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Abstract
We introduce the p-Arm theory which give rise to a new mathematical

object that we call the ”p-exponential” which is invariant under
p derivation. We calculate its derivate and we use this new

function to solve differential equations. Next, we
define its real and imaginary part which are
the p-cosinus and the p-sinus respectively.



Introduction

The Arm theory [1] gives a developpment on any p-th power function basis in changing of variable
in the Arm formula. But for functions in C[(u(z) − z0)p], p ∈ N∗ there is an other way (the p-Arm
formula) to make this developpment : instead of changing the variable at the p-th powers, you can
also derivate p times which will finally give the same result. This is the main idea behind the p-Arm
theory.

The exponential function is the function which leaves invariant the operator in the Taylor formula
i.e. :

∂ex

∂x
= ex (0.1)

So in constructing the p-Arm theory, we see that we need a ”p-exponential” e x
p function which leaves

the operator of the p-Arm formula invariant :

∂pe x
p

∂xp
= e x

p ;
∂ke x

p

∂xk
6= e x

p (0.2)

for 1 ≤ k < p. The answer to the question (0.2) is the definition of the p-exponential as follow :

exp =
∞∑
k=0

xpk

(pk)!
(0.3)

The p-Arm formula is not so much interesting itself because we already have the developpment by the
Arm-theory, but this formula give rise to the p-exponential which is very interesting to study.

In studying the derivate of the p-exponential, we see that this operator acts like a shift operator
on the p-exponential and we need a generalization of the ”p-exponential” to also include its derivate.
This generalized exponential function is :

e x
p,µ =

∞∑
k=0

xpk+µ

(pk + µ)!
(0.4)

for p, µ ∈ N∗. I know that there is already a generalized exponential function in the theory of the
fractional calculus (see [2]) which is given by

Eyµ ≡
∞∑
k=0

tk−µ

Γ(k + 1− µ)
(0.5)

but which one I introduce here is more generalized because (0.4) has a multiplication and a shift
whereas (0.5) has only a shift.
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In the first section, we give the equivalent of the Arm formula for the p-Arm theory which we
naturally call the p-Arm formula for function in C[(u(z)− z0)p].

In the second section, we give the equivalent shifted Arm formula for the p-Arm theory which we
call the shifted p-Arm formula.

In the third section, we give the definition of the generalized exponential function. Next, we draw
the six first real p-exponentials which is a beautiful graph. In effect, we explain why the p-th derivate
of the p-exponential is itself. In this case, we calculate the derivate of the p-exponential. Thereby,
we give the relation between the p-exponential and the traditional exponential. This is why we use
this result to show that every function solving that its p-th derivate is itself can be expressed as a
linear combination of p-exponential and we give the example of p = 2. Then defining the complex p-
exponential, we give its real part called the p-cosinus and we draw the six first p-cosinus. Furthermore,
we define the p-sinus which is the imaginary part of the complex p-exponential and we draw the six
first of it. Finally, we define the p-tangent and we draw the six first p-tangent.
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1 The p-Arm Formula

First we introduce the generalization to each basis u(z) of the well known Taylor formula which is
written in the basis u(z) = z for each basis of the space C[(u(z)− z0)p] =span{1, (u(z)− z0)p, (u(z)−
z0)

2p, ...}
Theorem 1. ∀u(z) ∈ C(C) if ∃z ∈ C such that u(z) = z0 ∈ C then ∀f(z) ∈ C[(u(z)− z0)p]

f(z) =
∞∑
k=0

1

(pk)!

[
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)pk
f(z)

] (
u(z)− z0

)pk
(1.6)

Proof :
It’s enough to show this formula on the basis

{
(u(z)− z0)pr

}
r∈N.

If k < r :

1

(pk)!
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)pk(
u(z)− z0

)pr
=

1

(pk)!
lim

z→u−1(z0)
∂pku(z)

(
u(z)− z0

)pr
=

1

(pk)!
lim

z→u−1(z0)

(pr)!

(p(r − k))!

(
u(z)− z0

)p(r−k)
1

(pk)!
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)pk(
u(z)− z0

)pr
= 0 (1.7)

If k > r :

1

(pk)!
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)pk(
u(z)− z0

)pr
=

1

(pk)!
lim

z→u−1(z0)

(
∂

∂u(z)

)pk(
u(z)− z0

)pr
=

1

(pk)!
lim

z→u−1(z0)
∂
p(k−r)
u(z) (pr)!

1

(pk)!
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)pk(
u(z)− z0

)pr
= 0 (1.8)

If k = r :

1

(pk)!
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)pk(
u(z)− z0

)pr
= lim

z→u−1(z0)

(pr)!

(pk)!

1

(pk)!
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)pk(
u(z)− z0

)pr
= 1 (1.9)

So we can see that :

1

(pk)!
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)pk(
u(z)− z0

)pr
= δk,r (1.10)

�
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2 The Shifted p-Arm Formula

If you have a function f ∈ C[(u(z − z0)−p]⊕C[(u(z)− z0)p], you can know it if the coefficients on
the negative basis are zeros before the infinity.

Theorem 2. ∀u(z) ∈ C(C) if ∃z ∈ C such that u(z) = z0 ∈ C then
∀f(z) ∈ C[(u(z)− z0)p]⊕ C[(u(z)− z0)−p]

f(z) =
∞∑

k=−mp(u,f)

1

(p(k +mp(u, f)))!

[
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)p(k+mp(u,f))
(u(z)−z0)pmp(u,f)f(z)

](
u(z)−z0

)pk
(2.11)

where the integer mp(u, f) ∈ N is given by :

mp(u, f) = lim
z→u−1(z0)

− ln(f(z))

p ln(u(z)− z0)
<∞ (2.12)

Proof :
Let f(z) has the decomposition

f(z) =
∞∑

k=−mp(u,f)

αpk(u(z)− z0)pk =
∞∑
k=0

αp(k−mp(u,f))(u(z)− z0)pk(u(z)− z0)−pmp(u,f) (2.13)

where αpk =< f, (u(z)− z0)pk >. Pratically, we determine mp in calculating

lim
z→u−1(z0)

− ln(f(z))

p ln(u(z)− z0)
= lim

z→u−1(z0)
−

ln(
∑∞

k=−m(u,f) αk(u(z)− z0)k)
p ln(u(z)− z0)

= lim
z→u−1(z0)

−
ln(α−m(u,f)(u(z)− z0)−m(u,f))

p ln(u(z)− z0)

lim
z→u−1(z0)

− ln(f(z))

p ln(u(z)− z0)
= m(u, f) (2.14)

Inserting (2.13) in (1.6), we deduce

(u(z)−z0)pmp(u,f)f(z) =

∞∑
k=0

1

(pk)!

[
lim

z→u−1(z0)

(
∂z

∂u

∂

∂z

)pk
(u(z)−z0)pmp(u,f)f(z)

](
u(z)−z0

)pk
(2.15)

from which we deduce (2.11) in changing k′ = k −mp(u, f).

�

Remark 1. If you consider the shifted p-Arm formula (2.11) for p = 2, u(z) = eiz and z0 = 0, you
will check that :

cos2(z) =
e2iz + 2 + e−2iz

4
(2.16)

with m2(e
iz, cos2) = 1.
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The shifted p-Arm formula gives rise to a new mathematical function which make one the limit in
the formula (2.11).

3 The p-exponential

Definition 1. We define the generalised exponential function :

e x
p,µ =

∞∑
k=0

xkp+µ

(kp+ µ)!
(3.17)

for p, µ ∈ N∗.

In the rest of this paper, we will call e x
p,0 = e x

p the ”p-exponential”.

Now because we want see what are these new function, we draw the 6 first real p-exponentials :

Figure 1 – The six first p-exponentials

We now explain why is this function interesting

Proposition 1. The p-exponential is a function such that

∂pe x
p

∂xp
= e x

p and
∂le x

p

∂xl
6= e x

p (3.18)

for each 1 ≤ l < p.
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Proof :

∂pe x
p

∂xp
=

∂p

∂xp

∞∑
k=0

xpk

(pk)!

=
∞∑
k=1

(pk)!

(pk − p)!
xpk

(pk)!

=
∞∑
k=1

xpk−p

(pk − p)!

=
∞∑
k=0

xpk

(pk)!

∂pe x
p

∂xp
= e x

p (3.19)

The second part of (3.18) is trivial.

�

Now, we calculate the derivative of the p-exponential

Proposition 2. The derivate of the p-exponential is given by :

∂e x
p

∂x
= e x

p,p−1 (3.20)

where p ∈ N∗.

Proof :

∂e x
p

∂x
=

∂

∂x

∞∑
k=0

xpk

(pk)!

=
∞∑
k=1

(pk)
xpk−1

(pk)!

=
∞∑
k=1

xpk−1

(pk − 1)!

=

∞∑
k=0

xpk+p−1

(pk + p− 1)!

∂e x
p

∂x
= e x

p,p−1 (3.21)

�
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Remark 2. Of course we have

∂e
u(x)

p

∂x
=

∂u

∂x
e

u(x)
p,p−1 (3.22)

Remark 3. We see that because of (3.20), we have :

∂ke x
p

∂xk
= e x

p,p−k (3.23)

for 1 ≤ k ≤ p. So the derivation acts like a shift operator on the p-exponential.

Now we show an interesting relation which link the p-exponential with the traditional exponential.

Proposition 3. The link between the p-exponential and the usual exponential is given by :( p−1∑
µ=0

∂µ

∂xµ

)
e x
p = ex (3.24)

or equivalently :
p−1∑
µ=0

e x
p,µ = ex (3.25)

Proof :( p−1∑
µ=0

∂µ

∂xµ

)
e x
p = e x

p +
∂

∂x
e x
p + ... +

∂p−1

∂xp−1
e x
p

=

∞∑
k=0

xpk

(pk)!
+

∂

∂x

∞∑
k=0

xpk

(pk)!
+ ...+

∂p−1

∂xp−1

∞∑
k=0

xpk

(pk)!

=

∞∑
k=0

xpk

(pk)!
+

∞∑
k=1

xpk−1

(pk − 1)!
+ ...+

∞∑
k=1

xpk−p+1

(pk − p+ 1)!

=
∞∑
k=0

xpk

(pk)!
+

∞∑
k=0

xpk+p−1

(pk + p− 1)!
+ ...+

∞∑
k=0

xpk+1

(pk + 1)!

= e x
p + e x

p,p−1 + ...+ e x
p,1( p−1∑

µ=0

∂µ

∂xµ

)
e x
p = ex (3.26)

�

Now we introduced the p-exponential, we can use it to solve somes differential equations. In fact,
this is why I created it, the exponential solve the limit of the first order differential equation in
the traditional Taylor formula whereas the p-exponential solve the limit of the pth order differential
equation in (1.6).
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Proposition 4. Let the differential equation

∂pu(x)

∂xp
= u(x) (3.27)

∃α1, ..., αp such that the solution of (3.27) can be expressed as :

u(x) =

p∑
k=1

αk e
ω k
p x

p (3.28)

where ωp = e
2iπ
p is the p-th root of unity.

Proof :

∂pu(x)

∂xp
=

p∑
k=1

αk
∂p

∂xp
e
ω k
p x

p

=

p∑
k=1

αk

(
∂(ω k

p x)

∂x

∂

∂(ω k
p x)

)p
e
ω k
p x

p

=

p∑
k=1

αk ω pk
p e

ω k
p x

p

∂pu(x)

∂xp
= u(x) (3.29)

�

Example :
As an example of (3.27), we solve the well-know case :

∂2u(x)

∂x2
= u(x) (3.30)

The formula (3.28) gives the solution :

u(x) = α1 e x
2 + α2 e −x2

u(x) = α1 cosh(x) + α2 cosh(−x) (3.31)

where α1, α2 ∈ C depend on the initial conditions.

8



Now we define the p-cosinus and p-sinus functions

Definition 2. The p-cosinus is the real part of the complex exponential given by

cosp(x) =
e ix
p + e −ixp

2
(3.32)

We draw the 6 first p-cosinus

Figure 2 – The six first p-cosinus

Definition 3. The p-sinus is the imaginary part of the complex exponential given by

sinp(x) =
e ix
p − e −ixp

2i
(3.33)

We draw the 6 first p-sinus

Figure 3 – The six first p-sinus
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Definition 4. The p-tangent is given by

tanp(x) =
sinp(x)

cosp(x)
(3.34)

We draw the 6 first p-tangent

Figure 4 – The six first p-tangent
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Discussion

Even if the limit of the sum of two elements seems to be

lim
x+y→∞

ex+yp =
1

p
ex ey (3.35)

on the graph for p ≥ 2, I didn’t find a simple relation between the sum of arguments and the product
of exponentials. In a same way, we don’t have an equivalent of the Moivre formula which links the
n-th power of the exponential with the multiplication with n of the argument. However this relation
seems to exist on the graph if we consider it in the infinity limit :

lim
x→∞

enxp =
1

p
(ex)n (3.36)

for p ≥ 2

In addition I also search for the value of the module of the p-exponential but it seems to not have
a fixed valued on the graph. So on the graph, it seems to be :

lim
x→∞

cos2p(x) + sin2
p(x) = ∞ (3.37)

for p ≥ 3. There is an exception for p = 2 because e2 = cosh and we have that :

|e ix
2 | = cos(x) (3.38)

For now, I didn’t find yet the inverse function of the p-exponential or of the generalized exponential
function. I tried finding an expression for the derivate of the ”p-logarithm” :

∂ lnp(x)

∂x

∣∣∣∣
x=e x

p

=
1

e x
p,p−1

(3.39)

but we need a relation between the p-exponential e x
p and its derivate e x

p,p−1 other than the derivation
relation itself.
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