fact,
this is why I created it, the exponential solve the limit of the first order differential equation in
the traditional Taylor formula whereas the p-exponential solve the limit of the pth order differential
equation in (1.6).



Proposition 4. Let the differential equation
OPu(x)

OxP
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Jdov, ..., ap such that the solution of (3.27) can be expressed as :
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where w, = e » s the p-th root of unity.
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Example :

As an example of (3.27), we solve the well-know case :

0%u(r)
oz = U@
The formula (3.28) gives the solution :
u(z) = o e"+ax e
u(z) = a5 cosh(zx) + az cosh(—x)

where a1, as € C depend on the initial conditions.
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Now we define the p-cosinus and p-sinus functions
Definition 2. The p-cosinus is the real part of the complex exponential given by
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We draw the 6 first p-cosinus
\ \
FIGURE 2 — The six first p-cosinus
Definition 3. The p-sinus is the imaginary part of the complex exponential given by
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We draw the 6 first p-sinus
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F1GURE 3 — The six first p-sinus



Definition 4. The p-tangent is given by
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We draw the 6 first p-tangent

FIGURE 4 — The six first p-tangent
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Discussion

Even if the limit of the sum of two elements seems to be

lim et = 1 e’ eY (3.35)
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on the graph for p > 2, I didn’t find a simple relation between the sum of arguments and the product
of exponentials. In a same way, we don’t have an equivalent of the Moivre formula which links the
n-th power of the exponential with the multiplication with n of the argument. However this relation
seems to exist on the graph if we consider it in the infinity limit :
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In addition I also search for the value of the module of the p-exponential but it seems to not have
a fixed valued on the graph. So on the graph, it seems to be :
lim cos?)(x) + sin(z) = oo (3.37)
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for p > 3. There is an exception for p = 2 because es = cosh and we have that :
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For now, I didn’t find yet the inverse function of the p-exponential or of the generalized exponential
function. I tried finding an expression for the derivate of the ”p-logarithm” :
Oln,(x 1
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but we need a relation between the p-exponential e, * and its derivate e, , * other than the derivation
relation itself.
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