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Abstract: We develop in detail, the classical magneonopoles of non-abelian Yang-Mills
gauge theory and show how these monopoles, whdgzadausing Gauss’ / Stokes’ theorem,
appear to confine their gauge fields, and also, egpto be composite objects. Of course,
baryons, which include the protons and neutronshat heart of nuclear physics, also confine
their gauge fields and are similarly-composite alge This raises the question whether the
magnetic monopoles of Yang-Mills theory are in séas@ion related to the observed physical
baryons. After developing inverse solutions fa tion-abelian electric charge densities while
carefully examining uniqueness and gauge fixing,use these solutions together with Dirac
theory to “populate” these classical monopoles withmions. Applying the Fermi-Dirac-Pauli
Exclusion Principle to these fermions forces tHed®n of a dimension-3 gauge group initially
chosen to be SU(3). We then find that these nehaabmagnetic monopoles have the exact
chromodynamic symmetries of baryons and interagetceiored magnetic fields with the exact
chromodynamic symmetries of mesons. We show tresjuired U(1) factor ensures that these
monopoles are topologically stable, and also “fleefo these monopole as protons and
neutrons. Because this exposition is classicalalgo discuss the extent to which classical field
theory can be used to effectively analyze baryamd$ eonfinement. We point out how a
recursive aspect of the non-abelian electric chasgdution may be used to perform an
analytically-exact quantum path integration for gaMlills theory, proving the existence of a
non-trivial quantum Yang—Mills theory orf fr any simple gauge group G. Finally, we use the
results of this path integration to develop fouamles of the application of analytical non-
linear quantum field theory, which includes a quantfield explanation of confinement, a fitting
of the running QCD curve to the known empiricaladatithin experimental error bars, and a
careful review of single and double slit experinsent
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PART |: CLASSICAL YANG-MILLS THEORY

1. Introduction: The Field Strength Curvature Tensor in Gauge
Theory, and a Review of Gauge-Covariant Derivatives

In 1918, [1], [2] Hermann Weyl first conceived tltea that electrodynamics might be
unified with Einstein’s recently-developed geometiieory of gravitation [3], by analyzing a
“twisting” of vectors under parallel transport toeasure the geometric curvature of a gauge
space. While Weyl first conceived of this as aldgauge” symmetry, in 1929 [4] he corrected
his original misconception into the modern viewadbcal “phase” symmetry. Notwithstanding,
the original misnomer “gauge” is still used to nakveyl's theory, perhaps as a reminder to
posterity that even the most foundational phydicabries are sometimes properly-conceived in
the abstract but misconceived in some detailsrtbatl to be worked out over time.

In gravitational theory the Riemann curvature terk’,
measure of the degree to which the gravitationedlyariant derivatived., is non-commuting

may of course bdefinedas a

when it operates on an arbitrary vectdy, that is, as R%,, A s[am,aw] A . What Weyl
essentially found is that the antisymmetric, seceamk, field strength tensor / bivectdr,,

which appears in electromagnetic theory may benddfas a measure of the extent to which the
gauge-covariant derivativ®, is not self-commuting when it operates on an eahyt scalar

field ¢. That is,F, may bedefinedanalogously toR”
space,” by:

as a type of curvature in “gauge

auv !

F.#=i[D,D,]¢=iD,(D,g)-D,(D,9). (1.1)

It is instructive to review how the explicit relatiship between the field strengt), and a
gauge / vector potenti@, then arises from this definition (1.1).

Gauge-covariant derivatives, like covariant demxed in Riemannian geometry, take a
form that depends on the representation of thecolbjey act upon. Taking the gauge field as
the defining (fundamental) representation, the fofrthe gauge-covariant derivatives in (1.1) is
D,=0,-iG,. Butin other situations to be reviewed, it isiamore complicated than this. (In

general, for compactness, we scale the interaadi@mrge strengtly into the gauge field via
gG, - G,. Thisg can always be extracted back out when explicidgded.) So, applying

D,=0,-iG, in (1.1), we may write:

iD, (D,¢) =i(9,-iG,)((0, -iG,)#)=id, (3,4 -IG,$)+G (3,8 -iG,¥)

, (1.2)
=i0,0,4+0,G,¢+G,0,4+G,0,¢~iG,G¢

as well as the reverse-signed, transposed-indexed:

5
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-iD, (D,#)=-9,0,4-0,G,#~G,0,4-G,0,4+iG,G,0. (1.3)
Using (1.2) and (1.3) in (1.1) then yields:
F.#=i[D,.D,]¢=iD,(D,¢)-D,(D,¢)=i[0,0,]s+3,6,4-[C,G,|¢. (1.4)

In flat spacetime whereR’,, A s[am,a;v] A :[6”,6V] A =0 and removing the arbitrary
operand fieldg , the above becomes the more familiar:

FﬂV :a[ﬂGVI _i[Gu’q/] :(a[/x B ic?u) G4 = [[)uqﬁ ' (1.5)

Again, D, =0,-iG, above is the gauge-covariant derivative when it apon gauge field

objects G, in the fundamental representation, but in genewdien operating on other
representations, it is a bit more complicated asha! now see.

If the gauge fields commute, i.e., ii[Gy,q,]:O, then (1.5) reduces to
F,=0,G,=0,G -9,G, and the gauge theory is known asadrelian gauge theory. If the
gauge fields daot Commute,[Gy,q,]?fO, then (1.5) becomes the field strength fonam-

abeliangauge theory, often also referred to as Yang-N#|ggauge theory.

Using differential forms, we may write the abelfegld strength as:

F=3F,dx0dX =49,G, d¥ 0 dk=0, G dkO dx= d. (1.6)

In general, the wedge produdk” [1dX = dX dx— d% dk:[ dk d% is antisymmetric under

adjacent index interchange, and the differentiaingints are anticommutingx” dX =-dx dX.
So, by inspection from (1.5) in view of (1.6), then-abelian field strength is:

F=4F,dx Od¥ :%(a[y G-1G. c;]) d{ 0 dk= dG [i G $= DC (1.7)

Here, compacted into differential forms, the gaageariant derivative is not separable from its
operand as wa®, =9, -iG, when operating or5, in (1.1) to (1.5), but rather involves the

commutator ofG with the operand which, in this case, just so keagpo also b&. That is, it
involves[G, G]. This in fact reveals the more-general form &f ¢fauge-covariant derivative as

we shall review next.
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Now, focusing on non-abelian gauge theories, Mmduce a set of traceless Hermitian
generatorst' =t" which form a closed group under multiplication \[i'ei,tj]:if "t where
f% are the group structure constants and are antiggritmunder the transposition of any two
adjacent indexes. For any simple group SU(N),itlernal symmetry indexes of the adjoint
representationi, j k =1..N*-1. We may then define=, =t‘F*, and G, =t'G', and use
these in (1.5) to expand:

v

F., =tF*, =0,G,-i[G,.G |=t9,G, -t t]G,0,=tq,C, + fta,q,. (18
Factoring outt* this simplifies to the recognizable:
ka :a[kaV] + f”'kG‘yG"V. (2.9)

Now, for illustration, let us momentarily considée situation where the are one half
(%) times the three (3) Pauli spin matrix genestof SU(2),t' =1g', so that f™ simply

becomes the rank-3 Levi-Civita tensd® — £* | which again, is antisymmetric in all indexes.

In spacetime, if we were to write® AB' for any two vectorsA and B! and were to regard
i,j,k as indexes for the space dimensions x, y, z then, for example,

£°AB = AB- KB=(AxB)’ is the z-component of the cross produckB, and more

generally, e AB =(A ><B)k. But of course, thé, j k indexes in (1.9) are not space indexes,

but areinternal symmetryndexes. So rather than using the cross-produmsbal “x” which is
used for vectors in physical space, and becausgtiivevish to be able compactly represent the

fundamentally-antisymmetric character 6% in the form of a “cross-like product” in internal
symmetry space, we instead employ the wedge syfhd! Although G', and G/, in (1.9)
both are gauge fields, they have different spacetime indexesand v, so we may still think of

them as two different vectors just liké and B’ above. So analogously &A B =(A ><B)k
in the three space dimensions of spacetime, weewfitG' G/, :(GyDGb)k in internal
symmetry space. Then, we use this in (1.9) toewsit , =9,,G*,, +(Gﬂ O G,,)k. Because the

general form of this equation holds in SU(N) focleaf the indexesk =1...N* -1, we may
suppress thk index throughout to write:

F, =9,G,+G,0G. (1.10)

Hv]

Then, compacting (1.10) to differential forms aglir6), we have:

F=iF,d¥0OdX =4(3,G+GOG) dkD dk= d&@ G &( ¢ G & L. (111)
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Now, Jaffe and Witten point out at pages 1 and [Bpthat:

“If A denotes the U(1) gauge connection, locally a one-fon space-time, then
the curvature or electromagnetic field tensor i tvo-form F = dA [see (1.6)
above], and Maxwell's equations in the absence h@rges and currents read
O=dF=d*F.”

They then proceed to explain that in “non-abeliange theory”:

“at the classical level one replaces the gaugeptéd) of electromagnetism by a
compact gauge group G. The definition of the clunea arising from the
connection must be modified t6 = dA+ AO A and Maxwell's equations are

replaced by the Yang—Mills equatio3=d,F =d,* F, whered, is the gauge-
covariant extension of the exterior derivative.”

Equation (1.11) is preciselif = dA+ AO A with the gauge field simply renamed froito G,
and what Jaffe and Witten write above is a condimrsglanation for what we have laid out
above in equations (1.1) through (1.11). When seethe generalized one-foGand two-form

F without any particular generator s&t then the differential forms equation is writtes a
F=dG- i[G, G] in (1.7). But when one does introduce a set ofigrgenerator$' and the

antisymmetric structure contestarfté — [, the differential forms equation & =dG+ GO G

in (1.11). To display the particular=1..N? -1 field components for a compact simple gauge
group SU(N), this equation i§' =dG +(GO G)i. So F =dG-i[G, G| (commutator form)
and F =dG+ GO G (wedge form) are just alternative ways of saying same thing. But a
benefit of the wedge form is that we may wrke= (d + GD) G= DG so as to define a gauge-
covariant derivativeD =d + G[J (: dA) in a form which is fully-separable from its opedan

and which is generally applicable any and all operands We will find it useful in general to
develop both these forms.

Indeed, the reason we have gone through the eredfi (1.8) through (1.11), is to
explore the question of how one generally perforths= D, independently of its operand,
“where d, is the gauge-covariant extension of the exter@ivdtive.” That is, we want to be

able to generalize the taking of these derivatiaesl especially, to ascertain the correct way to
derive the equation$J =d,* F=D° F and P=d,F = DF in the presence dhe electric and

magnetic three-form charge densitieks and P .

Specifically, as already stated, if we write equat{1.11) asF = (d +G D) G= DG with

D=d+G0, we find that D=d+G0O is in fact the generalized definition of the gauge-
covariant derivative which tells us how to takeh@grank gauge derivatives, independent of the
representation of the operand’hus, the Maxwell equations for Yang-Mills theawith electric

and magnetic sourcesn differential forms, wheret' and f* are specified, with index
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suppressed, for SU(N), where we use the dualityatpe *, and with F =dG+ GO G, are
merely thei =1..N? -1 equations:

*J=D*F=D" DG=(d+GOf F=d F+GX F=%d (dG G ¢+ & ( d& G |
=d*dG+ ¢ (GO Q+ GF d& GT ( G ¢

P=DF=DDG=(d+GL) F=dF+ GO F= d dG & G+ G( d& G 5
=ddG+d(GO G+ GJ d& G G G

(1.12)

The duality operator * was first developed by Rein[7] and later elaborated by Wheeler [8],
and it makes integral use of the Levi-Civita terg®taid out in [9] at pages 87-89.

In this paper, we shall develop the classical Yhltills magnetic monopole density
and a related “faux” magnetic charge density in detail, and shall show how this related
density P, when analyzed using Gauss’ / Stokes’ theoremeaspto confine its gauge fields.
Of course, baryons, which include the protons agutnons at the heart of nuclear physics, also
confine their gauge fields. So this will raise theestion we thereafter explore in detail, whether
these magnetic monopoles of Yang-Mills theory areame fashion related to baryons.

2. Classical Field Equations for the Yang-Mills Magetic Monopole

To further develop the monopole densiRy first, akin to the derivation (1.1) through
(1.5), we calculate the commutator:

[D,.F,]¢=D,(F,8)-F,D,¢=(0,-iG,)(F.8)-F, (0, -iG,)

. (2.1)
=0,F,¢+F,0,6-G,F,$-F,0,0+F,G,¢=0,F,0-iG,F,|¢

WecanuseD_ =0, —iG, in the above, precisely because this is a comaytand so the gauge
field will be commuted with the operang,, as in F =dG-i[G, G| ak.a.F=dG+GOG.
Removingg¢ we see that (2.1) contains the useful identity:

[D,.F, ]=0,F, -i[G,.F,|=D,F (2.2)

o' w ol u

with the commutator included in the gauge-covargerivative. In differential wedge form this
is DF =(d +GO) F, which is part of the monopole density in (1.12Z}hen, combining (2.2)

with (1.1) in the formF,,, =i[ D,,,D, |first yields:

D,F,, =[D,.F, |=i[D,.[D,.D,]] (2.3)

containing an anticommuting succession of gaugextant derivatives. This in turn means that
the index-cyclical combination:
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P, =D,F, +D,F,+D,F, =i([D,[D,.D,]]+[D,[D, D,]]+[D,[D,D,]])=0 (@4

ouv U vo

by the Jacobian identit{a,[b,c]]{b.[ G aﬂ+[ da ﬂ)] = 0. So we see that théang-Mills
magnetic monopole densities vanish, just like tladsebelian gauge theoryConsequently, we

can appené® =0 from (2.4) onto (1.12), and so writd® = DF = DDG=0. This is the non-
abelian analog to the abeliatlG=0.

But there is another zero in the monopBlef (1.12), and that is the zero which comes
from this very same abeliaddG=0. This is rooted in the geometric relationshig =0 of
exterior calculus in spacetime: “the exterior dative of an exterior derivative is zero.” In
general in this paper, we shall highlight the zefodd =0 to distinguish it from the (not
highlighted) zero of the Jacobian identidDG =0 which is established by the combination of
(1.12) and (2.4). The highlighted zerodid =0 is a “subset” identity contained within (1.12),
which we may now rewrite as:

0=P=DF=DDG=ddG+ d GI G+ G dG G & ! 2t
=0+d(GOG)+ GO dG+ G GI C =)

Of course, in an abelian gauge theory such as Miéisveéectrodynamics wherEGﬂ,G‘,] =0 so

that F, =9,,G, in (1.5) thus F =dG, the Magnetic monopole densities are themselves

specified by P, .,,= dF = ddG=0. This means that the Yang-Mills monopole densit{2.5),

although it too is equal to zero, contains a numifeapparently non-zero terms embedded
within, as well as the termddG=0 which we associate with the vanishing monopoles of
electrodynamics. This will be very important toekein mind as we develop this monopole,
because this “abelian subset” embeddingld& =0 within (2.5) will be directly responsible for
confiningthe gauge fields within the Yang-Mills monopoladawill lead us to consider whether
there is some connection between Yang-Mills monegpahd baryons.

Next let us ascertain the commutator form for tih@nopole (2.5). Via the exact same
type of calculation we used to turn (1.5) a.k.a7)lnto (1.11), one may demonstrate that

P=DF =dF-i[G,F] is equivalent toP=DF =(d+GO) F. So, combining the former,
P=DF=dF-i[G,F], with F=DG=dG-i[G, G| from (1.7) ak.a.F=DG=(d+G0)G
from (1.11) , we may translate (2.5) into the cortatar expression:
P=DF=DDG=dF-i[G F]=d(dG- [Gd)- [ G dG [ G ]
=ddG-id[G §-{G dd-[ G G §] . (2.6)
= 0-id[G,G]-i[G,dd-[ G[ G d]=0

10
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Let us now expand (2.6) above into tensor compisnemm-by-term, and then do some
additional reductions. Fétand-id [G,G] we have:

P=1P,df Od¢0dk= P, dk dk db, (2.7)

Pauv

-id[G,G]=-4i(0,[G,.G |+0,[G.G]+d,[ G. G]) dk D dkD dx
=-4i9,[G,.G,|d¥ Ddx¥ O dx=-9,( G G) dkO dkO dx _ 2.8)
=-i(0,G,G, +G,9,G ) d¥ 0 d¢ 0 dk=(-4d, G G+ iGd, §) dkO dxJ &
= —idGG+iGdG

The sign reversal in the third line of (2.8) rewetile identityd |G, G| = dGG- GdC, in contrast
to scalar product rulé (a[b) = dabt+ dldt. For -i [G,dG] in (2.6) we further have:

-i[6,dG]=-4i([G,.9,,G, |*+[ G0, G, |+[ G 4, G ]) 0% 0 oD o
=-4i[G,,0,G, |d¢ 0d¥' D dx=~{ G,3, G| dkO dxO dx

[u™=V]

=-i(G,9,G,-9,(G,G,)) d¥ 0 dX O dk (2.9)
=-i(G,0,G,-G0,G,-0,GG) df 0 dk O d&
=(-2iG,9,G, +19,G,G, ) d¥ Odx* OdxX

ol u=v o=uv

=-2IGdG+idGG

in which theGdG doubles by a similar sign reversal in the fiftheli Finally, by the Jacobian
identity [ a,[b,d |+[ b[ ¢ §]+[ ¢ a b]= 0, for[G,[G,G]] in (2.6), we find (cf. (2.4)) that:

-leled]=-4(c[G.6]]+*[ Gl G ¢l]+[ 6 & §])) &0 &0 b= C @210)

In (2.6), we then use-id[G,G]=-idGG+ iGdG and -i[G,dG|=-2iGdG+ idGG and
~[G.[G.G]]=0 from (2.8) to (2.10) to restructure and consokdtite monopole density as

much as possible while retaining n Gauss / Stahdmgiabled[G, G] term, into:

P=0-id[G,G]- 1[G, dj
=o—idGG+ IGAG-2iGdG+ idGC (2.11)
=0-iGdG
=-0+id[G,G]-idGG=0
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This in turn reveals the additional identitid%G, G] = dGG and GdG=0. The former identity

d [G, G] = dGG will be very important in the development to felloand will be shown to be the
density for a baryon including the proton and neufitavors of baryon.

Now, of central interest in the discussion to falJadhe monopole density in the final line
above contains a Gauss/Stokes-integrable téf®, G| (and the0=ddG ) together with the

non-integrable termdGG. Applying Gauss’ / Stokes Theoref]ﬁdx :<j> X for any differential

form X to the final line above, we may ascertain thesitad surface flux associated with this
non-abelian magnetic monopole, namely:

JifP=[]](-ddG+id[G G- idcq=[[[(-0+ i G ¢ e
=~fpdG+ifp[G, |- i[[[ deG=-0+ iff[ G §- {[[ dGG=0

By then writing (2.12) using the not-highlightedo® I_UPZO rooted in the Jacobian identity
(2.4) as:

~pdG+ifp[G, ¢ = i[ff dGG'
-0+ifp[G,G] =i[[[dGG

we clearly see the relationship between what idainad within the three-dimensional volume
”J. and what net flows through the closed two-dimermimmrfacecﬁi enclosing that volume.

(2.12)

(2.13)

Now, we wish to interpret what is being taught By1@).

3. Confinement of Gauge fields within, and the Compsite Nature of,
Yang-Mills Magnetic Monopoles

We start with the termﬁ)dG:O which is embedded in (2.13). In electrodynamics,
Gauss’ law for magnetism and Faraday’s law are botttained within:

JIjp=]]j dF =[] ddG=gp F=p P~ ds dx=¢p deo. @)

At rest, this tells us that while magnetic fieldsyrflow across some surfaces, there is never a
net flux of a magnetic field through anglosed two dimensional surface. In the form
P =dF = ddG=0, this simply says there are no observed magnhacges. So how might we

interpret the presence «ﬁ)dG:O asone of the termamong a number afon-vanishingerms
in equations (2.12) and (2.13) for the Yang-Millagnetic monopoles?

12
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To find out, let us return to theon-abelian, Yang-Milldield strength (1.5), namely

F. =90,G, —i[Gﬂ,q], and rewrite this using the differential forms ation:

JpF=24pF ¢ Dd¢ =dpo,G ax 0 dk-3 §f[ G ¢] O o

=fpdG-iff[c ¢ =0-iff[c d

We may then use (3.2) to rewrite (2.13) with a sigversal as:
fpF =-ifp[c.6]=-i[[[dcG

-i[[[4(0.[6,.G,]+0,[G,.G]+0,[G.G]) df O d¥ O di. (3.3)
=-i[[[4(6,G,G, +4,G,G, +3,G, G) d€ 0 d¥ 0 d&#0

(3.2)

So, while (3.1) tells us that there is no net magnigeld flux over of any closed surface in
abelian electrodynamics, (3.3) tells us that in non-AbegliX¥ang-Mills gauge theory, there is

indeed anon-vanishingnet flux across closed surfaceﬁ}F #0, of whatever the Yang-Mills
analog is to an ordinary abelian magnetic field

Now, we have a puzzle: any time we see a tﬁrﬁ , we know that we are talking about

a magnetic monopole, and that whatever is contawigdn the associated volume integral is a
magnetic charge. Indeed, (3.3) may be thoughtsdhe very definition of a magnetic charge
which in (3.3) isnot zero. At the same time, we found in (2.4) a.ka.6) that
P=DF = DDG =0, which is to say, that the magnetic charge densitgero, just as it is in

electrodynamics. So iP=DF =DDG=0 but cﬁSF #0, how do we reconcile the former

equation which says the magnetic charge densigns with the latter equation which says there
iS a non-zero magnetic charge?

One way to think this through, is take the Yangidiglectric charge field equation
(2.12),*J = D* F, revert this (merely for pedagogic simplicity) ite abelian form*J =d* F
which contains Gauss’ law for electricity, and thegpply Gauss’ / Stokes’ Theorem to obtain

fprF =|[[+3 (:J'_[ a* F). Just as<ﬁ>F in the rest frame represents a net flux of magneti
field through a closed surfac@;ﬁ*F in the rest frame represents a net flux of eledigld
through a closed surface. And thfgS*F then becomes the very definition of th&ctric
charge. But here, electric charge density is e@efiby*J inside _m*J , While in (3.3) magnetic

charge density is defined byidGG inside —i_deG. That is, we have a magnetic charge
density -idGG which we need to think about in comparison to lastec charge densityJ .
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The answer to this puzzle is that the magnetic gehaensity in (3.3) isiot the P of
P=DF=DDG=0, it is the P'=-idGG which, via (2.11) can be extended to

P’ :—id[G, G] =-idGG. The magnetic charge as defined by the encloaumaceq':_‘SF is a

three-form just like*J andP, but it is not arelementarnthree-form source. Rather, it is a three-
form constructed from-idGG which includes some dynamical behavior of the gafiglds

inside the volume integral. That is, the magnetiargeP' = —id [ G, G| = —idGG is acomposite

three-formbuilt out of gauge fields, rather than an elemmsntiaree form like the abelian electric
charge sourc&J . Indeed, we may take this a step further:

In electrodynamics, the three-forfid which in tensor language is related to the electri
source current density vectd” by *J,,, =(-0)"&,,, J°, is atrue electric sourcavhich then

gives rise to gauge fields in abelian gauge thewmy*J = d* F=d dG, and per (1.12), via
*J = D* F=D* DG in Yang-Mills gauge theory. On the other han@& Bi=-idGG in (3.3),

written in tensor form a$&,,, = —i(a[,,c;,,]q +0,G,G +9,G Q) and converted over to a one

ouv
foom  via the related general  identities *P'? =1(- g)_'5 ™R,  and

-5 . .
*o'G™ =4(-g) " £79,,G,, will result in afaux magnetic source

*p'a :%

(-0 "™ By = (-0 *e™" 40,6, G 49, G 643, G )
) 10,5617, 6+40.6,)

_1

3

i(*0GG, ++d7G7 G, + 3+ G q)
=-i*9l’GG,

(3.4)

which is constructed solely out of gauge fiel which themselves are sourced by
*J=D* F=D* DG. So, there is only orgementarysourceJ, not two source§ andP. From
this one sourcd, gauge field<s are emitted from interaction vertices. From thgaage fields
G, a faux magnetic sourc®’ =-idGG is assembled. And finally, from this faux magoeti

source,cJ;BF # 0 flows across closed surfaces as in (3.3). ThetridesourceJ?, whether in

abelian or non-abelian gauge theory, has its owlependent existence, and it is the source of
any and all gauge fields. But the faux magnetiore® charge in (3.3) haso independent
existenceapart from the gauge fieldd. Rather, it is built out of the gauge fieldSo the Yang-
Mills monopoles are composite, not elementary, @bjeAnd, by the way, so too are baryons.

Having resolved the puzzle of how to recondidle DF = DDG =0 with <ﬂ>F 0, we
next pose the following question: what happenth&total quch;BF in (3.2) under the local

gauge-like transformatiofr® — F*'=F* —d“G"? In differential forms, this transformation
is F - F'=F -dG, which means, precisely beca@dG =0, that:
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@F—»@F':@(F—dG):@F, (3.5)

So, the net surface flux in the monopole equat®B)(is invariant under the transformation
F“ o F*'=F* -0“G", which means that the gauge fieldnist observablawith respect to
net flux across closed surfaces of the monopolee dbelian expressioﬁ) dG=0, expanded to

show the Riemann tensor, may be Written#SF :(ﬂ)dG:J.” R, G dX dX dk=0, and

explicitly shows how individual gauge fields, couple with spacetime geometry as represented
by R',,,. This represents absenceof monopoles in electrodynamics, and yieldssji@ametry
principle (3.5) for the behavior of magnetic monopoles imy-Mills theory generally.

But if the non-zero flux in the Yang-Mills monogoéquation (3.3) is invariant under the

gauge-like transformatior*’ — F*'=F* —0""G* which means that the gauge fiel@¢' are

not net observables over a closed monopole surfasewould seem to suggest that the Yang-
Mills monopole inherently confine their gauge feldThis is another hint that the monopole
equation (3.3) could be the classical field equatar a baryon, in integral form.

The final point is that because ta@ix magnetic sourc®' = -idGG is constructed out of
gauge fields, and because the gauge fields ararmdourced by*J = D* F = D* DG, and
because electric sources may be represented irorvéaotm in terms of Dirac fermion

wavefunctionsy via J* =yy*y , it should be possible in principle, and wouldtairy be
desirable in practice, to rewrite tli@ux magnetic source-idGG in terms of thetrue source
currentsJ* from which they arise, and then to rewrite thé=¢y*y in terms of their fermion

wavefunctionsy . The upshot of all this, is that whi@F in (3.3) is presently expressed in
terms of gauge fields aﬁﬁF (G), once we obtain the gauge fiel@J) in terms of sources
and the sources (¢) in terms of fermions, we will end up wikf_\j) F (G(J ((//))) Then, if we

happen to find more than one fermion (maybe eveeetlfiermions) within the enclose@F

“system” in its “ground” state, we would need tgbpthe Exclusion Principle of Fermi-Dirac-
Pauli statistics to maintain thgg in distinct quantum eigenstates, which would gise the
opportunity, for example, to introduce a color aegiof freedom to do so and thus make a

connection to SU(3)Chromodynamics, withff F (G(J ((/IR,(/IG,t//B))). So this means that the

Yang-Mills monopoles are not only composite objebig are composite objects which contain
fermions and gauge fields, and that these fermwitisneed to obey some form of quantum
exclusion which may include SU@®) And, by the way, all of the same the same is ol
baryons, and as to fermion exclusion, quarks.

It is for these reasons, that it may be fruittukentertain the prospect that (3.3) is not only
the classical field equation for a Yang-Mills matinenonopole, but may be synonymous with
the classical field equation for a baryon. Alltbé development in sections 5 through 10 serves
the singular purpose of proving that this is triat first, we need to discuss whether a classical
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analysis along the lines of (3.3) can really teach anything useful about baryons and
confinement.

4. Can a Classical Field Equation Really Teach usrthing Useful about
Baryons and Confinement?

Given that (3.3) is a classical field equation, mvast pose the question whether such a
classical equation can really have anything ofregeto say about baryons and confinement,
which have many features that arise only out ohtjua field theory. For example, it might be
observed that a classical analysis which seeksderstand baryons and confinement in no way
takes account of quantum field theory with operatdued fields. This, it might be argued, is
despite the fact that there are many reasons tevieetonfinement and the existence of a mass
gap are related to the running of the coupling aortswhich is an inherently quantum effect.

Certainly, (3.3) above is a completely classicaldfiequation, not yet taking into account
any aspects (or the need to prove existence) adnatnivial relativistic quantum Yang—Mills
theory on®* [6]. And, of course, there are many reasons liev®that confinement is related to
the running of the strong coupling constant, whlan inherently quantum effect, and which
manifests in asymptotic freedom at “ultraviolet’eegy and infrared slavery at low energy [10].
However, just like electrodynamics, Yang-Mills gaufpeory has a classical formulation and (is
expected once quantum Yang-Mills existence is prpve have) a quantum field formulation.
This means that (3.3) may reveal inherently-confimattributes for the magnetic monopoles of
Yang-Mills gauge theory which appear at the cladslevel and which are rooted in the
relationshipdd =0 of Riemannian spacetime exterior geometry, as aglhherently-composite

attributes expressed b@% F (G(J (z//))) . That opens up the question how these samew#sb
translate through to quantum Yang-Mills theory.

Specifically, if in fact (3.3) for ﬂ)F is an equation for baryon-like gauge field
confinement properties of Yang-Mills magnetic mooles based upon their abelian-subset
behaviors rooted in the classical equatiddG=0 and its integral formﬂ)dG:O and the

consequent symmetry (3.5), and if the composite faagnetic chargd® = -idGG in (3.3) in
some way represents a baryon charge, then thecelbbsryons that would be represented by
(3.3) would not suddenly become “not baryons” irmmum field theory. Rather, there would
two sets of behaviorthat need to be studied: a) how these monopolkavieein a classical
formulation, which includes (3.3) and (3.5) aboaed b) how these monopoles additionally
behave in quantum field theory. So if we can destrate that the classical behaviors appear to
be confining and appear to involve a non-elementaoynposite charge that includes some
amalgam of fermions and gauge fields, one shoutg&xthat this will “bleed” through to yield
guantum amplitudes and running couplings and ceyonmetries that buttress, not defy, these
classical behaviors, just as abelian magnetic molespdo not suddenly appear and ordinary
magnetic fields do not suddenly net flow througbseld surfaces, once one goes from classical
to quantum electrodynamics.
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Further, one might take the perspective that dhesefor confinement and baryon
compositeness is the classical field equation (8B)a Yang-Mills monopole which has the
symmetry (3.5), and that one of th#ectsof this is that in a quantum field treatment oésh
baryon monopoles, the strong coupling will weaken dltraviolet and strengthen for infrared
probes. And, it can be argued that this is a nmateral approach than simply trying to figure
out how to “glue” together disparate quarks intoybas without knowing to begin with what
sorts of covariant objects baryons actually arespacetime Indeed, if the hints of baryons and
confinement that arise in (3.3) and (3.5) are abyrihen we would need to start thinking of
baryons as third-rank antisymmetric tensors anated| three-forms in spacetime governed by
the classical equation (3.3) with the symmetry X3&nd then see how that connects to
everything else we know about baryons. The “lgjlae together the quarks” approach,
notwithstanding many opportunities to do so, has flar failed to explain why QCD “must have
‘quark confinement, that is, even though the thasrglescribed in terms of elementary fields,
such as the quark fields, that transform non-tiliviander SU(3), the physical particle states—
such as the proton, neutron, and pion—are SU(3riamt,” see [6] at page 3. This SU(3)-
invariance ofphysical particle statess a symmetry principleand while not every classical
symmetry carries through to quantum field theooy, éxample, the chiral anomaly (e.g., [11],
section 1V.7), there is no apparenpriori reason to believe that whatever classical symesgetri
are found for these monopoles (such as (3.5)) evilly manifest in the classical but not the
guantum field theory. At the very least, the gioesfor study becomes: do these symmetries
carry over from classical to quantum field theaagd if not, why not, and in what manner are
they altered? Further, if the baryon charge really P'=-idGG, then as we turn

fpF(G) - §f F(c(3(#))). so too would we turP'(G) — P(G( J(w))). This may reveal

that the inherently-composite nature of tif's= -idGG charge is in fact the long-sought “glue”
to aggregate quarks and gluons together into desth@rge systepab initio.

Additionally, approaching confinement starting frantlassical treatment of baryons has
validating precedent in the MIT Bag Model reviewiade.g., [12], section 18. Irrespective of
the specifics of any particular bag-type model ohfmement, the MIT Bag Model very
correctly makes one very important poifaicus carefully on what flows and does not flonoasr
any closed two-dimensional surfacé&nd it does so using thdassicalformulation of Gauss’ /
Stokes’ theorem. This is why the integral formMdixwell’'s equations in classical field theory
may well be a very sensible starting point studytogfinement, because from the Bag Model
viewpoint, confinement is all about what passes dods not pass through closed surfaces
containing the extended field configuration witkie baryon volume.

Further, by talking about the “classical level” ‘@fon-abelian gauge theory” right on
page 1 of [6], Jaffe and Witten themselves recagiimt Yang-Mills theoryhas a classical
level and that a reasonable starting point for devatppjuantum Yang-Mills theory, is to first
fully and properly develop and understand Yang-8jauge theory at this classical level.

Finally, it is certainly unrealistic to expect thatclassical-only treatment of baryons
based on Yang-Mills magnetic monopoles will explalhof the observed phenomenology of
baryons. It cannot and will not. Only a propeaquum field treatment may be expected to do
so. Yet, at the same time, there are some impopfaysics insights to be gained even from a
classical treatment of the Yang-Mills monopole doum(3.3). And we know, if we can fully
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develop a classical theory on its own terms, amah thbtain its Lagrangian densilsgl(q)) and
action S(q)) in terms of its fieldsp, that we can then convert over to a quantum fieddry via

the path integratiorZ = | Dgexpi| £d*x= expiS. While carrying out the path integration
h hi lor D i|.ed* Dy expS hil i h hi i

of a non-linear theory such as Yang-Mills gaugeotitfgand especially gravitational theory) is
still an exceptionally challenging problem, thaedmot mean one ought not make the effort to
find the correct road for doing so, which roadeaseaaled in section 8 and used to carry out an
analytically-exact path integration in section 1But this all this begins by finding and fleshing
out, the right classical theory to quantize.

So what is most important is for researchers iniglar baryon and nuclear theory to be
aware of the possibility of modelling baryons asny#@ills magnetic monopoles to gain
possible insight into confinement and related Q@Bmetries, so that this possible connection
can be further developed, vetted, and empiricalbtedd by anyone who finds it interesting or
promising. We now explore the next several staghis development.

5. Classical Field Equations for the Yang-Mills Eletric Charge

Now let us develop the electric charge densityin (1.12). Once again, via the same
type of calculation used to go from (1.5) a.k.a7 1o (1.11), which was also used to go from

(2.5) to (2.6), together witlF = DG = dG- i[ G, G|, we write (1.12) fo*J in commutator form:

*J=D*F=D"DG=¢ F-i[@ F=4d (dG- [Gq4)-|& (d& [.G ] .
=d*dG-id*[G6 - {G* dd-[ @ [ G ] : (5.1)

This should be contrasted with the analogHan the middle line of (2.6). Above, however, we
do not have all the zeroes that were in (2.6), hanElG=0, P=0, and[G,[G, G]] =0.

As in (2.7) to (2.10), we expand the differenf@ms of each term. We first have:

*J=4x 3 d¥ Od¥ 0 dk= J, d% dk d, (5.2)

d*dG=4(d,*0,,G, +d,* 0, G, +0,* 9,,G ) df 0 dk O dk

v ]

N[

;0

g

©0,,G, ¢ DX 0 dk =540, ((- 9°£,4,0 @) dkD kO dx . (5.3)

11(-9)°£,,,0,0GAd¥ DX O dk=4(- 9°¢,,,0,0° & dkO dxO d

apuv™ ;o apuv™ ;o

Above, we have used the duality relationsithy, G, =%(~9)"£,,,0""G?. We have also
allowed for a curved spacetime by using the cowargerivatives, as well as the product rule
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which simplifies tod., ((—g)'56;["’Gm ) =(-0)°9,,0'° & because of the metricity,,, =0. In

flat spacetimed,, - @, and(-g)° =1.

Next, in contrast to (2.8), using|G,, G, |=4(-9) &, [ G, G| and of course

9., =0, with the analogous sign reversal at the sixta &g in (2.8), we have:

-id*[G G]=-%id,*|G, G |dX O dX O dx
=~34i(-9)" £,,0,[C7. G |dX Od¥ O dk =% (- 9" £,5,0,,( G G) dkO dkO dx
1(~0)° £, (0,,G°G”) dX D dX O dk~% (= 9°&,, ( G3, &) kO dkO dx
241(-9) £, (0 G[”G’”)ded)é’Dd)'( 11 (- 9%, (GO, @) KO dkO &

-1i(0,*G,G,)dX Od¥' D d% -+ (+ GO, G) dkO dkO dx
~4i(0.

|
|
N

|

|
N |-
N

[Vl

0.,*G,G, )¢ O D dk+4 (* Go, G) dkO kO dx

[Vl

—_ Nl"‘ Nl"‘

i(0,%G,G,)d¥ Dd¥ O dk+ (* Go,, G) dkO dkO dx
= 3; i(0,%G,G,+0,* G,G, +3,* G,G,) df 0 d¥ O dk
+4i(*G,0,,G, +*G,0,G, + G,0,G ) d€ 0 d O d&

[e™u™=V]

1i(*0,,6,G, +*9,,G,G, +0,,G, G) df O d¥ O dk

lo—=v

+—'(G *0,,G,+G,*0,,G, +G* 0,,G, ) d€ 0 d& O dk

[u—v]
=(-i*0,,G,G, +iG,*0,,G,) dX O dX O dk

=-i*dGG+iG* dG ,(5.4)

Note that within the differential forms, and givék , =%(—g) o F” and 9,0 =0, we are
able to “transfer” the duality operation, i.e.,tthe are able to s&t,*G G, -*9,,G; G, etc.
and *G,0.,G, - G,*9,,G,, etc. This revealsd*[G G|=*dGG- G dC as a duality
product-rule identity, contrast[G, G] = dGG- GdC from (2.8).

Similarly, in contrast to (2.9), usiny,,G,, = 1( g)5£ 0'G?, with a sign reversal

(=] apuv
as previously in the sixth line, and transferring,d.,G, - G,* 0,,G; in the eighth line as

was done in (5.4) above without repeating the esioanto third rank tensor form, we obtain:
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-i[G,*dG] =-4i([G,*0,,G, |+[ G,*9,, G, ]+[ G* 9, G |) d&D oD dx
:—%i[G #9,,G, |d¢ Dd¥ O dk=-42 (- 976, [ G0 @] o0 dkd &

%i(-0)° €44, [ G,,0°G” | o O dX O dk
1i(-9)° £, (G,0°6” -0 (G*G,)) dx D dX D d%

'\_J

[~

1(-0)° £, (G,0°GP - GP9° G, -0" & G ) dR 0 dk O i . 55
1(-0)° 4 (G,01°GA + G767 G, -01° & G) dR 0 dkD) dx

(G, %9,,6, +* G0, G +9,,G, G) 0¥ T dk O dk

Li(26,*0,,G, —*0,,G,G,) d¥ O dx O dk

= (—2|GU *9,,G, +i*0,,G,G,) d¥ 0 dx 0 dk

=-2iG*dG+i* dGG

I\J|r—\ Eh—\

N

|
N

Finally, in contrast to (2.10), usin*g[Gﬂ, J =1(- g) WV[G’ G‘f]

-[e [G»G]]- ierfa cl]+ e la cll+[ e[ ¢ ¢l]) oo @0 6x
=-3[G,, G]d¥ O a0 dk=-24(- §° e[ G[ & 6]] B0 @O tix (5.6)
==43(- g)'s(eaﬁw[Gg[ ]+ o] G G2 ]+ [ G, [67,F]]) dx D dx 0 a2 0

Unlike (2.10), this does not map into the Jacoliiemtity [a,[b,c]]+[h[ G a}]+[ d a ﬂ)] =0,
and so is not zero.

So now we use-id *[G, G] = -i* dGG+ iG dG and -i[G,*dG] =-2iG* dG+ t dGG
found in (5.4) and (5.5), in (5.1). Analogously(#211) we obtain:

*)=d* dG-id [ - [ & d§-| &[G §]
=d*dG- dGG+ iG dG2 i dG*i dGG[ ,6[,G §
=d*dG-iG* dG-[ &[G §]
=d*dG+id*[G G-t dGG-[ B [ G §]
-d*F-i[G*de]-[6*[6 ]
=d* F-2iG* dG+ I dGG-| & [ G G]

(5.7)
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This corresponds to (2.11), however, here*&}0 in contrast toP=0; b) d*dG#0 in

contrast to ddG=0; c) [G,*[G G]]#O in contrast to[G,[G, G]]:O, and d) the terms
id[G,G] - id*[G G| and -idGG - -i* dGG. Starting from on the top line, we also employ
*F =*(dG~i[G @]) which is the differential form forF,, =* (9,,G,, ~i[ G, G, ]) in the final
two lines.

Now we wish to apply Gauss’ / Stokes’ theorem 3/), as we earlier did to (2.11).
Using the last two lines of (5.7) with the integeatermd* F separated on the left, we have:

fire=[o v
=[[[(-+i[c*dd|+[&*[ G §]) : (5.8)
=[[[(ro-* dGG+2ic dG+[ & [ G §))

The Abelian portion of this equatioq%ﬁ*F :I”*J which we used for pedagogic simplicity in

the analysis following (3.3), is clearly includedhen the gauge fields are set to zero. Putting the
Yang-Mills electric charge equation (5.8) togethéth the magnetic charge equation (3.3), we
find that Maxwell’'s Yang-Mills equations in intedgfarm are:

fire= 2 e fffp @ e[ @ [5)
fie = 7 = fece=—ijla d

In this form, the parallels and differences are ifestly clear. cjf_’S*F Is the net electric

. (5.9)

field flux and cﬁ.)F the net magnetic field flux over a closed surfaéd. is the electric source

charge density and it is non-vanishing, while tregnetic source densit =0 vanishes by the
Jacobian (2.4). Similarly, whil&* dG#0 and [G,*[G G]] #0 in the electric field equation,

their duality counterpart$sdG=0 and [G,[G, G]]:O are also part of the magnetic charge

equation, but vanish by the respective identiteesfl in (2.11) and (2.10). We see how the only
true, elementary source ts)J and that there are then a number of faux sour¢eshwnclude

P'=-idGG=-id[G G for the net magnetic field flux <ﬁ>F, and

*J' = -i* dGG+2 iG* dG+[ ¢[6 (ﬂ which is a faux electric source which contributeshe
net electric field flux beyond that contributed tisue” electric sourcel in the abelian portion

@*F :_[”*J of (5.9).

Because the only elementary, real, not-faux sourdbe Yang-Mills equations (5.9) is
the electric sourceJ , it will be desirable to solve the electric chadgnsity equation (5.7) for
the gauge fields in terms of*J . Particularly, as laid out at the end of sectomur eventual
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goal is to findcj:ﬁ F (G(J (zp))) . So a key step along the way is to obtain th@gaﬁeldsG(J)

in terms of sources. Equation (5.7) has a numbalternative ways to express (G), but the
most compact way is on the third line. So we exphose differential forms to obtain:

*3=1x 3 dxX O d¥ O dk

=d*dG-iG* dG-[ & [ G §]

=1(0,%0,G, +9,* ,G, +0,* 4 ,G, ) d¥ 0 dx O d% . (5.10)
-4i(G,*9,6,+G,*9,G,+G* §,G, ) df 0 dx 0 d&

-3([e, (e aJ]* (6 (6 6l]+[ 6*[ ¢ G]]) &o da &

Stripping off the forms, we obtain the tensor etprat

*3,, =(0,* 9,G, +0,* 9, G, +0,* 8,G, )

-i(G,*9,,G6,+G,*9,G,+G* 4,G) . (5.11)

(e, *[6.6T]+[ 6.6 6]+ 6*[ & &]]

Then, we apply the duality operatiohd,,, =(~9)" &,,,, 3°, *9,,G,; =4(~9)" £,4,0° G” and

afuv
*|G, GJ:%(—g)'ssaﬂW[G’, Ge], and the metricityg,,., =0 as discussed after (5.3), to
obtain (a good summary of the use of duality istamed in [9], pages 87-89):

1(-9)" (40,0 C” +£,,,0,0°C +£,,0,0° G )
_%I (_g )I5 (‘gaﬁvaaa[aGﬁ] + gaﬁvn G,ua[a GB] + ga,&w Qd B C;q )

~5(-0)°(eupn [0 [, F ]+ 20 [ G G B ]+ e[ 6] & €]])

(5.12)

Factoring out{—g)” and multiplying through by“* next yields:
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g I =-310,7 =-6J"

aouv

—1 Kouv [ar Bl Kouv [a~A Kouv a
—5(5 E0p0,0°G + Mg, 0 3G+ e, 0,0 G/’])

—4i (e"”“"gaﬁWGga[”Gﬂ] +& M GO G+ e, GI G )
(6, [6". &+ e, [ G [ G, F]|+e%e [0, [67.¢]]). (613
=-(8",40,0°G” +5%,,0,8°GA +5,,0,8°G)

+i(0%,,G,0°G” + 5% ,G,d° G +5%,,GI" G )

(o6, [ & Jro*,[ 6@, @T]+e",[ 6 [ & €]

_ 1| pKow
2! (5 Eaﬂ,uv

Using 6* , =0°,07 , - 9" ;07 and the like, withk — v index renaming, this reduces to:
~3"=9,0"G" -iG,3°¢" -[ 6, [ &, G ]]. (5.14)

Contrasting to the originald = d* dG- iG dG—[ €] [ G (H we see that aside from the sign

reversal, the * between two objects essentiallyltesn an index contraction between those two
objects when they are written as tensors. |If vemtbxpand all the commutators and reorganize
terms in a familiar way, we obtain:

-3 =0,0°6"~iG,d°G -[ g [ @, ¢]]
=(9,0° -iG,0” -G,G") G =(870" - iG’0" -2G G + G G) G
=97 (0,0 -iG,0"-G,G) G ~(970" - iF0' 2@ G+ G G) G
=(¢"D,D'-DD')G,

(5.15)

with a configuration space operatgf’ D,D* — D’ D" where in the final line we have defined the
second rank tensor operator:

D?D" =070" -iG°0" -2G°G'+ G’ G (5.16)
which, upon contraction, does yield the scalar algoearing in(5.15), namely:

D,D" =90,0" —iG,0" -G,G". (5.17)
By way of contrast, in Abelian gauge theoty" :(gvaara’ —6"6“) G,. So (5.15) ford" (G,),

is now in a familiar form which we can use to agmto taking the inverséEU(JV). This is the

first step toward being able to obta@ F (G(J (zp))) .
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Finally, let us find the continuity equation fasreservation of the electric source density
and current, based on (5.15). Equation (5.15) aélrly be recognized as another way to

express—-J” = D,F? which may be similarly derived frohJ = D* F in (1.12). Particularly,
we wish to show thatD,J" = D,D,F° =0, by identity. Similarly to (2.1), we may take the
gauge-covariant derivative ¥ via the commutation:

[D,,0"]¢=D,(3¢)- 3 Dg=(0,-iG)(¥¢)- ¥ (3, - iG)¢

: (5.18)
=0,0"¢+J'0,4~iG,Ip~- J3,4+i3 Gp=0, ¢~ (G, J|p= D Ip
Stripping off theg , we see the correct derivative:
[D,,"]=0,3"-i[G, ¥ ]=D ¥ (5.19)

which includes the commutat rGV,JV]. So, we start with-D,J" = D,D,F? and apply
[DV,JV]: D,J" from (5.19), -J"=D,F”, D,F, :[DU,FW] from (2.2), and

iF,, :[DV,DJ] from (1.1) to show via simple index commutativibat the continuity equation,

due finally to the scalar contractidf, F°" of like-objects in a commutatcErFW, FW] =0, is:

-p,d'=-[D,.3"]=[ D, DUF”“]:[DV,[DU,F""H
=D,D,F” -D,F*D, -D,F”D, +F*D,D,
=D,D,F” +F”D,D, =[D,D,,F*|=4[[D,.D,] F]
=1i[F, . F”]=0

(5.20)

The continuity equation in differential forms, teére, isD*J = DD* F =0 . This equation for
the conservation of the non-abelian charge demsityplay a very central role the development
to follow.

6. Abelian and non-Abelian Massive Gauge Boson Inkges for the Electric
Charge Density, Using the “Coleman-Zee” Method

The next stage in our development to demonstrmeglij‘)F =-i deG in (5.9) is the

integral-form classical equation for a baryon, @sitvert the configuration space operator
g"’D,D" - DD of (5.15) to obtainGJ(JV), so we can obtainﬁ)F(G(J)). This inverse,

which we denote by, , may be defined b5, =1 ,J". In generall , #1,, is not necessarily

v 7
symmetric, soG, =1,J" is an inner product definition not necessarily #zne as an outer
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product definitionG, = I, J". Making use ofG, =1,,J" to left-multiply (5.15) by-I , allows
us to write:

3" =-1,(g"D,D" -D°D")G, =G, =5°,G (6.1)

y7% U o
from which we may extract a more-directly defineddrse:
-1,,(9"D,D"-DD")=&",. (6.2)

Now the task is to show that this inverse existsjriderstand the degree to which any particular
inverse which does exist is non-unique, to revibw options for fixing the gauge of these
inverses, and to select the inverse or inverses suttable gauge choices or better yatique

gauge requirementsvhich best illustrate Wh)(ﬁ)F :—iJ.”dGG based on a faux magnetic
chargeP’ = -idGG of (3.4) has all of the key symmetries of a baryon

Taking inverses in gauge theory is a tricky businégcause one is often free to choose
the gauge resulting in non-unique inverses, anduseeparticularly for massless gauge bosons —
which include the gluons of QCD — the inversay not even existithout a careful selection and
fixing of the gauge, see, e.g., [11] chapter lllAdditionally, because the gauge field is thedfiel
of integration used to turn a classical act®into a quantum field amplitud&/, a symmetry that
exists classically may not be a symmetry of thatesl quantum field theory, see, e.g., [11]
chapter IV.7 (Chiral Anomaly). Specifically, a stacal symmetry exists if some transformation

leaves the actionS(¢) invariant. A quantum symmetry exists (and inlsetite classical
symmetry) if the same transformation leaves tha paegral Z :I D¢expiS(¢) invariant. But

this may not always be the case. Therefore, lstars by carefully parsing out the various issues
that come into play when taking inverses of thei@6.2).

First, as to classical versus quantum fields, wesitler the local non-abelian gauge
transformation which isG, - G, =G, +9,6- i[Gy,H] in tensors,G — G'= G+ dd- [ G 6]
in differential commutator forms, an@ - G'= G+ dd+ GO = G+( d+ )@ in differential

wedge forms. These are all alternative but eqaialvays of saying the same thing. All of the
classical field equations developed thus far inclgd1.12), (2.11), (3.3), (5.1), (5.7) and (5.9)
are symmetric under such a gauge transformation.to8, the electric charge field equation

(5.15) with the specifid?D" and D,D" identified in (5.16) and (5.17) is symmetric untles
non-abelian gauge transformation. This should besurprise: all of these equations were
developed with the express purpose of preservilgyghuge symmetry. This means that the

action S( G):J'S(G)d*) is similarly invariant. But when we take a pathtegral

Z:_[DGexpiS(G)Eé’ expiW( J to obtain the associated quantum field theory tioe

amplitudeW(J), we are not necessarily assured that the meaB@ewill inherit this same
symmetry. And this in turn means that the quanfietd theory may not share all of the
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symmetries of the classical field theory. Typigaknsuring that the path integral also carries
forward the gauge symmetry und®G - D(G+ do- i[Ci@]) is what gives rise to gauge-

fixing measures such as Faddeev-Popov [13] inctudimicommuting scalar “ghost” fields, see
some concise development of this in [11], chapt#®, and VII.1. However, so long as we
restrict ourselves to classical field theory, whigh are doing at the moment, we can develop
inverses without this particular worry. We justddo be prepared to address this issue once we
are ready to calculate the path integral, whickoi®e done only after the classical theory has
been fully elaborated. Again, as to why there aghbvalidity and benefit to doing taking this
approach of fully elaborating the classical theoryadvance of the quantum theory, see the
discussion of section 4.

Second, as to why we need to take inverses whig m classical to quantum field
theory, this is because the mathematical exerdigaloulating a path integral revolves around

clever extrapolations of the Gaussian integﬁdkexp(—% AX - J>) =(-27/ A° ex;( 3 /24
into Z :I DGexp(iS( G)) = Cexp( iV J) , with the correspondena® ( J) ~ F /2 A. Because

the abstracted coefficienA of AX* gets inverted inJ®/2A, and becauséd ends up
corresponding with the configuration space operaf@iD,D" - DD in (6.2) which then gets
inverted via J*/2A into l,, Which then becomes proportionately related to go@ntum

propagator assuming we can find a way as we willsattions 8 and 11 to deal with
g”D,D'-D’D” not being quadratic inG,, one must expect to have to obtain

(g“" D,D" -D° D“)_l to arrive at quantum field theory, in additionhaving to deal with the

invariance of the measure und®G - D(G+ dg - i[ G,H]). Thus, it is desirable to have a

number of inverses already developed “on the shdfiién it comes time to use them to calculate
a path integral. But, as we see in (6.2), eveworkefve start approaching path integration, we
still need this inverseven to develop the classical theoand specifically, in order to obtain

fhF(c(9)-

Third, even in classical theory, as already mewtit) configuration space operators of the
form g*?0,0" —070" simply have no inverse! Although often couchedniystery, this problem

arises from the simple fact that for a masslesggéewson, a Lorentz vectds, with four

spacetime components is used to describe physieklsf— for example the photon in
electrodynamics and the gluons in chromodynamiagieh only havewo physical degrees of
freedom. That is, emathematical objecG, with four degrees of freedom is used to repreaent
physical objectvhich only has half as many degrees of freedoims B an inherent redundancy
in how we describe gauge fields that causes ingdsbe non-unique and brings about the need
for gauge fixing. Gauge fixing and related methads then used to create a menu of gauge-
fixed solutions out of the non-uniqueness stemnimog this redundancy.This gauge non-
uniqueness is a separate and distinct issue fromggasymmetry For example, the field

equation—J" :(gwa,af —aUaV) A, for a photon fieldA, sourced by a current densitl) is
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fully symmetric under an abelian gauge transforamath, - A = A +9d,6. But A, is still
redundant insofar as it has four spacetime degoédseedom while a photon only has two
transverse degrees of freedom. Additionally, astiared, the operatog”’0.0" —9°9" has no

inverse, or, to be more precise, has an inversehnkiof infinite magnitude and so is completely
indeterminate.

Now, following Zee on page 30 of [11]:

“In order to avoid complications at this stage assed with gauge invariance
[we] will consider instead the field theory of a $save spin 1 meson, or vector
meson. . .. We can adopt a pragmatic attitudeeuzde a photon mass and set
m=0 at the end, and if the result does not blow upunfaces, we will presume
that it is OK.”

Zee states in a footnote to this passage that Whétook a field theory course as a student with
Sidney Coleman this was how he treated QED to ad@dussing gauge invariance.” So to
simplify the development here, we shall take thlisie pragmatic approach as Coleman and Zee:
We shall introduce a non-zero “Proca mass” for ¢gaeige fieldsG, develop the classical

monopoleﬂ) F= —i”J'dGG of (5.9) to show how it has all of the classicahsnetries that one

would expect of a baryon, and then set 0 at the appropriate point in the development (which
will come at (9.15) infra) and explore the masdiv@assless correspondences.

In this section, we shall develop the inverse & massiveboson configuration space
operatorsg””( DD+ mz)— X D for non-abelian gauge theory a@d"(a,af + m?)—a”av for

abelian gauge theory, and then follow Coleman agel &y setting the mass to zero to see what
results. In the next section we will take the mfmemal approach of developing the inverses

9"’ D,D" -D’D" and g*70,0" —0°9" for amasslesgarticle directly, using the Faddeev-Popov

method. We will then contrast the both approadres see where they meet, to give us some
guidance about how to then use these inverseseimdim-abelian magnetic monopole field

equationcﬁ> F=- m.dGG.

So, following the Coleman-Zee approach, let usaédoca mass to (5.15), thus:

-3 =(g” (DD +nf)- ¥ D) G, (6.3)

Let us then consider (6.3) in flat spacetime whgeslient operatorEOﬂ,aV] =0 commute. Let
us also momentarily reveid - 0 to ordinary derivatives to make a pedagogical fp@nd so
write (6.3) as its abelian subset)” :(g”” (a,af+ mz)—a"a”) G,. The current density is
conserved by the continuity equati@)J’ =0, so if we take the gradient of each side and
reduce, we find tham’d, G’ =0. Because we take the mass to be non-zero, themisnihat
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d,G" =0, which is a fully-covariant equation known as tleegenz gauge. Here, G" =0 is not

a gauge condition at all; it is requirementneeded to ensure continuity for a massive vector
boson. The number of degrees of freedom imthéhematicabbject G” is covariantly reduced
from four to three byd,G” =0, and this matches precisely with the three pdd&ion degrees of
freedom — one longitudinal and two transverse -s@ssed by thphysicalgauge boson. So
now, most of the gauge redundancy is squeezedaut®’. Even here, however, there is still
a residual redundancy that requires gauge fixikge, if we transformG” — G” +3"4, then the
Lorenz condition become@v(GV+aV6’):O, or 0,G" =-0,0"6. So to maintaind,G" =0
under any such gauge transformation, we may thisthfe gauge completely by the gauge
conditiond,0"d =0. Thus, with everything taken togetheiJ” =(g”" (araf + mZ)—a”aV) G is
invariant under a gauge transformati® — G’ +0"8, the four degrees of freedom ®" are
covariantly-reduced down to three degrees of freely 0,G” =0 which is required to match
the three polarization degrees of freedom of thesigll field, and the residual gauge freedom is
fixed and thereby removed 0" =0. The field equation-J* :(g”" (araf + mz)—a”aV) G

remains invariant under the gauge transformatg$n— G” +03"@ and this invariance does not
depend in any way od,0'd =0 because nowhere does the non-observable gaudjg, (pbase)

angle 8 appear in the field equation.

In the non-abelian (6.3) it is a bit more compiéeh because we hawefrom (5.15) to
(5.17), noto, and because the proper way to take the gaugeatiea of the current density is

by [DV,J”] =0,J" - i[G|,, J”] = 0 Y derived in (5.19). But we already saw that theticwity
equationD,J" =0 of (5.20) which we now combine with (5.15), by déy, is:

-D,J"=D,(¢g” DD - DY)G, =0. (6.4)
So if we simply add a Proca mass to (6.4) and ragimontinuity, we must have:

-D,*=D,(¢g” (DD +nf)- D) G=D(¢"DB- U D) G+ MDY G=0
=0+n?D,G =0 |

(6.5)

This includesD, (g*’n?G,) = Q( nf G)= M D G=0, where the highlighted zero in (6.4) and
(6.5) is the zero-by-identity of the continuity edion (5.20). But the symmetries of the term
D,G’ in the above are driven by those of (5.19) which D,J" =9,3"-i[ G, J"].

Consequently, D,G" =0,G' ~i[ G,, G’ | because of (5.19). Additionally, because of (G5}

the assumed non-zero magsG’ =9,G" - i[G‘,, G”] =0. As in the abelian case just discussed,

for a massive gauge boson, and this is not a maugegcondition. It isequiredto ensure
continuity. As in abelian theory this reduces ¢ja@ige freedom of a four-component spacetime
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object G, down to three to match the three massive bosaaripations. Additionally, here the
commutato{GV,GV] =0 because of the scalar contractiBpG” of like objects. This means in

turn thatD,G" =9,G’ =0. And this means thal,G" =0 still applies even to the non-abelian
theoryand is not a gauge condition but is a requirerfiard massive gauge boson.

As to the residual gauge freedom, beca@8e- G" =G +0"6 - i[GV,HJ =G +D0bis
the non-abelian gauge transformatiom),G" =D,G"+ D,D'0=0,G' +d,D’8=0 is the
required covariant gauge condition f&". Taken withD,G" =0 this means that for a non-
abelian theory,D,D"8=0 replacesd,d'd=0as the residual gauge condition. Taken with
d,G” =0, this means thad,D"6=0,0"6-i0, [GV,HJ =0, which means thaD,D"8=0 may
be written out with ordinary derivatives a@s0'6-id, [G“,H] =0. So while (6.3) is invariant

under a non-abelian gauge transformat®h - G =G +0"6 - i[G’,B], we arerequired to
have D,G" =0,G" =0 because the boson in (6.3) is presumed to be wveaasid subject to
continuity, and the remaining gauge freedom isdikg imposingD,D"8 =0 which as just seen
is equivalent to the expressiod,0"8-io, [G”,H] =0. Nonetheless, as in the abelian theory,

this invariance does not depend in any waypb"6=0 a.k.a.0,0"6-id, [G”,H] =0 because
nowhere does the non-observable gauge / phase @rappear in the field equation (6.3).

Now, let us stop for a moment to take a close labthe gauge-covariant, second-rank,
second-derivative operatd“D" in (5.16) and its gauge-covariant d'AlembertismD,D" of

(5.17). Close study oD?D" will reveal that there is no apparent way to safgmaeach ofD’
and D" to make D°D" a product of two separate expressions @f, D”. Even the

commutator of (5.16), which we can calculate toibB?,D" |=G“0" -3[G?,G" | in flat
spacetime, is different frorrFW¢:i[D#,DV]¢:(a[ﬂGV]—i[G#,GV])qﬁ which is the field

strength defined in (1.1), (1.5). This is becainsé.15) D’D" is operating oG, not ¢ and

because, as noted at the outset following (1.1lugegaovariant derivatives, like covariant
derivatives in Riemannian geometry, take a fornt tlegpends on the representation of the object
they act upon.

However, foro=D,D" we may make use of the very recent finding afteb)( that

0,G” =0 for a massive gauge bosewmen in non-abelian gauge thepgnd specifically, may
add this “zero” to (5.17) and thus write:

D,D’ =9,0" -id,G" -iG,0" -G,G" =9, (0" -iG")-iG, (0" -iG") =(9, -iG,) (6" - iG)
=0,0"+V

, (6.6)
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where in the final line we have defined the gaugkel perturbation(see, e.g., [14] eq. [4.4]):

i0 -k

V=-i(0,G'+Gd")-GG =-kG- Gk- GG. (6.7)

This use 0fd,G* =0 doesallow a clean separatiod,D" =(0, —iG,)(a’ —iG’), and it enables

us to explicitly introduce and identify gauge figigrturbations. This will be very useful
throughout the subsequent development. And admnause we are considering a massive

gauge bosong,G” =0 is not just an optional gauge condition; it isuiegd for continuity. At
the end of (6.7) we convert into momentum spacthbyseful substitutio - k.

With these preliminaries behind us, it is time tdcalate the inverse of (5.15) for a
massive gauge boson. We start with the invéseof (6.2), for which we follow Coleman and

Zee and add the Proca mass as follows:

|, (9 (D,D"+m?)- D D) =-5" (6.8)

u

It is well-known how to calculate inverses of tloenh (6.8), but we do need to be cognizant of
two important points because tBeare not the same as ordinatyespecially in flat spacetime.

First, while [6”,0”]:0 in flat spacetime, we cannot treBX’ D" as commuting here, that is,
[D?,D"|#0. In fact, as noted prior to (6.6)] D?,D" |=G'“9" ~3[G",G" | # 0 when the
operand isG,. So we need to be very careful throughout to taainstrict commutation

ordering. Second, we cannot just put expressionsving D’D" or D,D” into a denominator.
Rather, we have to treat carefully, as inversesradmere denominators, inverse expressions
which containD?D" as well as the gauge-covariant d'AlembertianD, D" .

With that in mind, let us calculatg,, . First, we specifyl , using the general form:

|, =Ag,, +BD,D (6.9)

uvo

with A andB unknown and to-be-deduced. Given thgf#1,, (to see this, simply note that
DD, #D,D,), the above definition together with G,=1,J" leads to
G, E(Agw + BD, Q) J = Ag, J+ BD D J= AJ once the continuity relatiom,J* =0 of
(5.20) is applied. So the inner-product definiti@), =1,J" combined with the inverse

definition (6.9) will eventually allow the importarsimplification of settingBD,D, - 0 by

continuity, which is analogous to what happens belian gauge theory when the continuity
equationd,J” =0 is applied.
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So, the task now is to find the unknowkandB. If we place (6.9) into (6.8) we obtain:

-5°,=(Ag,, +BD,0)(¢"(0 D+ nf)- O D)
=Ag, ¢’ (DD +nf)- Ag, D D+ BD D¢ ( DD+ )~ BDPD D. (6.10)
=A5,(D,D"+nf)- A’ D,+ BD, (DD +m)- BR R O O

Matching up the terms witd” | we first obtain-1= A( D,D" + rr12) , Or inverting:

-1

A=—(D,D" +n) (6.11)
We then use (6.11) in (6.10) and reduce, to netdiob
0=(D,0"+m)" DD, +B(D, (DD +n?)- DD U B), (6.12)
or, rearranged:

-1 -1
B=-(D,D'+nf) D'DF(D'DY(DD+nf)- I QO D) . (6.13)
Finally, we use (6.11) and (6.13) in (6.9) to fiheht:
1,, =—(D,D" +m2)_1[gw + D7D (D" D7 (D, D"+ nf)- ' D ¥ Dr)'1 D, q] (6.14)

Above, each derivative pair is defined BfD" =0°9" —-iG?0" -2G°G" + G'G’ in (5.16) and
o=D,D" =0,0" —iG,0" -G,G" in (5.17) (remember too, thatG" = 0which produces (6.6) and
(6.7)). We may then substitute (6.14) into thgioal definitionG, =1 ,J" to conclude that:

GH=IWJ“=—(D,D’+mZ)_1[gW+ o(0D(DD+ni)-0D0D D)‘l D, [3} J

=-(p,0"+m?)" g, ¥-(DD+n) DO(DD(DD+mM)- DO D) pDJIG6IG
=-(D,D"+m?)" 3, =-(0,0"-iGO -GG + M)
In an essential step, we get to the final line fpreing continuityD,J” =0 from (5.20),
and then making use of the d'Alembertian D,D" of (5.17). We shall shortly add a term

-i0,G" =0 to the expression for which the inverse is beaigh, so that we can take advantage
of (6.6) and explicitly identify the perturbatiok’s
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To make all of this appear a bit more familiar e tway such inverses are usually
written, let us seD - 0 in (6.14), and let us assume flat spacetime sdeail/atives commute,

[aﬂ,avj =0. With these assumptions, the inverses can beett@s regular denominators. With
all this, we find embedded in (6.15), the very fiamniabelian A subscript) inverse |, - |

Auv *

9700 ,0
+ HZv 0,0, K
e 0797 (9,0" +m?)-0°0,0°0" 9wt 5 ok Y -“n? vie G -k;:”
IA,uv == > == m = = (616)
0.0"+m 00" +nf kK- n k k- rh+ &

With the first arrow, we convert to momentum spaieeid,, - k. With the second arrow, we

then add therie prescription. Using the final term above with , = 1,,J", we may write:

Auv

(O P kﬂK/ K,

uv 2 J’=0 g 1

Gpy=lppd/ =M 3" = i J = J, 6.17
M KK -t + ke kK-nm+& kk- m+ 4 * (6.17)

wherek,J"” =id,J" =0, which is just another version of the continuituation, is used for the

reduction after the third equal sign. If we set=0 in (6.16) we then obtain the clearly
indeterminate result:

k
9, oK,

o= 0 9™ __ (6.18)
M kK +ie kK +ig ' '

But in contrast, doing the same in (6.17) simpBldgs the finite:

1

G, =——]
MUKK +ig ¥

(6.19)

The infinite result in (6.18) is tamed in (6.18)cause of the continuity imposed in (6.1[F)we
then put the boson on mass shkJk’ =0, we finally have:

1
G, :EJ“' (6.20)
This only stays finite because of thés prescription. Equation (6.18) explicitly illustes why
g70,0" —0°9d" has no inverse, or more precisely, why the abetfigarse for a massless gauge

boson in flat spacetime is indeterminately-infinitquation (6.20) explicitly illustrates why this
inverse is also indeterminately-infinite for on-Bhmsons, unless one uses the prescription.
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Now let us do the same in thwn-abelianinverse (6.14) to see whether the same
infinities are encountered. Setting=0 in (6.14) we simply obtain:

1 -1
l,, ==-(D,07) [gw+D"D"(D"D"DTDT—D”DTD”DT) D#DV] (6.21)

The term D’D’D'D, -D’D'D’D, =D D?,D’ |D, must be evaluated using tt2’D" and
D,D" of (5.16) and (5.17), that is, as a second ordedrptic rather than a fourth order linear

term. That is because these derivatives wereraigirior to inversion by operating €, and

because the explicit form of a gauge-covariantvagiie depends upon its operand. Thus, from
(5.16) and (5.17):

D°D’D'D, -D“D'D’D, =(D°D?)(D'D,)-(D"D")(D7D, )
= (070" -iG"8” -2G"G" + G"G" (979, - iG9, - G G) : (6.22)
~(0°0" ~iG“0" -26°G' +G'G")(8°9, - IG’9, - 2G5 G + G G)

If it was possible to commut[eD”, Dr] =0, then this term would become zero and (6.21) would

contain (D" [D?,D7] D,)_1 =0" = and become indeterminate when the mass is zerthéor
same reason as (6.18). But the defining featuneoafabelian gauge theory is that the gauge
fields do not commute, i.e., th%G”,GTJZO. So the term (6.22) isot zero and thus (6.21)

does not become infiniteven when the mass is set to zelbis the non-commuting nature of
non-Abelian gauge theory that bears direct respditgifor maintaining a finite inverse (6.21)

for the configuration space operatgt’ D,D* — D’D" in (6.1) even when the gauge boson has

no mass As we see in (6.15), however, none of this matsg all once we applp,J” =0
continuity, because that zeroes out the term 22(6entirely. Indeed, settingy=0 in the final
line of the non-abelian relation (6.15) f&{J) simply yields

G,=-(D,07) " 3,=-(0,0' -iGI -GG)" J,. (6.23)

%

Now let us examine what happens for on-shell besomon-abelian gauge theory. The
relativistic energy relationship ig, p’ - nf =0. Via n% :%(y"y’ +y’y") :—;{y”,y’} this
becomey p-m) u=0 = (- m¢ =0 when operating on a free, non-interacting Diraop/
wavefunction. But for interaction via a gaugedi&’, p p° - nf =0 becomesz, 777 -’ =0
with 77 = p’ + G" defining thekinetic momentunaz’ in relation to the canonical momentuph
and the gauge fiel&3". This means thafzz-m)u=( p+ G- n) =0, or, with p - id and
u- ¢, that(id+@-m)y =0. This is just Dirac’s equation for anteracting fermion. The
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key point of all this — withp” andk’ respectively used to denote fermion and boson mame
vectors — is that a free on-shell fermion is désatiby p, p” — nf =0 and a free on-shell gauge

boson byk_ k? —nf =0. But for an interacting on-shell particle witii = p” +G" for fermions

and 77 =k" + G’ for bosons, the exact form of the on-shell equatiepends on whethés” is
an abelian or a non-abelian gauge field. Let esrdgy:

Suppose thaG’ is a U(1) photon / electromagnetic potentidll. Here the on-shell
relationship, referring also to the perturbation7{6and noting thatz, 77° =k k” -V because

k.G' =0, is:

O=mm -m’=(k+A)(K+ K)-m= KR+ k A+ Akt AN 7
=-V +k k% - nf '

(6.24)

This perturbation-V =k A+ AK+ A A is a 1x1 scalar number which can be added to the
numberk_k? - nt, so that (6.24) is a sensible equation. But ssppmw thatG’ =A'G" is an

NxN object formed using the generatots of the simple gauge group SU(N). To be explicit,
showing Yang-Mills indexesA, B=1...N for the fundamental SU(N) representation, suppose

now thatG’,, =A' ,,G. Then, if carelessly generalized, (6.24) woulddme:

O=ma - =(k +G)(K+C)-ri= k R+ k G+ G k+( £G - ¥

6.25
=V, = (M -k K) (=-V+ k K- 1) (6.25)

But this expression is not quite right. Tkgk” — nt is still a scalar number, and becadg is
now taken to be an NxN object for SU(N), thek’ — nt will occupy thediagonal positions in

the overall expression (6.25), hence the explloivwang of JAB(m2 - K,K’). At the same time,
Ve =K,G o+ G 6K +( G G’)AB will now be an NxN Hermitian matrix with off-diagal

elements. The perturbatiofl,; is a matrix, whilek k’ - nt is a scalar number that we also
know is part of an inverse abelian propagator.tifg@oonly way to make sense out of (6.25) is to
use this as arigenvalue equatiom which m* - k K’ represents the scalar eigenvalues of the

perturbation-V,g.

Now, one way to write (6.25) as an eigenvalue @gnais to have it operate on an N-
component column vectorg, and to rewrite the non-abelian on-shell conditias

[VAB—dAB(mZ— K, k’)]¢:0. But because expressions such as (6.25) will shpwn the
context of equations such as (6.15), we want toabke to express the on-shell condition
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independently of any. We can do so by taking the determinbﬁt: detA of (6.25), in the
form of the eigenvalue equation:

0= nan”—mz‘:—‘VAB—JAB(K,k’— rﬁ)‘ (=]- v+ k&= ). (6.26)

This is what specifies an on-shell gauge bosomomabelian gauge theory: on shell, the scalar
numberk k? — nt gives the eigenvalue solutions of the perturba¥ign

In view of this, if we therefore write (6.15) withie and 7 =k" + G as

G,=-(D,D' +nf-ie) J,=-(0,0"- GO -GG+ ni- &) ]

u

i0 -k )
= (kk+GK+GG- m+ &)
k,G"=0 , (6.27)
= (kk+kG+GK+ GG- h+ a‘*)_l J=(mm - ai)_l J
=(-V+kKk-ni+ i) g,
we see by writing (6.17) in the form of an inverse:
G,, =(kK -ni+Eg)" 3, (6.28)

that thesole difference between the abelian and non-abeliantisok for G”(Jﬂ) is that the

canonical scalak k” of abelian gauge theory is replaced by the kinstiglar 7z.77 in non-

abelian gauge theory, or, alternatively and eqeivdy, that a perturbatiorV =-V,; is added
to the abelian (6.28) to arrive at the non-abeli@27), which then turns the usual inverse
propagatork k' — nf + i into -V,; +k k' — nf + & for which on-shell particles are described

by Vg =G5k, K = nif) = 0 in (6.26).

If the “careless”zz, 7”7 —m? =0 in (6.25) were to describe the on-shell conditionan
interacting particle in non-abelian gauge theoryhich it doesnot — then for an on-shell

particle, (6.27) in the fornG, = (nrnf -t + is)_l J, would reduce t@G, =(+i€)™ 3, which is

exactly the same as the abelian (6.20). So ireeilelian or non-abelian gauge theory, we
would require the+ie prescription to avoid the poles for an on-shelftipee. However,
.’ —m’ =0 is not the on-shell condition for non-abelian gauge tiieoRather, on-shell

bosons are specified by the eigenvalue equW—mz‘:O of (6.26). So even with

‘ﬂaﬂ"—mz‘ =0, the expressiorG, :(n,n’ -t + ie)_l J, will generally remain finite in non-
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abelian gauge theory even if we u@,:(ﬂrnf—mz)_l J, absent+ie. Because on shell

particles are described l*yyf' —mz‘ =0 and not7z,777 —m’ =0 in non-abelian gauge theory,
the non-abelian theory can remain finite on shetineabsentric.

Before studying massless gauge bosons using the foamal approach of Faddeev-
Popov, it is important to see that the continugiation d,J” =0 which tamesGy(Jy) in the

classical massless boson inverse (6.19) notwittstgnthe infinite inverse (6.18), plays a
similar role in taming the quantum field amplitudétained from the QED path integral.

Specifically, the action corresponding to the fielguation-J" = (g””(a,af + mz)—a"a”) G
which is the abelian version of (6.3), for whicle ihverse was found in (6.16), is:

s(9)=[ d'x=[ d %g 6( & (0,0'+ M-09°) - gs‘ﬂ]. (6.29)

When the Gaussian integrﬁdxexp(—% AX - J>§ =(-2r 1 A° exd K} /24 is employed as the
template to use (6.29) i& = [ DGexp(iS( §)) = Cexi{ iW( J), the inverse inJ*/2A is based
on the abelian inversk, , in (6.16), and we obtain (see, e.g., [11], pa@e8DB):

ALY

W)= (I Y (B Y L3k 630

This too looks like it will become singular fan=0, just like (6.18). But there too, as in (6.17),
the continuity relationshigx,J” = i0,J" = 0 rescues the path integral from an indetermindtg fa
and facilitates the reduction:

W(J):+%J‘ d:Tk4 T @S%j(i% F( B w1+ _ (k631

(2m) k k' —m+ i )

This also tells us that the electromagnetic forewvieen like-charges repulsive

But the key feature of interest in both (6.17) whis for a classical field and (6.31)
which is for a quantum field, is that even thoudie mathematicalabelian inverse (6.16)
becomes infinite ifm=0, when this inverse is placed into the context ghgsicalequation

such asG,, =1,,J" in (6.17) or..J**1, ,J" in (6.30), the seemingly-infinite result becomes

finite and well-behaved. This is because the maystontext — in this case the continuity
relation k,J” =i0,J" =0 — causes the otherwise singular teknk,/ m- k k/0=c to be

zeroed oubefore it ever gets to wreak any havothis contextual finiteness is very important,
because even though the mathematical object —ntherse — becomes singular, the physical

Auv
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result remains finite. In the discussion to nosvdeveloped, where we use the more formal
approach of Faddeev-Popov to develop the massivgegaosons, this will lead to what we shall
call “contextual gauge fixing.” In Faddeev-Popovhere a gauge numbef enables an

unlimited array of non-uniqumathematicainverses, the continuity relation forces tpteysical
results into a very definite and unique choice afige. When we use these same inverses in

#F(G(J)) to show why#F :—i_deG looks very much like a baryon, this type of

“contextual gauge fixing” coupled with Fermi-Dirdauli Exclusion will not only result in
unique solutions foG(J), but will give mass to the fermions df' = y*y and turn them into
qguarks, while rendering the massive gauge bosossless just like gluons.

7. Abelian and non-Abelian Massless Gauge Boson lenses for the
Electric Charge Density, Using the Faddeev-Popov Meod

In the last section we took the “pragmatic” ColerZaee approach of obtaining the
classical field equation inverse for a massive gabgson and then setting the mass to zero to
see what happens under a variety of circumstandésw, we take the more formal, direct
approach of using the Faddeev-Popov method to leddctihe inverse for a massless gauge boson
ab initio, without the intermediate stop for a massive boson

If we take the “non-pragmatic” route and start with amasslesgiauge boson for which
we apply Faddeev-Popov, and to open simplified udision revert (5.15) to its abelian limit
D - d, then along the way theffectivefield equation becomes (see [11], after (111.4)8))

-J"=(g"0,0" -(1-1/£)9°9") G,, (7.1)

where ¢ is a gauge number. While for the moment we tiieatintroduction ofé simply as a
mathematical manipulation of the classical fieldia&ipn —-J" = ( 90,0 —0"0V) G, of (5.15) to
which (7.1) reduces fof =, we keep in mind thaf actually arises when we start with a path
integral Z :I DGexp(iS( G)) and turn this intoz :J' DGexp(i[S( Q) -( i/2{)J' d X0 (32})

through a change of the integration variable whithintains the invariance of theunder the
abelian gauge transformatidh -~ G' = G+ dd. So by introducingé in this way, and knowing

that this carries over to non-abelian gauge théotyfor the further introduction of ghost fields
c',c with a path integral Z :J'DGDchTexp( |[S( Q—(llz)f d %o C)ZJ+ :’é Tc,)é

containing a ghost actioS( c, c) , we have a “hook” by which this can eventuallyused to set

up a quantum path integration for non-abelian thedBut for now, as discussed at length in
section 4, we continue to develop the classicairthe

J” for the abelian inverse, in flat
spacetime we may multiply through by, , and write (7.1) as (contrast (6.1)):

Once again using an inner-product definit@p, = 1, ,
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ad” =14, (970,07 -(1-1/£)8%0")G, =G, = 5°,G,

Auv
from which we extract (contrast (6.2)):

| (990,07 - (1-118)0°0") = =57,

Then usingl ,,, =Ag,, + Bd 0, based on (6.9), this becomes (contrast (6.10)):
-0°,=(Ag,, +89,9,)( ¢70,0" -(1-1/£)8°9")

= Ag,, g°0,0" - Ag,, (1-1/£)8°0" + B,0, ¢°0,0' - B0, (1-1/§)0°0" .
=AJ’,0,0" - A(1-1/£)0°0 , + B2 ,0°0,0" — B(1-1/£)d,0,0°0"

From this we match up thé” , terms to find (contrast (6.11)):
A=-1/0,0".
so that (cf. (6.12)):

(1-1/8)0%,,
0,0"

+B(0,070,0" - (1-1/£)0,0,0°0")

or, commuting and cancelling derivatives freely (6f13)):

00 1-1/&) 1 1
1-1/ “ 1-
B:_( f)alﬁ”arar-(1-1/5)0ﬂ0r6”<9r :_( 1/¢ ja,,a" :( g()agaa_
6r0T araf arar

Thus, using (7.5) and (7.7) i, = Ag,, + Bd,,0, we obtain (cf. (6.14) and (6.16)):

2,0 KK, K,k
-g,, +(1-&) 4" -g,, +(1-&)-* -(1-
3 gﬂV ( Ct) aaaa i9 ok glll/ ( f) kaka +ie g,UV ( Ct) KJ ka
L = . = - . = : .
0,0 k. k kK+i
We then use this i, , =1,,,J" to write:
k
0, ~(1- )

G, =1,,3" = K,k J’

e kK +ie '
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Now let us follow two different routes to reduck9). First, let us apply the continuity
relationk,J” =id,J" =0 as we did in (6.17). This causes (7.9) to become:

kK,
gyv_(l_g) 8 a k, V=0 —(1- 0
Gy = LSRR Wi Gl ) L N S (7.10)
U krkr+|£ k[kr+|£ KK+E KK"‘E "

Alternatively, let us embark upon the differenttpaf selecting the Feynman gaude=1 in
(7.9). Now we have:

k
gﬂV - (1_5) kyllj; é=1 gﬂV - OIZ‘IIE; g 1
G,, = AL (N & y=_Sw  y= _J, (7.11)
H k k™ +ig k K +ig kK +i kK+g “

which is the exact same result as in (7.10). Aoth lof these are exactly the same as the result
in (6.19). These are three routes to the exacesasult. In (7.10), the expressit@n— E)O

which emerges from requiring continuity vigJ” = i0,J” =0 hasforcedthis term to be zeroed

out. Just asin (6.17) (and analogously in the-aloslian (6.15)), there is no choice other than to
zero out the term containing the gauge numéerBut if we were unaware of continuity, we

could get to the sameffectiveinversel,, =g, /(kaT + i£) in genera) by the different route

of selecting the Feynman gaude=1. Importantly, this means that after we find theerse and
then use it inG,, =1,,J", we are forced into an equation f@,, which could be
independently arrived at by selecting the Feynrmearggé =1 for the standalone inverse.

Auv

The point here is that for masslesgauge boson, there is a complete freedom to select
any gauge numbercw<¢<c for the inversel , , , which means that this inverseiiinitely

non-uniquewhen regarded asmathematicakntity. This is because of the redundancy whereby
G, contains four degrees of freedom despite the a&sdcmassless physical field having only
two degrees of freedom. And here, unlike for astess boson, we do not even hdawgs? =0

mandated as a covariant condition which at ledststaout one degree of freedom. So the
mathematical inverse is highly nonunique Nevegs®l once we use this inverse iptgsical

equation such as, , =1,,J" in (7.9) to (7.11), the continuity equation foraes to fix the
gauge of the inverse intd =1, or more precisely, forces a result that can exjaitly be
achieved by selectingé =1 for the standalone inverse before it is ever teskerinto
G,, = 14,37 This is a specific example of theontextual gauge fixing’mentioned at the end

of section 6, wherein a gauge which is completalg-nnique and thus an associated inverse
which is also non-unique as a mathematical mateigrced to be uniquashen placed into a
physical contextin this case, the context of a conserved cumensity enforced by continuity.
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In this way, we may think of the Feynman gaugehas“tontinuity gauge,” becauseuniquely
fixes the inverse in the exact same manner astieesntinuity equatiork, J* = i0,J" =0.

With (7.1) to (7.11) as a backdrop, we returnhi field equation (5.15) witlb’D" and
D,D" defined as in (5.16) and (5.17) when the operard,i, and introduce the gauge number
¢ exactly as we did in (7.1). Thus, we write:

-1"=(g”D D -(1-1/§) ' ') G,. (7.12)

As with (7.1), we treat the introduction §f simply as a mathematical manipulation of (5.15) to
which (7.12) will revert foré =, which allows us to solve this classical equatini2) for G,

as a function of)”. Sincez =j DGDcDd exp( i[ S( Q—(llz)j d %o (}2} $ e, )() is the

path integral for non-abelian gauge theory, it $thdee clear that the inverse obtained from
(7.12) will be a useful item to have “on the sheiffien it comes time to try to calculate the non-
ghost portion of this path integral. But for nomeg are still working classically, so our imminent

goal is to solve the classical equation (7.12)@gras a function ofl".

As we have done previously, we ugg =1 ,J" to definel ,, and then multiply each

v

side of (7.12) by-1 ,, to write:

3" ==l (gVUDrDT _(1_1/{) DUDV)GU =G,=0",G. (7.13)

)74

From this we extract:

l,,(9*D,D" -(1-1/¢) D°D") ==5° (7.14)

u u-

Then we combine the above with (6.9) to write (6f10) and (7.4)):

-0°,=(Ag,, +BD,0)(¢° DD -(1-1/§) I D)
=Ag,9°DD-Ag,(1-1/§) D+ BD, D ¢° DO~ BD D(1-1/) B B. (7.15)
=Ad’,D,D' - A(1-1/§) D°D,+BD,I’ DD - BD, Q (1-1/§) ' I

Here, the reductions used twice earlier (cf. (6tb1(6.13) and (7.5) to (7.7)) yield:

A=-(D,D')", (7.16)

0

(1-1/¢)(D,D") " DD, +BD,DD,D - B(1- 1/) D,D, D I, (7.17)
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B=-(1-1/¢)(D,D’)" D’D” (D’ D’D,D* -(1- 1/§) DD’ D’D,) ", (7.18)
thus leading vid ,, = Ag,,, + BD, D, from (6.9), to:
|, = —(DTDT)_l[gW +(1-1/£) DD? (D’D?D?D, -(1- 1/€) D’D°D’D, ) DﬂDV} . (7.19)

Reducing (7.19) is a bit tricky because of theense. But if we momentarily put the
latter inverse into a “denominator” and use, anarker to hold the commutation position of the
inverse, all just to aid in visualization, we mayluce this to:

- - anB
Y RS L TN

D’D’D’D, -D’D’DD, +(1/¢) D’D’DD,,

= —(DrDr)l{gW + (£-1)b°D,D,D, ] (7.20)

¢(p”D°D°D, -D”D’D’D, )+ D’D’DD,

- —(DTDT)_l[gW +(¢-1)D"D? (¢(D”DDD, - DD’D’D, )+ D D7D DJ)_l D/,DV}

where in the middle line we multiply each of thaufmerator” and “denominator” by, then in
the final line revert to the inverse formulation.

In this form, we see that the redundancy®f with four degrees of freedom to describe

a massless field that has two degrees of freedamifzean infinite non-uniquenesso <<

in the choice of the gauge number, just as it doedelian gauge theory, see after (7.11). But
now, as before, let us insert this inverse (7.8®) G, =1, J" to obtain:

G, :‘(DTDT)_I[Q,N +(¢-1) DD (¢(D’D°D’D, - D DD D, )+ D’ DD’ D, | ‘D, DV} I (7.21)

As in (7.10) and (7.11) we now take two routeseduce (7.21). For the first route, we
apply the non-abelian continuity relationstipJ” =0 deduced in (5.20) to obtain:

-1 =

G, =-(D,D") [gw +(é-1) DD’ (¢(DPD° DD, - DD’ D' D, )+ D’ D' D7 D, )
D,J"=0

= —(DTD’)_l[gWJ” +(£-1) D' D¢ (£(DPDF D’ D, - D D° D D, )+ DPDP D D), ) Dﬂ(o)} (7.22)

! v
DﬂDV]J

=-(p,0")"J

U

For the second route, we simply select the Feyngaageé =1 in (7.21). Now we obtain:
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" ., +(£-1) DD (¢(DP D DD, - DD D7D, )+ DA DY D DJ)_l DﬂDV}JV

u=v

[gw+ (0) 0"D* (¢(D*D"D’D, - DD’ DD, ) + DBD”D"DJ)_lD D}J" (7.23)
(D Df) J,

These two results (7.22) and (7.23) are exactlysdree. So just as in the abelian (7.10) and
(7.11), the Feynman gauge acts as a continuity egalogcause when used in the standalone
inverse of (7.20), it leads us to the exact samsalr@s the non-abelian continuity relationship

D,J" =0. Additionally, if we now return to (6.15) in wiiove have also employed continuity,

and follow the Coleman-Zee approach of settinggdnege field massn=0, we also find just as
in (7.22) and (7.23) that:

G,=-(DD) " 3,=-(9,0-iGo' -GG)" 4, (7.24)
which we have already seen in (6.23), withD" =9,0" —iG,0" -G,G" as found in (5.17), see
also (6.6) and (6.7) which make use®G” =0 for a massive gauge boson and so are able to
also provide a connection to the perturbatbn

So we see that in contextual setting of the caityrelationshipD,J” =0, theunique
solution to the massless non-abelian field equatidr :(g”” D.D - D"D“)GJ of (5.15) is

alwaysgoing to beG, = —( D, DT)_l J,. Whether we arrive at (6.23) / (7.24) by startwith a

massivegauge field, obtaining the inverse, applying comtly, and then settingn=0 via
Coleman-Zee; whether we start withnmeasslesggauge field, use Faddeev-Popov to find the
inverse, and then apply continuity; or whether vegtsvith amasslesgauge field, use Faddeev-
Popov to find the inverse, and thelmoosethe Feynman/continuity gaugge=1; we will always

end up with the samaniquesolution (7.22) to (7.24).

The point is that even for non-abelian gauge hewshile themathematicainverse for a
massless gauge field gives us the freedom to satgauge numberc < <o, thephysical
continuity condition D,J" =0 forces us to put the inverse into the Feynman g@aughis
contextual gauge fixingemoves the arbitrariness of the mathematicalrg®seand forces us into
the specific gaugé =1 the moment we use the inverseGp=1,,J" and then apphD,J" =0.

Before concluding this section, let us comparentie-abelian results (7.22) to (7.24) all
of which are equivalent to one another, with thelian results (7.10) and (7.11) both of which
are also equivalent to one another. The chiekgifice at this point is that we have not yet
introduced the+ie prescription into the non-abelian inverses. Camnga(7.22) to (7.24) with
(7.10) and (7.11), we see that the way to introdtieeis to amend (7.24) as such:
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G, =-(D,D -ie) 3, =-(0,0" -iG,0" -G,G — ie) ina:;k(k{ K+E+GK+GG) }.(7.25)

u

Above, we have also gone over into momentum spac#®\» k. This is just the second line of
(6.27) with m=0. In the k,G' =0 gauge, which for a massless boson is a choicenaha@

requirement, this becomes:

-1

Gﬂ:(krkr+ kG+GK+ GG+ 8-.)-1 Q:(mﬂq 3)-1 /JJ:(_ W Kkt a) ). (7.26)
In contrast, if we write (7.10) / (7.11) in the fioof an inverse relation, these become:

G,, =(k K +ig)" (7.27)

(7R

which is just (6.28) withm=0. Of course, the abelia(lkrkr+i£)_l can be written as an

ordinary denominator, while the non-abeliéhrkr+i£+G,kT+ C—:;GT)_l cannot because the

G, 7 =G K + GG term in general will have a matrix form which mbstinverted rather than
placed in a denominator.

Insofar as on-shell bosons are concerned, as mo{&R8) and the discussion following,
an on-shell boson in non-abelian gauge theory kdlldescribed by the eigenvalue equation

(6.26), which form=0 and using (6.7) and,77° =k, k’ -V in thek,G' =0 gauge becomes:
0=|7,7| = ~Nps =G,k K| (=]-V+ K K|=|k K+ kKG+ Gk+ G 8. (7.28)

Note again that whiléd,G" =k, G" =0 is arequiredrelation for anassivegauge boson as found
in (6.5) and the ensuing discussion, it isogtional gauge conditiofor amasslesgauge boson.
So the relationG, =(k K + GK + G G)_1 J=( kk- \)_l J without mass, whenever it is
used,assumeshe gauge conditiok, G' =0. With this gauge condition this can also be eritt

in terms of the kinetic momentum &, = (77,771)_1 J, :(K K- V)_1 J, and it will not become

singular even on-shell becaqslg,n”‘ =0 above, and notz, 77° =0, is the on-shell condition for
a massless gauge boson in non-abelian theory ichtb&en, not requiredk, G =0 gauge. This

does introduce a degree of non-uniqueness intanthexse relationship for a massless gauge
boson even with continuity. This is because tkeedom to varyjk,G" to non-zero states, unlike

the residual gauge conditidp,D"6=0 a.k.a.d,0"8-id, [GV,H] =0 discussed after (6.5)pes

affect the form of the equations whenever one vadbewrite them with the perturbatiahor
the kinetic scalarrz,777. As such, we will wish to find ways to avoid sitions in which
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i0,G" =k,G" =0 is an optional gauge condition, in favor of alwaysving it be a required
relationship, which will lead us down the ColemageZpath of choosing massive solutions
wherever they can physically justified.

8. The Recursive Nature of Non-Abelian Gauge Theonand what it may
Teach about Quantizing Yang-Mills Gauge Theory

Now we look for the first time at a very importaetursivefeature of non-abelian gauge
theory. If we write the massive boson solutionGs= (k,k’ -nf+E+GK+ G G)_l J from

the second line of (6.27) and recognize that théugstionV =-k G’ -G K - G G in (6.7)

may also be written 8¢ = -G k' - G G because, G" =0 is arequiredcondition for a massive
gauge boson, see (6.5) et seq., then a preferrgdowearite and use (6.27) will be the following:

G, =(kk-nf+e+GK+GG) J=(kk- hra- | (8.1)

Again, it bears emphasis, this uses the fact khat =0 is required, bubnly for a massive, not
massless, gauge boson. Now, although (8.1) appeatse surface to solve f@ﬂ(Jﬂ), this is

not aclosedsolution. Rather, it is really eecursivesolution for G,(G,, J,) which can be
recursed into itseld infinitum Let us see exactly how this is done.

To do recursion, one generally needs two inputst, fa recursive kernel; second, a
terminal condition. A quintessential example is tecursive definition of the factorial function:

The recursive kernel says thatt= nx(n-1)!. The terminal condition says that=1. We shall
pursue a similar approach to underst&)din (8.1).

To keep track of things, let us develop some rmmtat We shall generally use the
double-nested symb(é( )) to denote a recursion. If we recuiGg into itselfn times, we shall

denote this a@l,(( ))n If after n recursions we leave the perturbatMin the equation, then
we shall write this aﬁﬂ((v))n. If, however, aften recursive iterations we s&t=0, then we
shall write this asGﬂ((O))n = Gﬂ((V: O))n. In this notation, this means that we write (8$)

G,((v)), = ( kK-nf+ k- V)_l J. So, at the zeroth order of recursion, we simgdy
-V =G,k + GG =0 in (8.1) which removes all of the terms containfBgand reduces (8.1) to

G,((0), = (kK - nf+ )" 3

u

(8.2)

This is simply the abelian solution (6.28).

44



Jay R. Yablon

But now, let us perform the first order of recorsi Here, we substitute (8.1) back into
itself one time and then s€t=-G k' - G G =0. This exercise yields:

Gﬂ((v))lz(k,kr—nh E+ G K+ C}C’é)_l N
[k =nfrie+ (kK- nf+ £+ G R GG) Jk |
+(krk’—rnz+i,s+ql(+(g‘c-if)_l I kk- + d+ Gk ;3@_1 7

-1

-1

(8.3)

u’

kK —nf+i
SG#((O))l: +(kK-nf+E)" 3K J
+(kk -mt+i)” 3 (kK- i+ &) 3

In leading order, this solution of course still tains (8.2) which is(krk’ -ntf+ ig)_l J, . But

inside the overall inverse we now also have a deké (J*) and a newd J* (J?) term. This is

now an expression strictly fc@ﬂ(\]ﬂ) not G, (G,, J,), because we have cut off the recursion at

=T

the first iteration by setting the perturbatidr= -G k' — G G =0 in the final line.

Now, let us go to the second order of recursibtere, we start with the middle line of
(8.3), do a second substitution of (8.1) to arav¢he second order recursion, and then cut things
off by setting the perturbatioi =0. Now we obtain:

6, (V). = kK -nt+ie+(kK-ni+ &+ Gk+ GG) Jk _lJ
’ ) +(k,kf—mz+i,9+(;‘;l{+CﬁG‘)_l I kk=- fr d+ Gk Qg_l o

Kk =t + i
+KW—ﬁ+E4KK—ﬁ+s+QW+g®*gk ﬂjw
sk -nf+E+GK+GG)" J( kk- Awa+ gk 6Q 37 (8.4)
:_FKW—M+E%KK—ﬁ+£+QK+GGr'gk ﬂJ J,
+(krkf—rrf+ig+G[I{+QG‘)_l I kk=- g+ Gk gq_l S

kK =nf+ig+(kK-ni+ &+ GK+ GG)_l Jk

+(k k=t + E‘+G;K+GG)_1 I kk=- A d+ Gk ge’)_lJf
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which, upon settiny =-G, k' - G G =0 reduces to:

kK =nf+i
-1
+ kK —nf+ig+ T‘]’k —+ % J =1 JK
kK =nf+E (kK -nf+ i)
b (8.5)
G 0 = r r J , .
+((0)), N S S £ A I I
kK =nf+E (kK -nf+ i)
-1
x| k K =ntf + g+ T‘]Tk —+ %) S| F
kK =nt+ie (k- nf+ i)

It will be appreciated this second recursive iferatontain terms id, J°, J°> and J*. A third
iteration would be expected to produce terms uplfo and in generaln iterations should
produce terms over the entire gamut Jf..J*". As with (8.3),G/,((0))2 IS an expression

strictly for G”(Jﬂ) (really, Gﬂ(Jy, K, mg)), not GT(G J) because we have cut off the

Ty T
recursion at the second iteration by setting theupgeation V =0. But, having done two
iterations rather than one, we have some new ténatswe did not have at the first iteration.
So in general the technique is to iterate as memgstas one wishes, and then¢et 0 to end
the recursion. Each iteration will add new terrhged higher order id, and the result will be an

expression forGﬂ(Jﬂ) with terms of orderJ'..J*. And, of course, mathematically,

T

theoretically, to obtain aexact, closedexpression forGﬂ(Jﬂ) not G,(G J ) one would

iterate annfinite number of times and then s¢t=0. But, of course, the real method we now
need to pursue is not to iterate to infinity, bufigure out the pattern.

To discern the overall pattern, we do one morerstgn to then=3 level by substituting
(8.1) into the each and evef(, in (8.4). The expression fc(E/,((V))3 takes up over a page,

and is not shown here. But upon settwig- 0 to arrive atGﬂ((O))S, this reduces to the still
very large expression:
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kK —nf + i

kK —nf+ie+(kK-ni+ &) Jk

+(kk -nf+ie)” 3 (kK- i+ ) I
Kk =t +ie+(k K-+ &) JK _:
+(kk —nt+ )" 3 (kK- i+ &) 3

kK —nf+ie+(k K-+ &) K _:f
+(kk =nP+ig) " 3 (kK- i+ )" J

(ki —nf+ie+) 3 (kK- i+ &

Kk =t +ie+(k K-+ &) JK _:
(ki —nt+ )", (kK -ni+E) J

Kk =t +ie+(k K-+ &) K _1T
(kK =nf+ie) 3 (kK- m+ &) J

kK —nf+ie+(kK-ni+ &) Jk

+(kk = nf+ie)” 3 (kK- mi+ig) Jr
Kk =t +ie+(k K-+ &) JK _:
+(kk -nt+ i) 3 (kK- ri+ &) 3

kK =t +ie+(k K-+ &) K _:T
+(kk =nf+ie) 3 (kK- m+ &) J

-1
] ¥

kK —nf+ie+r(kK-ni+ &) JK N ,
" 3K

-1
J ¥

J K

JT

. (8.6)

Even this is rather formidable, but now we haveugmoinformation to establish a definite
pattern that can be generalized to any order efrsgan.

Recognizing that the abelian boson propagatanay be denotedr™ =k k — nf + ig up
to a factor of, we rewrite the abelian (8.2) simply as:

a7

(8.7)
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We also use this to write (8.3) as:
G,((0),=(7*+m3, K +mamy)" 3, (8.8)

and to write (8.5) as:

1
(K +mdny) 1K
SCE. ) RS ©9)

(K +ZTJTZTJT)_1 It +makemIm3) 3

Now we see that(71‘1+7TJ,kr+7TJT7TJ’)_1 from (8.8) appears three times in (8.9).

Given this, let us next defin@™ = 777+ 773, k" + 73 1 . This allows us to rewrite (8.8) as:

G,((0),=nJ,, (8.10)
and (8.9) as:
G,((0) =(7*+nyk+nany)” g, (8.11)

Now we see that (8.11) looks just like (8.8), exdbat eachsr which is in a term withl has
advanced to d1. So now let’'s go to that rather large (8.6) td dawn the pattern. Using

Tt =k k' - nt + ie we first reduce (8.6) to:

n‘1+(n‘l+nJTkr +77J,77JT)_l J K "
T+ . . J. K
+(n‘1+nJrkr+nJrnJT) J,(n‘l+n4 R+ Jm J) J

-1

(e K ) AR
6,((0). =+ (K ,77_1 ) 2 ) 5 3,.(812)
+(n‘1+nJ,kT+nJ,7TJ’) J,(n’1+n4 R+ Jm J) J

(K +7TJ,71JT)_l JK B
X Jr

-1 -1

+(7f1+7TJ,k’+7TJ,nJT) J,(szl+n4 R+7T,]713) J

Now, usingl™= (ﬂ'1+ ) K+ ﬂJ,lTJ’) , we may further reduce (8.12) to:
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-1
(NI K +nIny) 1K
G,((0)), = ( ) J, (8.13)

-1 H

H(rt 4Nk NN ) 3 (7t +n Jk+0 g0 9)7

But now, we see tha(ﬂ‘l+I‘IJ,k’+l‘l J.n J’)_1 from (8.11) appears three times in

(8.13). So now, we define yet anothﬁr_lzn‘lﬂ'lJTKT +MJNJ and use this to rewrite
(8.11) as:

G,((0),=nJ (8.14)
and (8.13) as:
G,((0), =(m*+A3 K +Mam )" 3,=0 4. (8.15)

This now has the form of (8.11) but with - n. Seeing the pattern, we further define

N =7"+NJ K +NJNJ. Itis now inductively-clear that this is the fan which will
continue for higher recursive order. Now, let ystematize this pattern.

Pulling together the various results from (8.8,10), (8.14), (8.15) and the various
notational definitions made along the way, we have:

G,((0), =73, =(kKk-ni+ &) 4,

G,((0),=nJ, =(r*+mI K +mIm J)™* 616
G,((0),=M3, =(7*+nyKk+nan J)" § |
G,((0)),=M3, =(r*+1 3k +mam 7)" y

Of course, for notational economy we do not warttdge to keep adding bars or primes or any
other qualifier to each of the “propagators.” 8bus denote each “propagator” with a subscript

that simply declares its recursive order, thass 7z, M =7, N =7,, E 7T, etcetera. Then,
we can inductively compact (8.16) into a fully resiue solution just like the recursive kernel
nl= nx(n—l)! and the terminal conditior0!'=1 for factorial. Specifically, starting with

G, ((O))3 and working down, the recursive kernel and theieal condition are induced to be:

G,u((o))n 77;1‘];1 :(n(')_l-'-”n—l‘]rkr -'-ﬂ-n—l‘:lrﬂ-n—lj)_l ‘21

(8.17)
GIJ ((O))o = 776\]/-1

(kK-ni+E)" 3,
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If we wish to separate the propagators from theggdields in (8.17), the recursive kernel and
the abelian terminal condition may be written aso

="+ 7, K + 71,3, I )

" 'n-1

(8.18)

-1

7 = (k k= nf + i)

So with all of this in mind, let us now return(&a1) which is an expression f&(G, J).

But at any recursive order, we now know how to ttins into G(J) without any gauge field

residual: Just zero out the perturbation. Of seunature will not stop at some arbitrary order
and then zero out perturbations. She will recacsenfinitum and the physics we observe should
be for an infinite-order recursion. So in the matworld, we expect that the observed non-linear

solution forG(J) will be the one which recurses to infinity, thusntains terms up to infinite
order in J and irk (really, 2xc in J), and then sets the perturbativnto zero. That is, we
expect that naturejshysicalsolution (8.1) will beG, = Gy((O))m, or in detail:

G, =(kK-nf+E+GK+GG) J=(kk- fwa- ¥

=-(D,D" +mP-ig) " J,=-(0,0 +nf-E-iGI -GG) I (8.19)
=G,((0)). =m.J,= (770‘1+7Tw_1\], K +7Tm_1\],ﬂm_1j)_l J

Above, for future use in doing an analytical pattegral in section 11, we have also included the
earlier solution (6.27) to the field equatied” :(g”" ( D, D + mz)— g U) G, of (5.15) with a

Proca massive boson and D°D" =070" -iG°0" -2G°G'+G'G from (5.16) and
D,D" =0,0" —iG,0" —G,G" from (5.17). We especially wish to take notelsf torrespondence

T, o —(D,D’ +n - i,s)_l. And we also note the embedded corresponde@gdes 7z, J K

and GG o m_Jm_J, which both contain the elemental correspondence
G - m_J UmJ.

Very importantly, written as:

6,260 gl Ao n0) 3 o
7 = (k K - nf + )

we have an expression fdag(J, k, me) rather thanG(G, J, k me), with all gauge fields
removed. What is left of the gauge field is itsmemtum vectok, interacting with the current
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density in the terms)_ k" and contracted with itself in the linear teriyk’, as well as its mass
mand its€ which as an imaginary mass-type term, is relatddetime, see, e.g., [14] page 150.

Why is this all so very important? First, it ptarout that although (8.1) appears on the
surface to solve foGﬂ(Jﬂ), this is not alosedsolution. Rather, it is reallyracursivesolution

for G,(G,,3)=G(G(G,J), J)= c,;( GG I ) which can be iteratively
recursedad infinitum but at any order can be cut off and turned G;p( Jy) notG, (G, J,) by
settingV =0, i.e., by ceasing any further perturbations. sTiniakes the non-linear nature of
Yang-Mills theory very apparent from a differenewi thanF*,, =9,G*, + f™*G',G, of (1.9)

or F=dG+GOG of (1.11) which are the usual expressions usekighlight the non-linear
nature of Yang-Mills theory.

Secondly, and of very deep importance, this résarmay well point the way toward
being able tanalytically and exactlyguantize Yang-Mills theory. Specifically, we noeturn
to Jaffe and Witten who on page 7 of [6], state:

“Since the inception of quantum field theory, twentral methods have
emerged to show the existence of quantum fielde@mcompact configuration
space (such as Minkowski space). These known methoal (i) Find an exact
solution in closed form; (ii) Solve a sequence ppraximate problems, and
establish convergence of these solutions to thieedielimit.”

The foregoing suggests a third method which islyealhybrid of (i) and (ii): find an exact
recursive kernelin closed form (which isG, :(k,kr -nf+E+GK+ G G)_l J) and then

expand that kernel in successive iterations to leee the recursion behaves in the limit of
infinite recursive nesting. That is exactly wha tnave done in (8.17), (8.18) and (8.20).

Specifically, regardingG, :(k,kr -nt+E+GK+ G GE)_1 J as the zef® order
solution for G, (G,, J,), with each iteration of5, (G,, J,) from then" to the (+1)" recursive
order we are effectively replacing all gauge fie(dsat then™ order with current densitied, up
to the 2(n+1Y order, and at the same time injecting a new selaafje fieldsG, at the a+1)"

order. But at any time we can stop introducing ngawuge fields by simply setting the
perturbation to zero. So at each order, wheneeedecide to do so, we may effectively strip out
the gauge fields and replace them with currentidleas This means that in the limit —» c we
may effectively replace all gauge fields with catrdensities by stopping perturbationmat o .

Very similarly, when we take a path intengI:J'DGexpiS( G =c¢ expiM J,
becauseG is the integration variable, we effectively stgff the G and obtain a quantum
amplitudeW(J) expressed in terms of the current denditySo the infinite recursion has the

same effect as a path integral in terms of tradinfpr J. But as pointed out at the start of
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section 6, the mathematical exercise of analyfcediiculating a path integral revolves around
clever extrapolations of the Gaussian integﬁdkexp(—% AX - J>) =(-27/ A° ex;( K} /24

into Z:IDGexpiS( G =cexpiW( J. The calculation impediment we run into is that
Idxexp(—% AX - J>) is integrable because it is quadratic, but becoquét® intractable once

this integral involves a polynomial of® and higher order, which is exactly what happens in
Yang-Mills theory and indeed, any non-linear intti@n theory. Why is this intractable?
Because nobody knows how to calculate such integeedctly and analytically!

The usual and best workaround is to employ what[Z&kin Appendix A refers to as the
“central identity of quantum field theory”:

[ Dgexp(~4 oK -V () + I) =€ exi{-V(& 5)) exps JTK*0J). (8.25)

This method uses the functional variaticmﬂ - 0/dJ* to remove all terms which are

polynomial (greater than second order) in the galigld G,, and replace them with terms

'

0/4J* that contain only the current density. This akhowp(v(é' IJJ)) to be removed from
inside the integral, so that the only terms leftide the integral are quadratic @),. Then, the

integral is performed to obtaiexp(%J EK'IDJ), and the operation oéxp(—V(a'/JJ)) on

exp(%J EK'1DJ) is thereafter used to extract order-by-order temthe quantum amplitude to
reveal various Green’s and Wick’s coefficientshistamplitude.

The very important point is that an infinitely+iégive application of the recursive kernel
G, :(k,kr -m+E+GK+ G GE)_1 Jof (8.1) serves a purpose totally analogous to
G,-0d/dJ. But G, - (776‘1+7z;°_1\],k’+7c0_1\],77;0_1\]’)'1‘], from (8.20) is now the
replacement we use in lieu &, -~ 5/5J%. In the limit of infinite recursion, this will alw us

in section 11 to do an analytically-exact calcaiatof the path integral by turning, into J,

on an order-by-order basis such that in the lirhin@nite nesting, all of the gauge fields have
been replaced by current densities which then pmsgroblem to carrying out a Gaussian

integration which is simply of quadratic forfmlxexp(—% AX - J>) in the gauge fields.

Now, let us return to the Yang-Mills monopolﬁ;F = —im.dGG#- 0 of (3.3) and (5.9),
and particularly the identity’ = d[G, G] = dGG of (2.11) upon which this is based. It will be

our goal to use one or more of the inver@e(s]) that we have developed in sections 6 through 8
to replace eacts in this monopole with its source currehthen to replace eachwith fermions
via J¥ =yy*y, then to apply exclusion to the fermions, and thenshow that this faux
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magnetic chargeP' = d[G, G] = dGG - at least in the classical theory — has the egaote
chromodynamic symmetries as a baryon.

9. Populating the Composite Yang-Mills Magnetic Moopoles with
Chromodynamically-Colored Fermions

Let us start the present discussion with the ilent] G, G| = dGG uncovered in (2.11),

which we combine with (3.3) and then expand inteste component expressions (see also (2.8)
and (2.9)) while also including the faux magnetiarge P’ = -idGG = -id[ G, J, as such:

fpr =[P =-i[lface=-ifdc d=-ij[c g

=fp4F,d¢ Od¥ =[[[4 B, df O d4 0 dk

=-i[[[4(8,,6,G, +8,,6,G, +9, G, G) dX 0 d& O ok . (9.1)
=-i[[[4(0,[G,.G,]+3,[G,.G]+0,[ GG ]) d¥ O d O dk
=-i{p4[G,.G, Jd¥' Ddx #0

Let us now further develop (9.1) using the inversssewed in sections 6 and 7.

For amasslesgauge boson in non-abelian gauge theory, we foladthe relationship

r -1
G,=-(D,D) y,
(5.15) with D°D" and D,D" given by (5.16) and (5.17), in the circumstancessgtthe current

density is conserved according Dpl” =0 as found in (5.20), because this continuity

contextually fixes the gauge to the Feynman / omitly gaugeé =1, see (7.22) and (7.23). We
further found in (7.24) that by setting the mass- 0 in (6.15) for amassivegauge boson, we

arrive at exactly the same soluti@) = —( DTDT)_l J,. And, we found that in (7.25), in order to

include the +ig prescription in the non-Abelian theory, we needn@y migrate
D,D" = D,D" —ie. So as shown in (6.27), the non-abelian soluilora massive gauge boson

is theuniquesolution to the field equation-J” :(g”" D.D - D"D”) G, of

is G, = (nrn’ -m+ ig)_1 J,, while as shown in (6.28), the corresponding alpetiolution for a

-1

massive gauge boson 5, :(k,kr - mt E‘) J,. So again, we are reminded that the non-

abelian solution is identical in form to the abeli@lation for a massive gauge boson, but for the
replacement of the canonicklk” with the kinetic7z777 momentum scalar, which replacement

can be made in the massive theory becay& =0 is a requirement, and which replacement

maybe made in the massless theory if one chodg85 =0 although one does not have to. So
the massive solution is more unique in this waytthee massless solution.
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Now we wish to replace eadd, in (9.1) with its unique continuity solution, i.evith
the gauge contextually fixed tg =1 because of requiring continuity, eithérJ’ =0 for
abelian theory, or D,J° =0 for non-abelian theory, and to have the resultabeuniquely-
determined as possible. Based on the developmesgctions 6 and 7, we have four choices of
solution: a) the massive non-abelian solut'@p:(—v+ k K—nf+ E)_l J, of (6.27); b) the

massive abelian solutioG, = (k,kr -nt+ is)_l J, of (6.28) which is simply solution (a) with

V =0; c) the massless non-abelian solut®p= (—V +Kk K+ is)_l J, of (7.26) in thek G" =0
gauge which is simply solution (a) witm=0; and d) the massless abelian solution
G, =(kKk+ ig)'l J, of (7.27) which is simply solution (b) witm=0 or solution (c) with

V =0. Because one can follow Coleman-Zee as showadtiosis 6 and 7 to include a massive
boson solutionm# 0 and then arrive at the massless solution simplysétying m=0, and
because the massless solution is uniquely forceled =1 gauge to preserve continuity and

thus we arrive at the exact same point whethertare with a massive or a massless solution, it
makes more sense to first include the mass0. This is a more general approach, and as we
have seen, this mass can always be zeroed out datdre appropriate time, whereby the

requirement for continuity will contextually fix ¢hgauge into the Feynman / continuity gauge

é=1.

But there is also another more specific reasonstarting with m#0 beyond its
generality, and that has specifically to do witle tiniquenesf the massive solutions. Even

though the continuity relationshigs,J° =0 andd_,J? =0 do zero out the terms containing the
gauge numbe¥ from the massless bosons and contextually fixgdnege toé =1, see (7.22)
and (7.23), the conditiolk, G" =0 is required for a massive boson but is simply a covariant
choice of gauge condition for a massless gaugerboSm if we start with massive solution (a)
whichisG, = (—V+ k K= nf+ r)_l J,, we know that the gauge conditiénG" =0 mustbe in
place because that is a requirement to ensurencitytifor the massive solution, and that the
perturbationV appears in simple form in this solution precidedgausek,G" =0, see (6.6) and
(6.7), and (6.24). On the other hand, if we staith massless solution (c) which is

G, :(—V+ k K + is)_l J,, we know even though the gauge number is contixtéized to
¢ =1 by continuity, again, (7.22) and (7.23), thaG" =0 is merely achoiceof gauge, and that

the manner in which the perturbati¥rappears inG, = (—V +k K+ is)_1 J, is itself dependent

upon this choice ok G" =0 gauge. If we choos& G #0, thenG, = (—V+ kK + is)_l J,
will have to include thik G" # 0, and so its very form will change. So solutia) i§ uniquely

determined in all respects up to the covariant gaumpndition D,D'8=0 ak.a.
9,0"6~id,[G",8]=0 developed after (6.5), while solution (c) is comtmlly fixed to theé =1
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gauge by continuity buD,G" =0,G" remains a free scalar object whichnist required to be

zeroand so renders the massless solutions weakerless-unique than the massive solutions.
. . . . . \1 . .

Again, this solution will only beG, :(—V+ k K + |£) J, if we choosek, G" =0 and will

change in formin the event we chooselaG’ # 0 whereby we will explicitly have to include a

k,G" term.

So to preserve generality and maximize uniquenessshall now use solution (a),
namely Gy:(—v+k[k’— n + E)_l J, of (6.27) to replace each occurrence Gf, with

2
(—V +k K - nf+ is)_l J, in (9.1). This has eequiredgauge relatiork, G" =0, and a selected
gauge conditionD,D"8 =0 which does not change the form of the solutiorthie event one
choosesD,D"8 # 0, see (6.5) and thereafter. As noted, this beccsoksion (b) if we seV=0,
this becomes solution (c) if we set=0 and choosek,G" =0 as a gauge conditigrand it
becomes solution (d) if we s&=0 andm=0 and again choos& G =0. Thus, inserting

G,=(-vV+kK-ni+ &) J into(9.1) we obtain:

fpr=(lfP =-iffface=-{[Jda d=-ip[c g
=fp4F, ¢ OdX =[[[+ B, dX 0 dk O dk

a[g((—V+k,k’— nf+ ) Jﬂ])(—v+ kK- i+ d)" )

=-i[[[4 +a“,((—v +kk -+ i) %)(—v+ kK- i+ 4)" J |dx Dd¥ O d

+a[v((—V+k,k’— nf+ )" JU])(—V+ kK- rh+ d)" )

0

o u

[(—V+k,kf— nf+ k)" 3. (-V+ kk- B+ &) D]}
=-i[[[3 +aﬂ[(—v+krkf—nf+ £)" 1,(-v+ kK- m+ &) g} dkO0 dkO dx

+9, [(-v +kK -nf+E)" 3,(-Vv+ k k- rh+ &) ﬂ 9.2)

:—iﬁ)%[(—VH@k’— nt + is)_l J.(-V+ kK- i+ ei)_l g} kO dx 0

This is the complete expression for tetflux <ﬁ>F of the non-abelian magnetic field over a

closedtwo-dimensional surface, and as we just learneskettion 8, it is highly nonlinear, and
indeed, contains an infinite recursion @f (G,, J,) which is ultimately made int@, (J,) by
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recursing to infinity then settingy =0 as shown in (8.20). Indeed, we could also have
employedG, =7z, J, in from (8.20) in (9.1) to alternatively and ecaiiently obtain:

§pF((0)), =[[]P'((9)), ==if[]dec((0) md[ee] =-ifp[&.4((9

=¢p4F,, ((0), d DdxX =m§ >, ((0). d€ O d& O d

=—im%a ,3,70,3, +0,,7, 3,7, 3, +8,7, 3y 7, J,) dX O d& O dk (9.3)
—|m'3.( m,d,.m3,]+0,[m 3, 3]+, m, 3,71, ])dx"DdX’Dd%

=—|<J[:_,SE anﬂ,anv]dﬁDd“o

We will eventually return at the end of sectiontd@iscuss (9.3) above in more detail. But at
the moment, (9.2) is in a form that better fadiésmunderstanding the connection betwé&en
and a baryon density, because we can\ket0 at any ordem of recursion we choose and

thereby obtair(ﬂ) F

Before trying to tackle the highly-nonlinear (9.Xee the section 8 discussion of
recursion that is inherent in the above because?) (kontains the perturbation

V=kG +GK+ GG of (6.7) throughout, let us now do what is comnyotibne in many
other situations in particle physics: consider thero-perturbation limit by setting/=0
throughout (9.2) right away. That is, we obtair arxplore(ﬂ)F ((O))O . This will of course

remove the non-linear physics occurring in (9.2)t i will readily reveal why these faux
magnetic monopoles have the symmetries that onecexgo see in a baryon. Moreover,

surprisingly enough, when we uééF ((O))0 to calculate the energies associated with the flux

equationm' =4 :—ic_ﬁS[G,G] after some development of the baryon into protms neutrons,

we find a surprising, very tight concurrence witle tbinding energies that are experimentally-
observed in nuclear physics, which suggests thatnibclear binding energies are in fact
expressive of the behaviors of (9.2) in this zeeoyrbation limit, i.e., in the linear / abelian

approximation (see [15] sections 6 through 12 dhaf §16]).

Once we seV=0 in each of the(—V+ k K = nf+ is)_1 in (9.2), these each become the

ordinary denominator l/(krkr—mz+ E) because as developed in (6.26), it is

=k, G st G K +( G G’)AB which is responsible for our having to write (9\&jth
inverses rather than denominators. Thus, seMn@ and rearranging somewhat, (9.2) for

@F ((O))O and P’((O))O becomes:

56



Jay R. Yablon

fpF (), =[[P((9), =~if]facc((9), =~ 1[[] d[ & ]((9), =~ fp &.d((9),

=¢p+F,. ((0),dx Odx =[[[4 B, ((0)), d¥ D dx O d&

=-i||lL a[”‘]f’l‘]v alﬂ‘]vl % a[v‘]o]‘L N X! X
e s R s N LT

/LA L) N G L AL ) B WPV
(kk -n?+ig)” (kK -nf+E) (kK- m+4)

ifea [Jed]
= I#Zl!(krk’—nf+i€)2dX#Dd% 20

Although the complete non-linear physics @%F #0 is described by (9.2) and alternatively

(9.3), the simplified (9.4) enables us to reveatair key symmetries foq':_‘SF #0 which will

support the view that the faux magnetic monopolesite P' is in fact a baryon density, which
symmetries carry over fully to the more-completighty-perturbed (9.2), (9.3). We shall refer
to (9.4) as the “ground state” monopole equatiogcabise the perturbations are zeroed out
immediately before any levels of recursion areiedrout.

Of particular interest, let us now focus on theiﬂjd [G,G]((O))0 term in (9.4), which
we restructure into:

@F((O))f@z. (O)dx”Dd%
=[[[P((9), = [[[4 P, ((0)), ¢ D ¥ O dx =~ [[] 4 G &((9), | 05

:—imé[ a”[J”'J”] + 0ul3: %] + %% 3,] Zde"DdX’Dd%

(kk -nf+ie) (kK-ni+é) (kk- ri+ &)

From this we extract the faux magnetic monopolesitgmaised to contravariant indexes:

pon ((0)), =i 20, o] | o3 T] (9.6)
° (kk-nt+i) (kK-ni+ &) (kk- ri+4)

Now we take the crucial step of developing theentrsources densitied” in terms of
the underlying fermion wavefunctiong which arise in Dirac theory. Specifically, in #ba

gauge theory, Dirac’s equation says t(ieyt"aﬂ —m)(// =0. For the adjoint spinay =¢'y° the
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field equation isiaﬂt,Zy“ +mtz=0. Adding yields g, (zzy"z//):o as is well known. And
because the conserved current is expressed by =0, we identify the current density with

J* =yy*y , where each Dirac wavefunctigh in a U(1) theory is of course a four-component
column vector.

In non-abelian gauge theory, for the compact stngduge group SU(N) (or for the
product group SU(N)xU(1) with a U(1) factor thatrsquired for magnetic monopoles to be

topological stability as will be reviewed in secti@0), the generalized wavefunctich=4Y ,,
A=1...N is an Nx4 column vector of 4-component Dirac wawetions ¢ . This non-abelian

wavefunction W may then subsist in any one Mfdistinct eigenstates. For example, for the
SU(3)x: group of chromodynamic strong interactions, theed¢h(3) eigenstates are generally
denoted (R)ed, (G)reen, (B)lue, and these distagenstates are used to enable a baryon
containing three quarks to satisfy the Fermi-DiPaasli Exclusion Principle. Explicitly defined,

using the SU(N) group generatos = A,,, i =1..N°—-1, the current density generalizes to
I = A4 = N, WA "W =Wy W, with Yang-Mills adjointi and fundamentah,B,C,D
indexes explicitty shown for illustration, and wkels already statedd =W, is an N-

component column vector of N fermion eigenstatés has been reviewed at length earlier
staring at (5.20), this current density satisfieg tcontinuity relationshipD,J” =0. For

SU(N)xU(1), we may for simplicity usel,; with i =0..N*-1, where we denote the U(1)
generator as Ay, with the “0” index. If we suppress thé,B,C,D indexes, then
J= I = WA W = Py

So now, into (9.6), we first substitutd” =A'J*, then J* =WA')#*W  and then use
[A‘,Ai](mﬁiy"w)(mﬁjva) :[Gy"wﬁy“w] (just a variant oi[ﬁi,Aj]A”Bi” :[A(’, B/] )
in (9.6) to “populate” the faux Yang-Mills magnetimonopole with fermions. The result is:
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| 6”([/1i,/lj]J‘”Jj”)+6”([/1i ,Ai]J“J“)+a“([/1 A 975
(kk-nf+i)  (kK-rm+&)  (kk- e+ &)

7 (). =-

9° ([/v AT (P4 ) (wa va))
(kK - nf+ i)
. o (pi,m](ww)(ww)) o
(kK = nf+ i) |
K ([/1‘ A (P4 yew) (wa y"LIJ))
(kK - nf+ i)’
. 07| Wyrw, Wy W] . o[ Wyw, Wy i Eaiiad
(kk-mt+ie)  (kK-m+ &) (kK- rh+ d)’

We could just as readily have just insert&ti= Wy*W into (9.6) to arrive directly at the bottom
line of (9.7), but it is helpful to see the intemiie calculations which explicitly contain the

group generators. Given th#F :jﬂ P', and referring back to the discussion at the &nd o
section 3, we now see for the first time the marnnewhich <.|';]5F (G(J(z/j))) that is, the

manner in which theompositefaux magnetic monopol#F arising from the faux magnetic

sourceP’ = -idGG=-id[ G { does indeed contain fermion wavefunctioHs Now, we shall

show how these fermion wavefunction in fact possdk®f the key symmetries required to
gualify them as colored quarks, and h&#" possesses all of the key symmetries of a baryon.

The first thing we observe is th&t’”””((o))O contains three additive terms. And, as

discussed moments ago, for SU(N) or for SU(N)xU@ach W =W, is an N-component
column vector of 4-component Dirac wavefunctiags which may subsist in any one bf
distinct eigenstates. So if we regaFd"”V((O))0 as a composite system of more than one

fermion, then each fermion in this system must laeqa into a distinct eigenstate in order to
satisfy the Fermion Exclusion Principle. The thageditive terms in (9.7) advise us that there are

a total of three such fermion eigenstates whichstitute P"’”“((O))O, and so we label these
eigenstates among the three additive terms¥asd,,W.. With this we now rewrite (9.7),

including a restructurin@@y”w,my"w] = Y *wyprly of the commutators in the bottom line
below, as:
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P ((0)),
RS 1,Wyw]+aﬂ[w_yw2,w_yw} AT AN

- : 9.9)
(kr mZ+E) (k,l{—rﬁ+ .'E) (I;IE— M+ éi’)
07 (W W) 0t (W W W) o (Vv WA

= - + +
(kK = nt+ i)’ (kK- ni+ &) (kK- b+ &)

Because we must be able to place the fermionsanéoof three distinct eigenstates in
order to satisfy Exclusion for the composite grostate faux monopold®' ™ ((O))O we must

now chose a dimension-3 gauge group in order toreafthis exclusion. There are two apparent
choices. First is the simple group SU(3). Secsnithe product group SU(3)xU(1). But as we
shall see in the next section, there really is aothoice and we actually must choose
SU(3)xU(1). But to start simply, let @ssumehe simpler choice of SU(3) until contradicted,
and then see why we are later compelled by comtiadito amend this choice to SU(3)xU(1).
Choosing SU(3), we first label eigenstates. Beedhs labels are arbitrary, we use the names of

some colors, say, (R)ed, (G)reen, (B)lue. Thus)guthe SU(3) generatord' normalized to
Tr(/1i )2 =1 we define:

7/ 0 0
le‘/‘s:%;p:@: 0 ;Lpzz/‘s:_z%/gi)P:%: We ;Lp35)|8:_2#_3;/13:_51>: 0 |.(9.9)
0 0 Yy

Now, all of a sudden, in a very consequential stepsee how these'*" ((O))0 ground

state magnetic monopole densities contain thremides in one of three eigenstates R, G, B, and
how SU(3)(or really, SU(3)xU(1) as we shall see in the nexttion) emerges asraquired
gauge group in order to force exclusion upon thmiens that comprisd>'*” ((O))O In other
words, we have never had postulateSU(3) per sein order to force exclusion on the quarks

within experimentallyobserved baryons. Rath&re have been forced to introduce SU@) at
least a dimension-3 gauge group) in order to enpuwper Exclusion for the fermions of the

theoreticallymotivated P'*" which first emerged back in (3.3) when we founaittﬁ)F £0in
a non-abelian gauge theory, and when we foundhleatinderlying magnetic charge density was
the compositeP’ = -idGG=—id[ G d which is faux-assembled from the gauge figkdsAt the

same time, because we agguiredto select a dimension-3 gauge group which for ro&U(3),

and because we have labelled the eigenstates metmames of colors, there are now eight
gauge boson§', in G, =A'G , associated with (9.8), and each of these wilbibeolored, just

as are the gluons of chromodynamic theory. Thiamaghat we may be able to obviate the need
for a separate postulation of classical or quantimomodynamics, such thehromodynamics
no longer a fundamental theory, but rather is adlary, secondary theorthat emerges in the
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process of enforcing fermion Exclusion upon themniens contained in the non-abelian faux
magnetic monopole density (9.8).

Now we focus on the terms of the for¥ which appear in the bottom line of (9.8).
These terms have a column vector to the left obva vector, and using (9.9), these may be
explicitly written in 3x3 matrix form as:

Y 0 O 0 0 0 00 O
YW= 0 0 0|; W,¥,=|0 s O|; Y,¥.=| 0 0O 0 | (9.10)
0O 0O 0O O 0 0 0 Yy,
We may then use this to rewrite (9.8) in expliciB3natrix form:
07 (P w W) . .
(kK = nf+ i)
o (W yey
P ((0)), = - 0 L.rvcw 2 ) 0 (©.11)
(k Kk =t + )
. . 0" (Wl YalerWs)
(kK = nt+i)

Next, we focus in oMy, =Ugly, Wslfs =UsUs and ¢, =uzu, which involve
ordinary, four-component Dirac wavefunctiogrs and spinorsl, and we focus especially on the
uu which contain a column spinor to the left of a repinor. Often, the Dirac spin sum
relationship is normalized tdN* =E+m and so is written asZ,, uu=(p+ m. But if we

wish to be more general and defer a decision omalkzation, we may employ in (9.11) the spin
sumprior to normalization which is (see, e.g., [14] exercise 5.9):

2

ZSpinsua = N (p+ @ ' (912)

_E+m

So, if we now take the sum over all spikg, P"*" ((O))0 of the faux monopole (9.11), and if

we apply (9.12) in the fornZ,,, U, u. = N°(p.+ m)/( E+ m) to each coloC =R G, B of
fermion, we may use (9.12) to rewrite (9.11), fog tnhoment without-ie , as:
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2P ((0)), =
N2 07 (W (pe+my) W) . 0
Eq+ Mg (kK - nt) .(9.13)
; . NE 0 (W (ps +my) W) .
Es+mg (kK -nf)
. . NE 0 (Wl (e my) W)

B +m, (kK -nf)

Next we next turn our attention to the expressi()p§+ %)/( k K- rﬁ) which appear
in each diagonal entry above. We simultaneouske taote of the fact that the fermion
propagatori (p - m)_1 sans+i¢ is related by a constant faciao:

ptm _ p+ m

pp -t (p+ m(/p- n)l:(p_m) ' O-19

So we are motivated to see if there is a basis ugvch we may set thép, + rn:)/( kK- rﬁ)

terms in (9.13) to(p—m)_l and thereby introduce the propagator for eachhe$d¢ fermions
directly into (9.13). For this, we return to thisalssion of sections 6 and 7 during which we
developed inverse solutions to the electric chagation—J” :(g”" D.D - D"D”) G, in both

massive and massless form, and where we also redi¢le degrees of freedom of various
solutions and related questions of uniqueness.

Each term in equation (9.13) contaihE(k,kT - mz)z, that isl/(k,kr - nf) times itself.

As noted in the mass shell discussion prior to45.%e are usingp’ and k? respectively to
denote fermion and boson momentum vectors. And;ooirse, eacii/(k,kr— rrf) entered
(9.13) back at (9.2) when we inserted the massivesol inverse solution
G, :(—V+ k K- nf+ r)‘l J, of (6.27) into (9.1). As reviewed in sections Bda7, this
solution, in view of the continuity requiremeri®,J” =0 of (5.20) and the consequently-
mandated covariant gauge,G” =0 of (6.5) isuniqueup to the gauge conditio®,D"8 =0
a.k.a.0,0'6-i0, [G“,H]:O. And this solution is unchanged in form under an-abelian
gauge transformation because nowhere does the sicphyparamete® appear in any of the
covariant physics equations. So in trying to maIpt( pe + m:)/( k K- rﬁ) which appears in
(9.13) with (p+ m)/( gp- rﬁ) in the fermion propagator-related (9.14), we deat the
numerators match up perfectly but there is a mismat the denominators. Particularly, each
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k k" —nt in (9.13) is the propagator denominator for a rivesgauge boson which h#sree
degrees of freedom, while@’ p, - nf in (9.14) is the propagator denominator for a nvass
fermion which hagour degrees of freedom. So, how do we match thesangoyhat impact, if
any, might this have on the uniqueness of the igoluG, :(—V+ k K- nf+ r)‘l J, upon
which (9.13) is based?

Because each of the boson propagator denomin]at()kﬁkr - rrf) in (9.13) represents a

massive boson with three degrees of freedom, t’malé(kr K" — rr12)2 which is a product of two

boson propagator denominators thus representsegjreds of freedom. So we now take each
l/(kaT - nf)( k K- rﬁ) and shift one degree of freedom from the firls@k,kr - nf) into the

secondl/(k,kr - nf). That is, keeping in mind that’ and k’ respectively denote fermion and

boson momentum vectors and that the former hasdegrees of freedom (particle / antiparticle
in each of spin up and spin down states) and ttierlavhen massive has three degrees of

freedom (two transverse polarizations, one longitai), we rewritel/(kr K" — nf)2 as:

1 _ 1 _ 1 ©.15)

(kk = nf)" (kK =nf)(kk-ni) kk( pp- )

What we have effectively done is to take the 6=3+@ees of freedom represented in the first
term, and redistribute them into 6=2+4 degrees of freedpresented in the final term. In the
final term, therefore, we have turned one originally-nva@ssgauge boson propagator

denominatori/(kaT - mz) into a massless gauge boson propagator denomihéitck”. But at
the same time, we have turned the other originallysmmaggauge boson propagator denominator
1/(krkr— mz) into a massive fermion propagator denominaltcbfpr P - mz). This is very

analogous to the Goldstone mechanism used to gags mo massless gauge bosons by shifting a
degree of freedom from a scalar field into a boson fieldre, we are simply shifting a degree of
freedom from a boson field into a fermion field.

Now we saw of course in sections 6 and 7 that thdisn for a massless gauge boson
was less-unique than that for a massive boson, predisebuse the massless gauge boson has
one less degree of freedom. But we also saw howexbmatters, and how the context of a

conserved currenD,J” =0 contextually fixed the massless boson into the Feyn/ continuity
gaugeé =1. The onlycontextualloss of uniqueness in the massless solution, thexefas that
D,G" =0 was no longer a mandatory constraint but insteas welegated to a mere choice of
gauge, which meant that,G” =0 was also demoted from a requirement of continuity to an
optional gauge condition. And all of the non-unigess of the massless solution, even before
the application of continuityD,J” =0 fixed the gauge number td =1, emanated from
removinga degree of freedom when going from a massive to alesasgauge boson. But in
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(9.15) we are natemovingany degrees of freedom as we did in going fronti@e® to section

7. We are merely shifting them around in the oNe@ntext of (9.13) according to the recipe of
(9.15). So after we apply (9.15) to (9.13), wel wdt in any way alter the uniqueness of (9.13).
It will remain just as uniquely-specified after 19), as before (9.15). Effectively, we
contextually dodge the additional non-uniqueness that emengegoing from the massive
solutions of section 6 to the massless solutionsecfion 7, bynovingrather tharremovinga
degree of freedom, in tledntextof (9.13).

So let us now do exactly what we just said. W& mse (9.15) in (9.13) to shift around
the six degrees of freedom in each diagonal elerinent a 3+3 to a 2+4 configuration, and at

the same time we label thp, and them in relation to the color of the fermion in eackhnte
Thus, without any loss of uniqueness, simply bytisig a degree of freedom, (9.13) becomes:

2P ((0), =

N2 aa(al}/”(pR+rr]R)yV]Lpl)

0 0

Ex+my kK (pe pd - m?) .(9.16)
_ N2 O (W (P +m) W)
=i 0 0
Ec+m kK (R, p" - m?)
0 0 N2 0 (Wl (ps +my) W)

E,+m, k,kr(pB, per—m,f)

Importantly, in the process of shifting degrees fededom, the remaining boson
propagator denominator in each term has becbfigk” which is the propagator forraassless
gauge boson. So now, the eight bi-colored gaugens of the required SU@Eproup have
become massless, at the same time the fermionsacguéred mass since they have four degrees
of freedom following application of (9.15). Becaute eight bi-colored gluons of QCD are also
massless, this means that the gauge bosons assowidh (9.16) have now have three very
important symmetries that match up with the gluoh®CD: 1) there are eight of them, 2) they
are bi-colored, and 3) they are massless. Yegusecof using a Goldstone-like method for what
is a variant of the contextual gauge shifting dés@d in section 7o uniqueness has been lost

Now we return to the normalization which we deddrback at (9.12). Often, as noted,
the chosen normalization iBl> =E+m. Let us instead, however, for each term in (9.16)
choose tdnclude thek k” massless boson term in the normalizatidrhat is, for each term in

(9.16) let us now normalize to:
N*=(E.+m.) kK. (9.17)

So, applying the normalization (9.17), and propagakpression (9.14) for each fermion color
C=R G B, we reduce (9.16) to:
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2™ ((0)), =
0" (Wi (P~ my) YW 0 0
- 0 o (Wa (po—m) W) 0

0 0 0" (Wb (pa—m) " W)

.(9.18)

Next we look closely at one of the terms abovg, #w termW )1 (p, - m.)™" )W, on
the upper left. Making explicit use of (9.9), thesm, is:

Yr

W (=) W= (e O O (pemm) V| O (=g (o m) Py - (9.19)
0

A similar result obtains for the other two termsyieh now allows us to rewrite (9.18) as:

> ane? ™ ((0)), =
0 (@l (Pe=me) " 0 0
- 0 0 (¢l (Ps=me)™ Ve 0
0 0 0" (W (ps—my) " )

.(9.20)

Any time we wish to calculate with the propagatmisi (p - m)_1 and also includerie, we set
these toi (p—m) ™ =i( p+ m)/( R - M+ Jf).

Finally, in another important step that will lead 1o topological stability, we take the
trace of the above. This yields the fully-develdpspin-summed trace of the faux monopole

density P’ = -idGG=~id[ G { in the zero-recursion, zero-perturbation Iirﬁ'(i@))o, namely:

TP ™ ((0)),

=i (07 (@ (=) P ) +3* (0 " (P mY " vy Y+ (04 (P MY w | ©.21)

We shall now show how this has the identical symiee®s a baryon, how this leads directly to
meson mediators of interactions between monopbt®s,this requires us to choose SU(3)xU(1)
rather than SU(3) as our dimension-3 gauge groaw, this leads to topological stability, and
how the above becomes flavored into protons anttoresi
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10. Why the Composite Faux Magnetic Monopoles of Ya-Mills Gauge
Theory have all of the Required Chromodynamic Symmeies of Baryons, and
how these are Flavored into being Topologically-Stde Protons and Neutrons

In the trace form of (9.21), we see clearly tﬁﬁﬁspmsP"’”V((O))o is a third rank

antisymmetric tensor in spacetime which will reeessgn under the interchange of any two
adjacent indexes.  From here, we simplify by jusiting =, -~ 2. Let us denote this

fundamental antisymmetry, which is an inherentdieabf any magnetic monopole in spacetime,
using the wedge-product notatienlx Llv . If we now associate each color wavefunction with

the spacetime index in the relatéd operator in (9.21), ie.g~R, u~G andv~B, and
keeping in mind thatTrZP""‘“((O))O is antisymmetric in all spacetime indexes, we mag

ocOuOv~ROGOB=H G B+ ¢ B R+ B R [ to express this antisymmetryBut this is
the exact colorless wavefunction that is expected daryon. Indeed,the antisymmetric

character of the spacetime indexes in a magneticapole should have been a good tipoff that
magnetic monopoles would naturally make good bay®o, we now may assert that the non-

abelian composite faux monopole denshgP *¥ ((0))O in the ground state (9.21) has the exact
same antisymmetric colorless chromodynamic symnastrgoes a baryon!

Now, let us lower the indexes in (9.21) and wititis as the differential form relation:

TrzP'((0)), =Tr4 =P, ((0)), d¥ O d¥ O dk
0, ("”_Rylu (Pe- mR)_l Yoy R)

=—4i +0ﬂ(¢7c,y[v (Ps—ms)” yg]we) ¥ 0 d¥ 0 d. (10.1)
+0, (Wekio (Pe=my) " Vs

l'U_Ry[#(pR_ mR)_l J/V]lﬂR
:_%iaa +¢TGy[/j(pG_mG)_1yV]¢IG dx’ Odx' O dX

+¢TBy[,u ( pB - rnB)_l yv]l/lB

In the bottom expression, @, with the sameo index has been factored out of the entire

expression. So now we can apply Gauss’ / Stolessrd¢im to (10.1), and can use the forms in the
top line of (9.1) to help us out.

Specifically, by expanding some of the forms in tibye line of (9.1), we may write:
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fhr=[[[r=dp2F, dx”Dd%:m% P, df 0 dxO dx

=-i[[[d[c,6]=-i[[[4(2,[ G, G]+0,[G.G]+d,[ G.G]) dkO dkD dx (10.2)
=-ifp[G,G]=~ifp4] G#,GV]dx"Dd%

Therefore, taking the zero perturbation lidit= 0, summing all spins, taking the trace, and then
injecting in the final expression from (10.1), waynwrite this as:

fprzF((0 :@ATrZF ((9)),ax Dax = [[[ Ti=p((9), = [[[4 T= B, ((9), A2 O dkD dx
=-i[[r=d[6.6]((0 'mlTrZ( 6,.6+,16.61+,[ 6. G)((9), k0 o0 ox 10.3
=-ifpTrz[G,G]((0 :—|<]’:_|81Trz 1((9)), dx O dx (10.3)

=[] 40, (e (pe-me)” Vv]¢’R+¢’GV[/z(PG‘ )™ o (P m) v | RO KD
=-idp 2 (@t (P vt 0 (P MY Yt 0 g, (P MY vy | KDl

From this we extract several integrands with arralenultiplication byi:

TrziF,,, ((0)), = 1r2[G,.6,]((9)),

o : “ B - B . (10.4)
=Webiy (Pr= M) Vol W 1, (P MY ¥y 0 ¥, (1P M) vy

This includes defining an “effectiveTriF , ((O))0 This is because while (1.5) tells us that
F, =9,G,~i[G,.G | so thatTrz[G,,G, |=TrZiF, - TiZi,G,, as found in (3.5) the total

(=]
net flux <ﬁ>F is invariant under the transformatid#t” - F*'=F* -9“G". This means that
the gauge field isot observablevith respect to net flux across closed surfaceh®imonopole
precisely because of the abelian subset expresﬁﬁcﬂG:O which is responsible for there
being no net flux of magnetic fields all across a closed surface in abelian gauge theBoy.
while cﬂ.)TrZF((O))O :—im.Ter[G,G]((O))0 in the integral formation of (10.3) by virtue of
the symmetry principle (3.5), when the integrandsseparately extracted as in (10.4), the actual

relationship i, =9,,G,, - [G .G, ] But theeffectiverelationship in terms of what actually

becomeshet observable flux across closed surfaced , = -l [Gy,GV]. That is the basis for
the definition of in (10.4).

eff uv

By inspection,TrZ[Gﬂ,G‘,]((O))0 in (10.4) has the color wavefunctid®RR + GG + BB
of a meson. But look at the context in which tmeson wavefunction has appeared in (10.3):
Using selected terms from (10.3), especiq'qurZF ((O))O , we see that:
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fpreeF ((0)), =-igp 1r=[G.6]((0)), = -ifp 2 T=[6, .G, ]((9)), dx O ¥

K (105)
:_i#%(‘/lRV[p pR_mR) yv]wR+wcy[,u(pG_ mc) Vo st d{y(/ps_ ma o ; dx 0 dx

So we see that the Yang-Mills magnetic fields whigt-flow across closed surfaces of the
composite, faux magnetic monopole densky= —idGG:—id[G G] of non-abelian gauge

theory in the form otﬂ) Tr>F ((O))0 , have theRR + GG + BB color symmetry of mesons!

This is a very important findingBack at (3.3) we identified a puzzle: We fouhdLttin
non-abelian Yang-Mills gauge theory there is a mere net flow of magnetic fields across

closed surfacesﬂ) F #0, yet at the same time the magnetic charge deositpletely vanished

P =DF = DDG =0 just like in abelian gauge theory. To recondies,twe determined that the
magnetic charge density in non-abelian gauge thisanpt the elementari? = DF = DDG =0,
but rather is a compositaux magnetic charge densitp’ :—id[G, G] =-idGG constructed

from gauge fields, and particularly, that the né&ixfof magnetic field is given by

{pF =-ifp[c.G]#0in (3.3).

Ever since then, we have known that non-abeliamggdheory gives rise to a non-zero
<ﬁ>F #0, but beyond a few vague hints pointing in the pmesdirection of baryons and

confinement, it has not been known what the physic¢his Cﬂ)F # 0 might be. Now, we see in

(10.5) that{p TrzF (0) =~ip Trz[G,G](0) ~RR+ GG+ BE. In other words, the composite
faux magnetic fields which net flow across closeuffacces in non-abelian gauge theory are
simply colorless mesons with the symmetrﬁR+f§G+_BE wavefunction.  Colorless
RR+ GG+ BE mesons — which, once flavored, include such thiagghe pions that mediate
nuclear interactions — are simply tkﬁF # 0 faux magnetic monopole fields of Yang-Mills

:TrZ[Gy,GV] objects in (10.4) — which are the

only objects which flow in and out of the monopolesiust be the mediators of interactions
between the monopoles So if those monopoles are baryons as suggestedhéir

R[G B+ d B R+ B R ¢ wavefunctions, and if these baryons can be tuimtedprotons and
=Trz[G,.G, | fields
are also the mediators of the nuclear interactiéimd this also means that we should look to
TrZiF,q,, =TrZ|G,,G, [when studying anything that might pass in and dug groton or

gauge theory. That means that th@sgiF

eff uv

neutrons as well shall show how to do momentatilgn theseTrZiF,; ,

eff uv
neutron through a close(ﬁ> surface including energies released during nuclesion and
fission which of course are intimately related talear binding energies.

Related to this, to ensure Exclusion for the femaio (9.8), we were forced to introduce
a dimension-3 gauge group which we assumed to {8)SUAs pointed out after (9.16), after
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shifting the degrees of freedom using a Goldstdree+hechanism, this yielded eight associated
gauge fields, which are bi-colored and massless,like the strong interaction gluons. As had
been earlier shown at (3.5), the abelian propedigke differential geometry vidd =0 which

is responsible in electrodynamics for the abserfcenagnetic monopoles entirely, prevents
individual gauge fields — now these eight bi-cotbreassless gauge fields — from net flowing
across any closed surface of the faux magnetic pueao P° because of

c.[:j)dG:”_[ R, G dX dX dk=0. So in this way, these eight bi-colored massgagye fields

appeared to beonfined What we now see more explicitly and deeply i0.%) is that the only
thing which does net flow across these closed surfaces, are mesbich possess a color

wavefunction RR+GG + BB. And finally we saw at the start of this sectithhat the faux
magnetic monopoles themselves possess the totalgymmetric color wavefunction of a

baryon, namely, R[G, Bl+ B R+ B R ¢ While one may think of this as color

“‘confinement,” what it really says is that is tliae non-abelian faux magnetic monopoks
and the mesonEG,G] which net flow across closed surfaces of theseapoles, respectively,

are antisymmetrically and symmetricadlglor neutral and that nothing is permitted to net-flow

across a closed monopole surfacdessit has aRR + GG + BB neutral color configuration. So
individual gauge fields, because they are bi-cal@ed not color neutral, are confined.

With all of this, we see multiple symmetries whiahe highly reminiscent of hadron
physics: We are forced to introduce three fernamenstates which can be arbitrarily named as
three “colors” just like the quark fields which misform non-trivially under SU(3) in the
chromodynamic theory of strong interactions. Wisatrbitrary are the namewhat is not
arbitrary is that we require three such names$his simultaneously produces eight bi-colored
gauge fields, also transforming non-trivially undg@d(3), just as is the case for the strong
interaction gluons, and sterivesthe chromodynamic requirement for a theory witle¢hcolors
of fermion and eight bi-colors of gluon, and shomisy baryons contain three quarks. These
gluons after using the Goldstone-like mechanisn@ii6) must become massless just like the
strong interaction gluons. The faux magnetic matep (9.21) have the antisymmetric, color-
neutral symmetry of a baryon, and so are SU(3)riamé No gauge fields are allowed to net
flow across any closed surface of this monopolejcivimeans that the gauge fields are
“confined” within the closed monopole surface, jlike individual gluons. Yet thers a net
flux of a non-abelian magnetic field across thesetb monopole surfaces, as we found all the
way back in section 3. Now, we see that thesdloeing magnetic fields have the symmetric,
color-neutral symmetry of a meson, which means thay too are SU(3)-invariant, and that
interactions between the faux monopoles will talee@ via colorless meson exchange, exactly
as occurs in strong hadronic interactions betwespdns.

Or, as Jaffe and Witten make clear at page 3 qf“ffiJark confinement” is evidenced
when:

“even though the theory is described in terms eh@ntary fields, such as the

quark fields, that transform non-trivially under @) the physical particle
states—such as the proton, neutron, and pion—a(8)Stariant.”
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This is exactly what transpires if one regardsam@posite faux magnetic monopole of (9.21) as
a zero-perturbation, ground state baryon denstdyen all of these symmetries, from here we

shall regard the monoporErZP’((O))0 as a ground state baryon. And this means tha}, @nd
specifically Tr=P'((0))_, which containszz, = (7, + 7z, 3,k +7,_,37,,J )™ which can be

expanded using (8.18) to reveal an exceptionallyHhwear system with perturbations up to
infinite order in current densityand gauge field momentuknis thephysicalbaryonwith all of
its non-linear quark and gluon field behaviors.

Proceeding forward, we now expand the differenttams relationship for the faux
magnetic charge densit?’:—id[G, G] (:—idGG) uncovered after (3.3) into tensor form,

expandG, =A'G ,,
group relation [/P A ] =if * 1. This yields:

and then, having extracted the group generafmally apply the SU(3)

P =-i(0,[,,6]+0,[6.G]+a,[G. G )
A 0.(6,6.)+0,(6..6, )0, (6..6,)) @0
= t%14(0,(G,6',)+0,(G,.G,)+9,(¢,. 6,))

Let us nowassumeas we have since after (9.9) that our gauge greupe simplesulgroup
SU(3) with the eight traceless generatot§, k =1...8 often referred to as the Gell-Mann
matrices. If we now take the trace of the aboweergthat the eight* of the sulgroup SU(3)
are all tracelessTrA“ =0, (10.6) tells us thaTrP,,, =0.

But (9.21) has a non-zero trace, and so it is hvantle understanding how it is that even

when we assume an SU(3) subgroup wittd* =0, we can still end up with a non-zero trace
equation (9.21). The key is to closely examin&)(Owhich is why we chose to display the
intermediate terms even though we could have gmeetly from (9.6) to the bottom line (9.7)

using J# :Gy"LIJ without showing generators or internal symmetgexes. The key is that
(9.6) contains commutatorEJ”,J”], and so contains a very specific type of secorlior
expression for the current3”. Although the generators are traceless, whengamgrator is
squared and then traced, the result in the cusjomamalization is the non-zer®r(4')" =4.

In the intermediate terms (9.7), we see multiplmsu'A' of a generator with itself. When all
of the anti-symmetries in these intermediate temnesaccounted for, the result is the bottom line
of (9.7) which, by the time it is worked into (9)21eflects in a deeper way of the general result

N2 .
thatTr(A') =3 is not zero.

Nonetheless, (10.6) appears to contradict this zesn-trace result obtained in (9.21)
wherein TrEP'* (0) # 0. This is another puzzle. But think about thisrenolosely: In (9.9)
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we were compelled to introduce a dimension-3 gayrgap to enforce exclusion for each of the

fermion wavefunctions in (9.8). But all we reakyew is that we needed three mutually-

exclusive eigenstates and therefore required ardime-3 gauge group. Although we could

have just as readily chosen SU(3)xU(1),assumedhat the gauge group could be SU(3) unless
and until contradicted. But now this assumptisrcontradicted. Specifically, based on the
development up to (9.8), the choice of a gauge mrappeared to be non-unique. Any

dimension-3 group would do. But by the time wecheal (9.21), it became clear that we had a
TrR., #£0, i.e., thatP, ~must have a non-vanishing trace. If one triesviite (9.21) in the

ouv ouv
same way as (10.6) to extract out an ovefdflA*, it cannot be done, other than by backtracking

to (9.7). The development from (9.7) (where tHi# sould be done) to (9.21) removed the
ability to do so, and in particular, that startedhappen once we used (9.12) in (9.13) and
summed spins to remove two wavefunctions usindeimion spin sum.

Now, (10.6) informs us that if the gauge group &3 then the trace will vanish. So
now, what appeared at (9.9) to be a non-uniquecehof SU(3) or SU(3)xU(1) is forced by

(9.21) in view of (10.6) to be aniquechoice of SU(3)xU(1), witM°® used to denote the new
U(1) generator, which now also adds one more degfdeeedom to the (9.21) system. Of
course, we will now need to determine what thisitaaithl U(1) generator represents, and as we
shall see, it represents the baryon numBer1/3 for each of the three colored fermions
appearing in (9.21) and may be used to more foyntath the faux magnetic monopole density
(10.6) into a baryon density. As we shall also, sdaile the gauge group SU(3) by itself is
simply the usual color group SU@EPpf strong interaction chromodynamic theory, onbis t
group gets crossed with U(1) it becomes a “modifemor group which mixes color arfthvor
because the introduction of baryon number alsolifags the introduction of the flavor-
distinguishing electric charge genera€@r But before we discuss this, there is a more ig¢ne
point that must be made, and this has to do wjtbltmgical stability.

Cheng and Li point out at 472-473 of [17] thatpdogical considerations lead to the
general result that stable monopole solutions ofoulany gauge theories in whichsanple
gauge groups is broken down to a smaller groltp = h x U(1) containing an explicit U(1)
factor.” Further, “the stable grand unified monlgpo. . is expected to have both the ‘ordinary’
and the colour magnetic charges.” So, while SUfR)ne is incapable of supporting a
topologically-stable colored magnetic monopole,dheup SU(3)xU(1) — when understood to be
the residual group following symmetry breaking ofaeger simple grand unified gauge group
G OSU(B)xU(1) — will support topologically stable configurations This is an essential
requirement if the faux monopole (10.6) can everdgarded as a physically-stable entity like a
baryon, and especially a distinctively-stable pnot@nd a neutron which is comparatively stable
when free, and very stable when part of many ligatemic nuclei.

Weinberg makes a similar point to Cheng and Lhishdefinitive treatise [18] at 442:
“The Georgi-Glashow model was ruled out as a theafryweak and
electromagnetic interactions by the discovery afitred currents, but magnetic

monopoles are expected to occur in other theovid®re a simply connected
gauge groupG is spontaneously broken not to U(1), but to sombkgsoup
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H’xU(1), whereH’ is simply connected. . .. There are no monopateduced in
the spontaneous breaking of the gauge gr&@Wf2)xU(1) of the standard
electroweak theory, which is not simply connected. . But we do find
monopoles when the simply connected gauge gi@upf theories of unified
strong and electroweak interactions, suclBE)xSU4) or SU5) or Spin10), is
spontaneously broken to the gauge gr@&l3)xSU2)xU(1) of the standard
model. . . .”

Consequently, not only does (9.8) force us to uglgselect a dimension-3 gauge group
to enforce Exclusion on the faux magnetic monoplelesity of (9.8), but the non-vanishing trace
of (9.21) forces us into thspecific, unique selectioof SU(3)xU(1) over SU(3). This then
ensures that these faux monopoles will be topoddigicstable so long as we arrive at this
product group following the spontaneous symmetmgaking of a larger simple gauge group
G =SU( N=4) [0 SU(3)xU(1), as yet undetermined. Topologically speakingemrafg again to
Weinberg’s [18] at 442, the homotopy groups assediwvith this symmetry breaking would be:

1, (G / SUB)x UD)) = i, ( SUB)x U) = 1, ( SUB) > m,( UL)=rm( Ul)= - (10.7)

So there are really two questions raised by thevamishing trace in (9.21). First, as already
stated, what is the physical meaning of the new) géherator? Second, what is the larger group
G =SU(N=4) 0 SU(3)xU(1, from which we arrive at SU(3)xU(1) following syming
breaking so as to achieve topological stabilityRer€ is also a third question, not yet apparent,
but linked to the first question, which is this: aths the meaning of th&U(3) group which is

multiplied by the new U(1) gauge group as parStd(3)x U(1), and how does this relate to the
usual color group SU(3?

For the new U(1) group which provides topologisgbility, the generatoA® must be a
constant multiple of the 3x3 identity (unit) matrix,. If we normalize this toTr(/1°)2 =~ just

like all the other generators, then we must haﬂ\9@=ﬁlsx3. Taken together with the two

remaining diagonalized generators of SU(3) norredlito Tr(/]i )2 =3, we have:

1 1 00 L 2 0 O 1 O 0 O
0 1 0O 0 - 0 0 -

But that is only the mathematics: now we negahysicalinterpretation forA°. Because
each of the three fermion eigenstates in (9.9) haWe identicalA’° eigenvalues, because the
monopole in (9.21) exhibits many of symmetries dfaayon and the fermions exhibit many of
the symmetries of quarks, it would appear fruittubssign the U(1) generator to baryon number
B according to:
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100
Bszﬁ/\‘):%lmz 0 ! 0] (10.9)
0 014

This is our first explicit introduction diavor into the color eigenstates that were introduced at
(9.9). Following (10.9), the monopole (9.21) wibw have B=1 and each of the R, G, B

fermions will now haveB = £, which brings these even a step closer to beiagtifiable with
baryons and quarks.

Next, if these monopoles (9.21) are to be barymasstle fermions are to be quarks, let us
see if there is some way to identify takectric chargeQ of these baryons, and specifically to
produce a proton witfQ =+1 which has a duu configuration of qudt&vors, and a neutron

with Q =0 which has a udd configuration of quark flavorsewéin the up (u) quark h&3=+%
and the down (d) quark h&3=-1%.

For the proton, we may form the combination:

, 100)(2 0 0) (-1 00
sts—ﬁ/ﬁ: 01 0/-|0-1 0|=| 0 2 0 (10.10)
004i)(0 0 -1 (0 02

Following (10.9), each of the R, G, B colored fesns in (9.9) has a flavored baryon number
B=3. Now, with (10.10), the redolor of fermion is assigne€ =—3 and so is a dowflavor

of fermion in addition to its red color assignmdhg green and blumlors of quark are assigned
Q=+% and so are uflavors of fermion in addition to their green and bluearchssignments.

So the SU(3)xU(1) quark triplet is nO\@(jR,uG,,uB). Further, the entire faux monopole

Trzp'* ((O))O of (9.21) which comprises all of these fermions haaryon numbeB =1 and

an electric charg€ =+1 and so is a proton-flavored baryon with the caoleutral wavefunction
R[G B+ d B R+ B R ¢ To use a parlance familiar from electroweak thewe see in
(10.10) that the electric charge generator forpgtaon and for the quarks within the protsih

acrossbaryon numbeB and theA® color generator, that is, they sit across SU(3)3U{ anon-
compactmanner. In similar fashion, in electroweak theaty(1), generator is crossed with the

three SU(2), isospin generators', i =1,2,3 to form SU(2)yxU(1)y with the (left-chiral) quark
doublets having the U(})2x2 weak hypercharge matrix generaorF 11,,,, the (left-chiral)
lepton doublets having the 2x2 weak hyperchargerisngeneratorY =-11,,, and anon-

compactembedding of the electromagnetic group with chaggeeratorQ=Y/2+1* sitting
acrossSU(2)yxU(1)y.

For the neutron it is even simpler. We simply m#tkecompactassignment:
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, 2.0 0

Q =—A%=|0 -1 0 (10.11)
N \/5 O 03 .
3

Here, all of the fermions still have baryon numti®r 3. But now the red fermion is assigned
Q=+2% thus is an up flavored-fermion, the green and Bduions are assigne@ =—1 and so
are down flavored. So the quark triplet is n¢wg,dg, d;). The overall faux monopole of

(9.21) now has baryon numb@&=1 and electric charg€) =0 and so is a neutron-flavored
baryon. So the electric charge generator for theéron and its quarks is compactly-embedded in

A% which now serves the dual role of one of two SU(@neratorsand the electric charge
generator.

Of course, the fact that we must employ a differgmrge assignment (10.10) for the
proton than (10.11) for the neutron is symptomdiet there is a larger yet-to-be-found gauge
group which encompasses the SU(3)xU(1) group dpeelon (10.8) through (10.11). That is

Q= B—%)I8 and Qy :%/18 Is not invariant whereby one relationship, not twefines the

relationship between the electric charge and tlhemigenerators. This disconnection between
the proton and neutron electric charges is ana®gohow in electroweak theory, the =3 for

the quark (q) doublets is disconnected from ¥e -1 lepton (I) doubles which there too,

signifies the need for a larger unifying group. t8e question is now raised: what is the nature
of the gauge group that provides a unified basigte proton and neutron electric chargzs
and can this same grogbso provide the basis for unifying the separateharges as between
qguarks and leptons while also dealing with chiyghmetry (breaking) issues?

While we shall not explore this here, the auth® $stadied these exact questions in [19]
and shown how a simple SU(8) group with the fundamde fermion multiplet

(v,ug,dg,dg, & O, Us, W) provides a complete unification which breaks dawfow energies to

the phenomenological SUERSU(2)yxU(1)y with protons and neutrons, and at the same time —
because two of the diagonalized SU(8) generat@mmsklves become “fractured” apart from the
other five diagonalized generators during symmabteaking — leads to an explanation of why
the known fermions appear to exist in exactly thgeeerations, which answers Isador Rabi’s
famous quip about the muon “who ordered this?” tTisabecause these two “fractured”
generators provide the precise freedom needed domanodate three horizontal generational
eigenstates.

But what we now know from the development withrstpaper and specifically (10.10)
and (10.11) is that the SUEYroup which we introduced at (9.9) to enforce Hgimn actually
becomes modified into &aybrid color and flavor groupn view of the requirement to use
SU(3)xU(1) because of the non-vanishing trace ia1(Pp We shall thus refer to this as a “flavor-
enhanced color group” which we denote generallySh)(3):. When we use this group to

represent a proton (P) quark tripl(f.dR,uG,,uB) with the charge assignments (10.10) we shall
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further denote this by SU(@), while when we use this to represent a neutrongiNirk triplet
(ug, dg, dg) with the charge assignments (10.11) we shall detios by SU(3)c. Finally, in
all cases, the U(1) factor is associated with banyomberB, so we shall denote this as W{1)
So to summarize, once the U(1) factor is in pléoe group developed thus far is SW8YJ(1)s.
For protons it is specialized via (10.10) to SYRU(1)s. For neutrons it is specialized via
(10.11) to SU(cxU(L)s.

Next, keeping in mind (10.7), it also becomes intgair to find a larger simple gauge
group G = SU( N=4) 0 SU(3). xU(1), which breaks down spontaneously to SJ¢)(1)s.
As the author details in section 7 of [15], there &vo disconnecte® = SU(4) groups, but we

are able to usd3— LE—\/§/115 as the generator of baryon minus lepton numbebddin. This

follows Volovok from [20] Section 12.2.2 who alssas thed™ of SU(4) for aB - L generator,
but in the context of a preon model. The firstugrodenoted SU(4) places the proton’s quarks

and the electron into e, d;, U;, 4;) quadruplet in the fundamental representation. Séw®nd

group, denoted SU(4) places the neutron’s quarks and the neutrino ian(v,uR,dG,dB)
guadruplet in the fundamental representation. Tlkeach of these disconnected proton and
neutron groups gets broken at GUT energies&/mSU(4),_, — SU(3). xU(1), to produce the
stable magnetic monopole baryons via:

7, (SU@)s- | SUB). * UL)s) = 71, SUB).x UL)s) =71,( SUBL) 7 ULy =77 ( ULy = .(10.7)

Then, as the author details throughout [19], tleeatinected SU(d)and SU(4) groups
become unified together in th,u,,dg,dg, € ok, U, U) of SU(8) mentioned moments ago,

such that two of the seven generatois®(and A*°) become fractured from the remaining
generators between the Planck and the GUT enerdgssto provide the “horizontal” degrees of
freedom needed to accommodate replication of timaidms into three generations, and there is
also just enough freedom provided to also supgoraksymmetry breaking. Additionally, all of
the observed features of left-chiral Cabibbo / CKhking naturally emerge. The overall
sequence of symmetry breaking is:

SU®) ~ SUB)x SU2) — SUBLx SU2)x W)., ~ S@Lx W), (10.12)

Simultaneously with and as part of t&J(8) - SU6), x SU2) symmetry breaking, the two

isospin-differing SU(4),_, — SU(3). xU(1), symmetry breaks also take place to form the

topologically-stable proton and neutron. There @so an earlier breaking of
SUB) - SU7)x U(1) at or near Planck energies which separates thtemzérom all the other
fermions right at the very start and causes therimeuto behave very differently from all the
other fermions as it clearly does at observablege® The symmetry breaking sequences
found in [19] are then utilized in [21] to explathe observed proton and neutron masses
themselves in relation to the current up and dowarkjmasses and the CKM mixing matrices
based on [16)within all experimental errors
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Next, let us return to (9.4) where we set theybdtion toV =0 in (9.2). Because
everything that has been developed since (9.2) moisbly theTrZP"’W((O))O monopole /

baryon of (9.21) was developed fér=0, the question may be asked whether all of thexdtse
carry through when we no longer 3£t 0 but allow all of the perturbations to occur. $a&ti3
answers this question. What we learn in sectios tBat including perturbations really means

recursingG, :(k,kr -m+E+GK+ G GE)_1 J as many times as one chooses, then cutting
off the recursion by settiny =-G k' - G G =0 at some chosen recursive order. Of course,

recursing to some order and then settingy=0 as in (8.17) and (8.18) to arrive at((ao))n

expression is a calculation technique. But itoidoé expected that nature does not cut off the
recursion at all, but rather, recurses to infirbgfore settingv =0, so thatG, =7,J, as in

(8.20). So if the monopol&rzP'*" ((O))O of (9.21) is the ground state of the baryon, it e

the infinite recursion of (8.20), not some arbityatruncated recursion, which will drive what
nature herself does in physical reality. This nsetiat (9.3) in the formTrZP'”””((O))w, is

really the equation for thphysicalbaryon, with a teeming non-linear mix of quarksl gauge
fields in a “sea” perturbating through all finiteders up to infinite order, which is exactly what
one observes in the complex composite systemgraproton or a neutron or any other baryon.

Finally, although (9.21), if it represents a baryonly does so in the zero-perturbation,
no-recursion limit, it is important to ask whethirere is anything about this limit that is
observed in nature. Put differently, while cuttioff the perturbations at the zeroth recursive
order may see arbitrary, it is the only order besidinite order that would seem to have some
distinctive claim to not being arbitrary. And s waise the question whether there are any
phenomena observed in nuclear or particle phystishvmanifest the linear, non-perturbative

behavior of theTrZP"”’”((O))0 baryon (9.21)? To use an analogy, although gfieit is a

highly non-linear theory, we do observe certaineasp of the linear behavior of gravitation
theory in the real world, namely, whenever we obsevhat was first discovered by Keppler and
Newton. So while we would most certainly need ésatibe the complete proton and neutron
and other baryons without removing the perturbatioom (9.2) a.k.a. (9.3), we should also look
to see if certain aspects of nuclear behavior thigiht be very-definitively described by the
“linear approximation” (9.21).

In this regard, Feﬁw((o))0 in (10.4) is very important for pursuing experirtan
validation, because it does describe what “effetyiv net flows in and out of the closed
monopole surfaces in the ground state linear the&@myecifically, it is well-known that one can
calculate electrodynamic energies from the pureggdield £, .=-;F, F? by using this in

auge

E:—mﬁgauge&x. So one should do a similar exercise using whahan-abelian theory

becomes the Lagrangian densify, ——%Tr(FaTF”T), using Feﬁw((o))o. If we compare

uge

(20.4) which is a trace equation to (9.21) whiclamother trace equation from which it was
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derived, then by backtracking to (9.20), we seé (ha& have now removed the spin sum
designation, which now is taken to be implied):

w_Ry[y(pR_ mR)_l VV#/R 0 0
Fett ((0))0 =i 0 eV, (Ps = mG)_1 Vol s 0 .(10.13)
0 0 [//By[y(pB _mB)_l yy]I/lB

This is now a 3x3 matrix expression with all diagbalements. From this, there are two trace
expressions that can be formed. Oné’riéFmF‘”)which is what is usually found in the Yang-

Mills Lagrangian density. The other8F, TrF” .

It turns out as the author has detailed in sectidnand 12 of [15], and greatly expanded
upon throughout [16], that the expression (10.13env used inE:—_ms d®x with a

gauge
combination ofTr(FUTF"T) and TrF,_ TrF“" inner and outer products, can be used to retrodict

nuclear binding energiesncluding the heretofore unexplained binding gre= of the lightest
nuclides®H, 3H, *He and*He, as well as th&Fe binding energy, with parts per’ldr even 16
AMU precision, and the neutron minus proton mastemince tounder one part per million
AMU. Note that in general, the trace of a produciwaf square matrices %t the product of
traces. The only circumstance in which “trace @raduct” equals “product of traces” is when

one forms a tensor outer product usifig{ A B)=Tr( A)Tr(B), and as shown in [16] the

observed binding energies contain both inner antdrquoducts. This line of development in
sections 11 and 12 of [15] and throughout [16] &splains why the per-nucleon binding energy
seems to be limited for any nucleus to a maximunatmfut 8.75 MeV for°Fe, and yields a
dynamical, energy-based understanding of confineémen

While all of the formal understandings of the cabyrmmetries of baryons and mesons
and quarks are important, direct experimental a#loh is even more important. It is the
experimental concurrences that can be confirmetirgjavith (10.13) to perform various energy

calculations E = ~[[[ .,,,d*x with Tr(F,F”) and TrE, TrF", that leads to the direct

phenomenological confirmation that the faux magnatonopoles of non-abelian gauge theory
really are baryons including protons and neutrons.

PART Il: QUANTUM YANG-MILLS THEORY

11. Quantum Yang-Mills Theory: Exact Analytical Pat Integration

Finally, let us make use of the recursion develope section 8, and particularly the

substitution G, _>(770'1+77m_1JrkT+7Tw_1J,nm_lJ’)'1 J, from (8.20) in lieu of the usual

G, - d/0J%, to perform arexact analyticadeduction of the quantum path integral associated
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with the classical field equationrJ’ :(g“" D,D"-D D“) G, of (5.15) in order to “prove that

for any compact simple gauge group G, a non-trigisintum Yang—Mills theory exists dd*,”
see page 6 of Jaffe and Witten’s [6].

In abelian gauge theory, the classical electriargh field equation is of course
*J = d* dG which is an abelian subset equation embedded 12).1 When fully expanded for a

massive boson this becomes the abelialf :(g””(a,af+nf)—a”aV) G of (5.15). The
related action after integration-by-parts is tfﬁ(sG) =3 q,( g" (aga” + rﬁ)—a"av) G+ I G,
and this is what is used in the path integZach DGexpij d*x§ G = expiW J to deduce the
quantum amplitude W ( J) =%J'( d* k/(2n)4) J,( k K- rh+ a")_l J with +ie using the
contextual reduction that also occurs from the iowiitl relation k, J” =0 as reviewed at length

in section 6 and 7. If we use the terminal cooditirz, :(krkr—nf+ is)_l of the (8.20)

recursion, then this simplifies W ( J) :%j( d k/(27T)4) I J .

In non-abelian gauge theory the classical electnarge field equation is the entirety of
(1.12), that is*J = D* DG which as shown expands teJ” :(gV”( D D"+ mz)— g U) G

derived in (5.15). Without going through a detaikxposition of how to derive the associated
Lagrangian because this is well-known, it will gpeeciated that as the result of this exercise
the non-abelian action will found to be:

s(Gy=[dx(c =] dx ¢ ¢( pD+ #- DY &2

(11.1)
:Id“xTr[Gy(g”"((arar— GO~ G G)+ rf)~(0'0" - iG0" -2 G G+ G 6)) Br2 U ;%

where we have also included (5.16) and (5.17).

When we now take the next step of using this adtioZ :I DGexpiS( G, J), there are
two new issues that come into play which are nes@nt in the abelian gauge theory. The first is
that the non-abelian gauge transformatiéh — G = G’ +9"6 - i[G”,H} gives rise to ghost
fields due to the introduction of the additionaite-i [G”,H] into the integration measuf@G

in order to ensure thaZ - Z' = Z remains invariant under this gauge transformatmal, so we

need to employDGDcDCc' not justDG as the integration measure. But the second issthat
even before we get to worrying about ghost fieldss simply not known, as a mathematical
matter, how to use an expression like (11.1) iath ntegral to calculate:
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z:jDGexpijd“xTr[Gﬂ( ¢'(QD+m)- D D) G+2d G}
g ((0,6"-iG,0" -GG )+ nf)
~(0"0" -iG*0" -2G' G + G @)

(11.2)

= [ DGexpi[d*xTr| G, G+2JG|

This is because, as will be apparent from studtfiegower expression in (11.2), this is a fourth-
order polynomial inG, but known mathematical techniques for calculatiriggrals of this form

use the second ordqrdxexp(—% AX - J>§ =(-27/ A‘S exd 3 /24. Why? Put plainly and
simply, it is known how to calculatfadxexp(—% AX — J>§, butnot how to calculate the higher

order J'dxexp( BX + CX-1 AX- J). To date, this is an intractableathematicsproblem.

Normally, of course, the approach is to turn evgayge field inside the configuration space
operator g’”(DrD’ +rr12)— D'D’ into a current termG, —» 8/9J" via G, :J(GV J”)/JJ”

and then use (8.25) to applyxp(-V (5 /4J)) to exp(%J EK'1DJ) the latter of which is
obtained in the usual way fror_fﬂxexp(—% AX - J>§ =(-27/ A’5 exp( K} /2%\.

But now the recursion developed in section 8 giwesa newmathematicalapproach.
Now, we are able to use (8.20) to turn every oawe ofG inside g ( D, D" + mz)— DD
into a function solely oG(J,k) via G, =7,J, =(m* +7,, 3 K +7,_, 3, , J)™ ], with the

abelian terminal conditionz, = (krk’ - nt + is)_l. None ofG, - 7, J, these containg,! So,
making this replacement in (11.2), we now have:

z:jDGexpijd“xTr[Gﬂ( ¢’ (DD+m)- D D) G+2) G}
g ((0,6'-iG,0"-G,G' )+ nf)

G+2JG
—(ava” —iGY0* —-2G'G* + G’G)

= I DGexpijd“xTr G

guu((arar_ianrar_anr,Tw Jr)+ rﬁ) o 125G . (11.3)
+ T

= I DG expij'd“xTr G

~(0v0% ~im, 370" ~ 21, 3" 11, 3* + 1, I 1, 3%

I(;k'[DGexpiJ.d“xT{Gﬂ[_gw (kK +m 3K+, 37, 3)- i) JGV+2JTG,]
+K'K +m, YK A2, Y, XY -, I, ¥

Lo and behold, we have removed all the gaugedi&idm the path integral except for
Gﬂ(...’”)G and J'G,. This leaves wus with the tractable quadratic form

v
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Idxexp(—% AX - J%:(—ZT/ A’5 exp( K} /24. So we can integrate (11.3) analytically and

exactly, so long as we know the inverse (for"“) =g" ( D,D" + mz)— DD’ or any of its other

variants in (11.3). But this, of course, was atr@riocus of what we studied in section 6 and 7,
and this was one of the reasons we studied thdosely. Particularly, for the field equation

—JVz(g”"(Dr Dr+nf)— D’U) G, as seen in (8.19), with the context afforded hg t

continuity relation D,J? =0, the inverse solution is simpl$, =7,J,. So we recognize
immediately that the exact analytical solution1@.8) is:

Z:'[DGexpi'[d“xTr[Gﬂ(g””( DO+ m)- B D) G2 G}

-g" (kK +m IK+m Jmr, J)-
:jDGexpijd“xTr G, J ((K - . 4. J) ) G,+2J°G |. (11.4)
KK+, K2, Y, Y -, Y,

= expij'(d K /( 271)4)% (3,7, 3%) = expiw( J)

This, again, is amxactanalytical solution Expressed directly in terms of the amplitude and
using (8.18), this means that:

(zﬂ)4W(J)=Id4Krr( \;'777;, JT):J‘ d R‘r( 2;l(ﬂb_l+ﬂ'm_l ?]k+ﬂoo—1 rJToo—l TJ)—l UJ)

= (kK —nt+ i)

(11.5)

If it is desired to see explicitly how this givas the non-linear propagator and current
and momentum terms that we expect to find in a Yty path integral, it suffices, just for

illustration, to examine the amplitudd( J), for a second-order recursion, using the terminal

condition 77, = (k k' - nt + i) . This is (cf. (8.5)):
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(2)*'w (3), =jd“kTr[ I, J’]:I d Irr[ g(no‘lﬂrl Jk+m O, ’J)’l ‘U}

[ 1 -1 r r\-1
:jd“kTr L 1T, +(710 +717,J K +7T0Jr7TOJ) J K g0
+(775‘1+n03,kr +n0J,n0JT)‘1J,(n0‘1+n04 R+, I, J)‘l J
[ (kK -nf+E |
+ kK —nf+ig+ T‘]fk —+ % J = 17K
kK =nf+i (kK - nf+ i)
= [d*KTr| J r r 130
I 71+ kK —nf+ i+ ,Jfk —+ %] AR . (11.6)
kK =nf+i (kK - nf+ i)
: J k' JJ -
><|(T|(T—I’T12+L£'+ L —+ r 1JT
kK =mt+ie (kK —nf+ i)

With this being only the second-order recursionwill be appreciated how this will expand
rapidly in a highly-nonlinear way to include allders ofJ, k, m and +i&, right through infinity

for W(J)=W( J)_. For doing practical calculations, including tBosith computers, one can

use expressions with a few more orders of recurgioobtain results fairly close to those that
would be obtained upon an infinite recursion, asagmonvergence. So let us now look at that.

We can ascertain the general trend toward conuaegger divergence simply using the
n=1 recursive order, because as we have seen heiia aadtion 8, the basic pattern for higher

orders is already established at first order. \WrJ), we have:

(2n)'w(3),=[dkr] 3m I ]=[ d ’i| I+, ) ke, Jr, 9 9]

K, I¥ L

11.7
kK =+ (kK -nf+i) 0

=[d*kTr| 3, kK= ni+ &+

(Kw—ﬁ+E)%KK—ﬁ+HJR+J3_UU

= (d*kTr| J
Jaiar (kK = nf+ i)

Given J¥ =", 0% =0, for SU(3)xU(1) has dimension 3 at the same timat th
(krk’ -nf+ i‘s)3 = JAB( kK- ni+ &‘)3 sits on the 3x3 diagonal, a naive look at (11€llstus

that the dominant term in the numerator will @gk’ -nf+ is)3 for J K <(I<,K -nf+ E‘)Z

81



Jay R. Yablon

and J,J" <(k K - nf+ b)s. But when considering the matrix equations, a emprecise

statement  would say that —(kaT -nf+ 'E)s represents eigenvalues of
0= (k, K" = nf + is) J K+ J J, and will dominate when these eigenvalues arefar@her than

smaller. In the case whergk’ and J.J" are small and substantially negligible in relatton

(kaT -nt+ i,s)2 and (kr K - nf+ 18)3, the overall expression (11.7) will be:

(kK =nf+ie) +5
(kK = nt+ i)

(2m)'W(3), = [ d*Krr|

-1
J Djdlr{ ,;l—krkr_szrE

1 _5},(11.8)

which is of the same form as the abelian propaga8w the solution (11.6) would appear to be
fully convergent (or, at least no more divergetrtithe abelian path integral) fdrk” and J,J°

which are small in comparison to eigenvalues which specific powers o k' — nf + ie. It is

also worth noting that the positive sign in (11i8the quantum field explanation for why the
electromagnetic force between like chargeemilsive In electrodynamics this means that like
charges repel. In chromodynamics this means thatgels of the same color repel, e.g., red
repels red, etc., which is another way of viewinglHsion.

Finally, because (11.5) is an exact analyticatwation using a closed recursive kernel,
per [6] page 6, this “prove(s) that for any compsiniple gauge group G, a non-trivial quantum
Yang—Mills theory exists oiR*.”

12. The Baryon Candidate Lagrangian Density and Aabn

The quantum path integral for the non-abeNHrﬁ J) derived in (11.5) is for the current

density J¥ = A, 0% = A, Wl W .= Wy*W of a dimension-3 column vector of fermion
wavefunctions which we were required by Exclusionntroduce at (9.9) and which we named
with Red, Green and Blue eigenstates. As statddees (10.5) and (10.6), what is arbitrary are
the names. What is not arbitrary is that we regtinree such namesAt (9.21) and in the
opening discussion of section 10 we showed thatfdlng monopole density?'*” has the
colorless SU(3)-invariant antisymmetric wavefunetiB ] GLJ B of a baryon, and at (10.5) we
found that the only fields which net flow acrosssdd surfaces of these monopoles have the

SU(3)-invariant symmetric wavefunctioRR + GG + BB of a meson. It was on this basis, as
well as the topological discussion in section 10clhed to additional flavored associations of

these monopoles with protons and neutrons, thaiave identified these faux monopolEs*
at least at the classical level, with a baryon dgnand thus the colored fermions with quarks.
We shall sometimes refer to these as “candidate/dps and quarks.

As stated at the end of section 4, it is certaurlyealistic to expect that a classical-only
treatment of baryons based on Yang-Mills magnetimopoles will explairall of the observed
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phenomenology of baryons. Nonetheless, findingctiraplete and correct quantum description
of baryons begins by finding and fleshing out, tig@t classical theory to quantize. Sections 10
and 11 advance the thesis that the right clastiealry is one in which these non-abelian faux

monopolesP'* — which arise as the underlying density behindoa-vanishing Yang-Mills
magnetic field qux<ﬂ>F #0 which we showed in section 11 hasRR+ GG + BB meson

wavefunction — are taken to be classical baryo8s. having found and suitably developed a
candidate for the right classical theory to quamntizis now time to quantize that theory.

As made clear in (5.9), the classical theory carsiramarized in two Gauss’ / Stokes’
integral equations which are the non-abelian gézateon of Maxwell’'s equations. One is for a

net flow @*F #0 of a non-abelian electric field across closed aste$, sourced by the
elementary, non-composite  electric charge and w©urredensity three-form
*J=d* dG-iG dG-[ @ [ G G], see the third line of (5.7). The other is fonet flow
<ﬂ> F #0 of a non-abelian magnetic field across closedases sourced by the faux magnetic

density three-form P’ :—idGG:—id[ G G] which arises as a non-elementary, composite
function of the gauge fieldS in turn sourced by We have already obtained the highly-non-
linear quantum amplitudeN(J) in (11.5) which characterizes the quantum intévast of the
non-abelian electric current¥ = Wy*W and thus, of the quark eigenstaigs, ¢/, ¢, . That

is, W(J) is the quantum amplitude / potential energy, innmeotum space, for quark
interactions. We now seeW(P) which, if P'=-idGG=-id[G { is indeed a baryon

density, would be the quantum amplitude baryon interactions Because we have shown later
in section 10 that these classical baryons can lasmade topologically stable and given the

flavored properties of protons and neutrons, figdW(P’) would lay the foundation for
developing a quantum field theory description oflear interactions. So let us proceed.

The classical field equation for a Lagrangian dgnsi with a gauge fieldG, is of
course given by the Euler-Lagrange equation:

0 0
0=0 L= L. 121
”(a(agev) J 96, (121)

The first step is to obtain the Lagrangian densif;( P') for the monopole density
P'=-idGG=-id[ G G, that s, to find anf(P’) which causes (12.1) to be one and the same as
the classical field equatioR”’ :—idGG:—id[ G G] We implicitly did the same thing prior to
(11.1) for £(J) and the classical field equation)” :(gV”( D D + mz)— ¥ U) G, without

going through the detailed exercise of doing so vial{lBecause it is already well-known how
to do this. But forP’ :—idGG:—id[ G G] we shall trace through the entire exercise because
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this does not appear to be known and certainlpésdnot appear thd' :—idGG:—id[ G G]
has ever before been regarded as the classiddleiiglation for a baryon. The second step is to
then write down the monopole / baryon acti8G, P) :I d ( G P parallel to what we did

in (11.1) for the electric charge / quark fieldiaot And the final step is to do the path integral
Z :j DGexpiS( G, P) and thus deduce the quantum amplitVdéP) for the baryon field as
we did in the balance of section 11 to fiWi( J). The advantage we now have in view of
section 11, is knowing that a clever use of rewerkernelG, = iz, J, from (8.20) will enable us
to replace some of the gauge fiel@g with current densities) ,to maintain a quadratic form
expression which can then be integrated exactlyaawadytically. And, given this, and studying
(11.5), we anticipate that the amplitude we obtilhreally be W( P'( IWrtWotWs) K ms)),

which will describe the quantum interactions ofaaylon in a fashion which includes their quark
fields ¢, ¢ .5 as well as their gauge fields as represeited

For -J* :(g””(DT D"+ mz)— D D") G which is the electric charge / quark current
density field equation first obtained in (5.15),het Lagrangian density is
£(G,J) :Tr[Gy( g”( DD+ n"t)— D D’) G+2J G} as seen in (11.1). These both contain

the identical configuration space operatgt’ ( D, D" + rr12)— D“DY. The only difference is that

in the action this operator is sandwiched between gauge fieldsGﬂ(...) G,, there is the

additional termJ"G, which contains the source current, and becausarae@sing non-abelian
gauge theory, a trace (Tr) is required to maint@ims a scalar. Earlier, way back in (3.4), we
derived the four-vector current density" for first-rank dual of the faux monopok,, which

we now see from (9.21) has the classical color sgtrigs of a baryon. In (3.4) the calculation
was illustrative. But now, a calculation akin 84) is an essential step to deriviﬁ‘gﬁ P’) :

Specifically, we keep in mind that field equatied” :(g"” ( DD + n?)— D D“) G
which we abbreviate as-J” :(...)G, with ...= g‘”(DTDT + mz)— D' DY maps to Lagrangian
density £(G, J) :Tr[Gﬂ( g"“( DD+ rﬁ)— o D) G+2J G} for the electric current density

J, which £ we abbreviate a€(G, J) :Tr[Gy(...) G+2J G]. We also are mindful that it is

easier to start with a Lagrangian and find itsdfietuation rather than the other way around. We
note that (2.11) contains several way to wWifdut that the only terms without commutators are

dGG and GdG. Noting the identities-i[G,dG| = -2iGdG+ idGG and d[G, G| = dGG- GdC
which were found in (2.8) and (2.9), we see that expression containing a commutator can
always be separated into an expression with some@aricombination of termadGG+ BGdC

whereA andB are constant numbers. We also know tBalG=0 from (12.11), but for the
moment we will include terms withGdG to establish formal concurrence between the
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Lagrangian density and the classical monopole &ejdation and only apply this at the very end
to reduce our results.

Thus, with all of this in mind, we now fashion &$t” Lagrangian density for the pure
field term absent any sources in whicts, left-multiplies dGG - *0 G’ G, and

GdG « G,*0" @', while also including a tern®, * P* with the dual*P? =4&**P,_, of the
original (not faux) monopole, all with the requiredce, of the form:

=-iATr (G, *d“G"G,)- BT (GG*d“d )+ Tr (& P). (12.2)

test

Of course, becauséP? =1&e%"P =0 via the Jacobian identity (2.4), in the last term
G,* P" =0. But this is still needed because the faux molepdich appears to be a classical
baryon density isP’:—id[G, G]:—idGG. Thus, we can eventually use this last term to
introduce P' via 0=P=id[G,G|-idGG=~ P~ idGG= if G ¢+ F. We also note that
BTr(GT Gy*a“’ G”) =0 becauseGﬂ*a“‘G” is an alternate way to writedG=0, but for now,

as stated, we also carry this as a term withousgging it to zero. In (12.2) abow, B, andC
are unknown constant numbers that we shall nowrméte by using (12.2) in (12.1) to

reproduce the classical field equatidh= id[G, G]—idGG:O of (2.11). In other words,
=id[G, G| - idGG=0 is the target equation we seek to derive by pta¢i?.2) into (12.1)
and then choosing, B, andC to math up (12.1) t®® =id[G, G| - idGG=0.

For the latter term in the Euler-Lagrange (12.&)may use (12.2) to first calculate:

—%sm = —%[—iATr(G,*a“’G” G,)-iBr(GGgra“d)+ ar (G P)]

v v

G,
=iATr aGr * a[#GT]G + Gr* ,UGT]
0G oG,

v

oG
+igTr| e UG+ G+ 4G |- T 9G,, (12.3)
0G 0G oG

=iATr(&",*0“G"G,+ G* d“G'o", ) + ilT (8,G,*0%G" + G, * G )~ ar (&"* P)
=iATr (*0“G"G,+G* 3" G )+ i8r (Gr d* & + @ 8" & )-T* P
Tr(*0'°G"G, ) +iATr (G* 8 &)~ ar* P

v v

For the operand of the former term in (12.1) we {is22) together with second rank duality in

the form*0“G™ =4 £79,, G, , being very careful with signs, to calculate:

85



Jay R. Yablon

d d

36.6)°"30.5) (-iaTr(G,*0¥G"G,)- BT (G G ¥ & )+ @r (& P))

(3]

s ~apur 0
=-L1ig® (0.6 )(ATr(Gra[aGﬂ] G,)+ BTr( G Ga, C;51))

o
— 1 | gaﬁ,ur a

(ATr(G(aG -9,G,)G,)+ Br(GG(0, G-9, G

aaG )
i H 2,0 _gggjgjg]%}m[qe[g o). 200
(A |

505/ 57,0 )G)+BTr(G;G;J(5”5V —0%,0" ))
ATr "W”GG VJMGG)+ Bl'r( WNTG(% - Gg))

=-1lj¢
2!

=—21j
2!

|(ATr(5 WT”[GT,Gﬂ])+ BTr(37%( GG, ]))
=iATr*[G%, G’ |+iBTr* | G, G | (12.4)
This of course means that:

0 . Y P T ~o
6U(m£testJ—lATraa [G°, G ]+iBro,*[ &7, G ]. (12.5)
Finally, combining (12.5) and (12.3) into (12.1) yielts tlassical field equation:
0 0

0=0,| F/——— 8 |——2

U(a(agGv) test} aGV test (126)

=iATrd,*[G?, G’ |+iBTra,* [ G, G |+ AT (0 G G )+ iAr (G 8" & )-T* P
which we then rewrite withiP” =0 on the left using the Jacobian zero of (2.4) taiwb
CTr* P = ATrd,* [ G, G |+ BIro,* [ G, G|+ Airf o & G)+ Ar (@ 0 @)0 (127)
But in (2.11) we uncovered the identidy= GdG which in tensor form reads:
G,0,G,+Gg9,G, +Gg,G =0

V7|

(12.8)

Multiplying through by 7 to take the first rank dual then yields:
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0=* (G 0,G,+Go,G,; +C§a[ac%):%£””"”(§qﬂ§+ &, G+ @, g;)
=1(G,4£79,G, + G, 4679, G, + G179, G ) (12.9)
=i(G,*d"G1+G*d*c"+ G "G )=g d"d=-g " &

So the final term in (12.7) zeroes out and the aV&eld equation now becomes:
CTr* P’ = AT, *[ G, G |+ BIrd,* [ G, G|+ Air f 0 & G)=0 (12.10)

Now we need to match this up against the targit GquationP =id[G, G| - idGG=0
of (2.11) which we write in tensor form as:

UW B ( I: }+aﬂ[Gr/’ GU]+av[Gﬂ Q})‘ (a[a Q] (5"'6[/1 (é §+0[V G]' 9):0 (12.11)
We then usé P =3P, to write the first rank dual as:

* Pa - 1 gcr,uvap

ouv
:ig(aa 167(G,,G, |+, 467 (G, G]+av;g”ﬂva[ea,q])
-i1(4£770,G,G, +4£79,G, G, +4£74, G, G,) (12.12)

=i1(0,*[6".G"|+9,*[6" &"]+0,*[C G |-t "G G+ d° & G+ I &G,)
i0,*[G%, G" |-i* "G G, =0

Taking the trace and renaming the free index,ighis
Tre P’ =iTr(0,*[G% 6" ])-Tr (0G"G,) =0 (12.13)
Now we compare this with (12.7) which was deriveahf the Euler-Lagrange equation

(12.1) and the Lagrangian density (12.2). FirstseeC =1 to match the left side. Thereatfter,
on the right, we must match\iTr(*a["G“]GJ) to —iTr(*a["G“]GJ) with tells us thatA=-1.

S0 (12.10) becomes:
Tr*P' =-iTrd,*[G% G’ |+ BIrd,* [ G, G |-Tr {d“G'G )= (12.14)
To complete the match, we must &t +2. Then (12.14) becomes:

Tr*PY =iTrd,*[G% G'|-Tr (0“G"G,) =0 (12.15)
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which perfectly matches (12.13). So we use thes#nigs in (12.2) to write the Lagrangian
density as:

©=iTr(G,*d“G"G,)-2Tr(G,G,* 3G ) +Tr ( G* P). (12.16)

Finally, having established formal equivalence bé tLagrangian density with the
monopole field equation via Euler-Lagrange, we niake advantage o0=GdG which is

written as G,*0G” =0 in (12.9), and we also use the Jacobian-baseid=0, to further
reduce this Lagrangian density to:

©=iTr(G,*a“G"G,)+Tr(G* P)=Tr (G* 3“G' G ). (12.17)

The above, when used in the Euler-Lagrange equétidid), will indeed reproduce the classical
field equation P=id[G, G|~ idGG=0 of (2.11), or more precisely, will reproduce itade

equationTrP =iTr (d [G, G]) ~ Tr(dGQ@ =0.

Yet, (12.17) is not our final result, becausetiit sontains the original monopol&P’
which is zero, and we wish to now inject the fauxrmpole density P’ which is the dual of the
candidate baryon densitf, ,. Now, as noted following (12.2), we will want &pply the

relation 0=P =id[G,G] - idGG=- P- idGG= iJ G ¢+ F to get P' into the Lagrangian
density (12.17). Were we to ufe=-P -idGG in (12.17), this would offset th&, *9"“G" G,

term and we would lose important information abitnét gauge fields, just as if we had stopped
at P =0 in (2.11) rather than proceeding to make us® efid[G, G| - idGG= 0 to develop the

identity P'=-id[G, G] =-idGG from which we learned a lot more including in (8.2hat P’
has the color symmetries of a baryon and ffigf = [[[P'=~i[[[dGG=~ifp[G, G # 0 has
the color symmetries of a meson. So we expﬁnvdid[G, G] + P =0 into tensor form and use
this in (12.17) to create a mix of bo'lIHl[G, G] and idGG terms which has already been fruitful
elsewhere. Thus, we expafd=id[G, G+ P =0 into:

P =1(0,[6,,6,]+0,[G. G]+0,[ G. G])+ B, =0. (12.18)

The dual relation is then:
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*Pa _ 1 gcr,uva Pguv
:I5(017%5””"“[6/1,@.,]+aﬂ—§£”‘“’”[G.,,GU]+6V—§£””""[ G ])+2em B,
=i1(0,*[G%G"]+0,*[c" &"|+0,* [ G )+ P

=id,*[G%, G" |+* P =0

(12.19)

We then use (12.19) in (12.17) to finally obtain:

£(G*P)=Tr(iG,*0"G"G+iGa[G G|+ G F)=Tr (g " & ¢.  (12.21)
This is the Lagrangian density for the Yang-Millemopole, written in terms of the dual of the
candidate baryon density'?. By replicatingiTr(G,*0"G"G, ) all by itself in the final term,
we are asserting thaG,d, *[G', G’ |+ G,* P? =0 i.e., that*P'* =~id,* [G', G” |, which is
P'=-id[G,G]. Then, becauseid[G,G]=-idGG is also an identity, we end up via this final
term implicitly stating that0=P =id[G,G| - idGG. And, given that"d0"G”'G, - dGG and
9,*|G',G" | = d[G g are both embedded in (12.21), we see how (12s2jiist a Lagrangian
statement o’ = -id[ G, G| = -idGG.

Now let us rework (12.21) a little bit so we caenmtify its configuration space operator
as a first step to calculating the path integraHere, we use the dual relationships

*"GT =170 G, and*[Gr, G"] :%g"”“’[ea, Gﬂ} to write:
£(G*P)=Tr(ig,*0"c"G+iGo* [ G G+ G P)
=Tr(36%(16,0,6,G, +16,9,[ G,. G )+ G * P*)
Tr(%g"ﬂm(lGaaaG G -iG,0,G,G + G, (G G)- iGo,( G G))+ G* P’)

[; [uegaaeﬁe, iG,0,G,G J+G . FWJ

2% | +i6,0,G,G;, +iG,G,0,G, - IG0,G,G, - 1G,G0,G, | ° . (12.22)
A,,s”ﬂm(mc; 9,G,G, ~2iG,G0,G)+ G * P)

3677 (iG, (49,6, -2G,0,) G )+ G, * P*)

=Tr(
=7

Tr(% aﬁm(' (22, Gﬂl_Gtaam)Gr)+Gﬂ* PJ)
(ie,
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So now we see that for the faux monopole / baryaad 8P’ , the configuration space operator
is 2*0'G” —*d790”, contrastg*’D,D" - D’D" of (5.15) for the current density”, with

D’D¥ =979" -iG%0" -2G°G’ + G’ G in (5.16) andD,D’ =9,9" —iG,d" -G,G" in (5.17).

Finally, based on (12.22), the faux monopole /ybar action is written in the
configuration space format:

s(G*P)=[d (G P=[ 4% iglro" &= @) & & P). (12.23)

This is what we will new seek to plug into the pathntegral
Z(G*P) :j DGexp iS( G* P)=cexp iW* B to develop the quantum field properties of our
faux monopole / candidate baryd.

Before turning to the path integral, given that m@v have a faux monopole action
S(G* P) in contrast to the electric charge acti®G J) in (11.1), it also helps by way of
contrast to similarly take the first rank dual 8f41) to obtain:

TR ((0)), = 4™ TR ((0),
0,56 (U (Pe=m e | [0, 47 (0 (P m) )

==i[ 0,46 (Uon, (pe=mo) Vo) | == +0, 4% (0 (Po=md) "y e) | - (12:24)
+0, 5% (Uokto (Po=m0) ) | | 40,3 (0 0 (o= M) )

=310, * (¢e/ (Pa=me) VW o+ 0 7 (Pem MY V0 0 ¢ (P M) V0 |

So in the ground state, this first rank monopdbaryon dual has the symmetrﬁ:R+EG+_BE
color symmetry of a duality-transformed meson, in het form

TR “((0)), 09,* (RR+ GG+ B .

13. The Baryon Candidate Quantum Path Integral

In order to path integrate the classical actioR.23), we will again make use of the
recursion developed in section 8 to recast the paigral into a form that is quadratic, i.e., no
higher than second order, in the gauge fi@d. We first substitute the recursive kernel
G,=mJ,= (770‘l +77,,J K +ﬂm_14ﬂw_1j)‘1 J, with 7, = (krk’ - nf+ is)_l as a terminal

condition from (8.20) into the configuration spameerator in (12.23) and then convert over to
momentum space Vi@ — k to obtain:
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S(G*P)=[ d ¥r(iG(2*3" &'~ &o7) G+ @ P)
:jd4xTr(iGJ(2ﬂw*6[’ ¥ -mx 397) G+ G P") . (13.1)
=[d*xTr(G, (277, * K" P -, * I ) G+ G+ P)

Note thatk” and 7z, readily transpose becaug&é is an ordinary abelian vector and everything

else on the final line is also in momentum spabeigtaverting any terms arising from the
canonical commutation operatior kK , =J#), and the duality can be moved over by segregating

out the Levi-Civita tensor and then integratindpaick in. The (non-Ghost portion of the) path
integral overDG (omitting DcDc') is then specified by:

Z(G*P)=[ DGexpig( G* P)
= [ DGexpi[d‘xTr{iG, (2:0"G" -*d"d7) G + G * P’)

:IDGexpiId4xTr(iGg(ZTm 0l 37 =11, * §°99) G + G * P"). (13.2)
:IDGexpijd4xTr(Gg(ZTm WP -, I K) G+ G F”)
= @ expiW (*P')

As in section 8, the infinite recursion has enahlsdto remove all gauge fields above
qguadratic order, and render (13.2) into a form tizat be integrated exactly, analytically. The
mathematical Gaussian integral that we will wanige as template for this is:

[ dxexp(iAax +iPX) = (77i/ A* exf~iP* /24 . (13.3)

with x~G, A~2m *k"J? -z * J'K¥', and P~*P . Clearly, we need to now obtain the
inverse of A~ 27z, *K" 37 —r.* 3" K' because it shows up on the right-hand sidB’in A.

To find the inverse of2r, *ki"J9 —m* J*'K?, we note the procedure employed

throughout sections 6 and 7. But hefes 277, *KI" 37 —r.* J* K is anantisymmetrianatrix.
Therefore, as a special case, its inverse is equerseof thenegativeof itstransposethat is:

1A =2, KO 34 3R (13.4)

2

Therefore, using (13.3) as a template, we find f(@2) and (13.4) that:
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2(G*P)=[ DGexpif d' XTr( G (27, * kK I -7, T R) G+ & P)
:@expi%j(d“k i 277)4) Tr( (2, K J - x 3K )'1* P’). (13.5)
= @ expiW (*P)

And from this we extract the amplitude:

(ZH)AW(*F’):%jd“Rﬁ(* P mx K I-mr ¥ R)* F5) . (13.6)

We further definedit which is the momentum space amplitude densit)f bfkon = (277)4W to
extract both jd“k@r&(* P) E(27T)4 W(* P) from (13.6) andjd“k@rl(J) 5(271)4 wW( J from
(11.5) with comparable coefficients. In (11.5) atso usedi(J) 09r(J)_ , to seteo—1 - co.

Thus, in an apples-to-apples comparison, shownthiegewith the recursive kernel and the
terminal condition from (8.18), we may write:

o (3)=3Tr(9, (2 + 2, 9 K + 27, 3, T) 7 T)

o (*P') =4Tr (* =44 (2 mrx KO - J°R )_%c Pr)
, (13.7)
77;1: (n(-)_l + ﬂn—l‘]rkr + ﬂn—l‘]rﬂn—l‘]r)_l

= (kK —nt+ i)

Earlier, we wrote out (5.9) which displayed Maxvgelilassical equations in non-abelian gauge
theory in integral form. The above (13.7) ared@ntum field theory counterpart of these non-
abelian Maxwell equations. Together, these twoaggns — which are in momentum space —
should furnish the basis for properly deciphering gluantum field behaviors of the electric
current densities which are quark current candgjated the quantum field behaviors of the faux
magnetic current densities which are baryon canelédaln short, (13.7) is a candidate quantum
field theory for quark and baryons which paralldiaxwell’s equations in non-abelian form.

However,*P'? appearing in the monopole amplitude (13.7) isfitst rank dual of the
third-rank faux monopoleé?, ,, which, formally speaking, is itself the candidairyon density

%
with the ROGU B color symmetries found in (9.21). So we now seekave P, explicitly

uv
appear in@rc(*P’). Toward this end, we make use of second-rankitgual the form of

*Kl7 g =L ek 3y and* Ik =L e ], ky to write:

on (P') =4 (477 ) *Tr ( PRk, 3y -7, 3, k) P’) . (13.8)
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But it is also an identity of the Levi-Civita tensio flat spacetime that™” & apor = —1» and of

course, by definition, (5"/3‘”) P =1, Combining these two expressions gives
‘%E””"T(E”ﬂ”) =g

-1 . .
-+ or —%(5”’3‘”) =¢ We then use the later expression in

apor *

apor ~
the form ofl( "/3‘”) =-4lg

apfor

to rewrite (13.8) as:

O (*P') = 4 £,,,TT ( PoRmk, 3y -1, 3,k )‘1* P’) . (13.9)

Because the minus sign #f*”¢,,, = -4 arises from the fact that the Minkowski metricsen

diag(77,,) =(1- 1~ 1~ } has a determinantlety = -1, the sign reversal in (13.9) emanates
from the underlying structure of Minkowski space.

Next we use'P'? =3 7P to further rewrite (13.9) as:

o (*P') = 4l e, Tr ( PRk, Iy -7 o k) FY)

=-4l g Tr(P (272.k, 3, —ﬂw\?alﬁ)_l* Pr)

uvp

7 ! _1* d
= _4!é5” paﬁrTr(PﬂVP (Zﬂ”K” Jﬂ] S ‘:Ea i%l ) P )
5” o’ 5'0 +5ﬂ,35|/r5pa +5'ur5|/05pﬂ !
=411 f(P;Vp(anlgaJﬂ]—ﬂw k) Pr)
=0",0" ;0% = 0" ,8",07 ;= 0.0 40",
I _l*
Tr(PﬂVp (27700 ke dy =70 K )

|
=-2xatt| +Tr(pL, 2k, 3, - 3, k) @)

uvp

+Tr( ﬂVP(Zﬂ lﬁv IS ‘?v iﬁ)_l*

pﬂ) . (13.10)

Next we usesP'” =1 PP

wsy and the like for the remaining first rank duals.

aﬁypTr(Pﬂvp(zn H/l 7 ‘?,U Iﬁ) aﬁy)

o (P') = -2x 4L 2 +gﬂﬂWTr( P (2K, 3, -7 3,k )" B ) . (13.11)

aBy

+gﬂﬂWTr(PWp(2ﬂ Ko =7 3, ) aﬁy)

But becauseP,,, is antisymmetric in all indexes and given the itay summed, this reduces to:
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'y — a N
o (P')=-2x4L 1x3¢ f’”’Tr( P (20K, 3 =7 3, %) E,’,;y) (13.12)

a ! B N
=-4¢ 5""Tr(PWp7Tw 1(2|ﬁy J =, ls]) I:-7?5}’)

Note that in the bottom line we have factored ayt* from (ZIka[#JV] -1, J,k, )_1. So we
now use (13.12) to rewritér (*P') in (13.7) with o — co—1 directly in terms of the third rank

baryon density candidate;, , as:
o (J)=47r(23,7,°)
@K(P’) - _ZgaﬁypTr(ZB,/vpnw_l(zKﬂ =K )_l It:;)ﬁy)

(13.13)
7Tn= (770_l + ﬂn—l‘]rkr + ﬂ-n—l‘]rﬂ-n—l‘]r)_l

7 =(k K —nt+ i)

This describes the quantum field interactions ofdedate quark and baryon charge / current
densities, up to ghost fieldsthat we omitted at (13.2) and also in section That is, the

complete, gauge-invariant path integral involves ititegral and measurfeDGDch*. So by
integrating over_[ DG we have effectively integrated in one of two “dms®ns,” in the nature

of taking .[dxF( x) as a partial integration in an overall integrattue form.[dxdyF( x ). The

much more challenging, seemingly-intractable pnoblis how to do the mathematics of a
Gaussian integral which contains terms higher tb@tond order quadratic in the integration
variable, as does the Yang-Mills path integralshwitgard to the gauge field. With (13.13)
containing the very explicit solution to this keyathematical problem, any number of
individuals with ordinary knowledge should be atadill in the ghost fields. When truncated at
afinite recursive orden, cf. (8.17), from (13.13) we may write:

o (J), =47r(29,7,5°)
@K(P')n = _zgaﬁmTr(ZFvam_l ( ZKﬂ ‘:I/] a "Elﬂ lﬁ )_1 Eﬁl’)

m=(mt+ m, I K+, I )

' -1

(13.14)

7 =(k K —nf+ i)
There are some additional reductions that can ldemn (13.14). First because
everything in in momentum space we may commit€ = k' J. and then set this to zero g,

becausdd G" =k,G" =0 as first found in (6.5). Thus, we simplify to:
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m=(m*+m J,m 3" (13.15)

' 'n-1

which now contains only second order terms J,7z,,J" in J, but no first-ordedk terms.

Next, if we write out the terngk ,J,, -J,k, from 9t(P’) component-by-component
and again keep in mind that we are in momentumespadhat the commutatox Kk, =Jiz does
not come into play, we find thak ,J, -3, k, =2k, § + J k =3k J. Asaresul,

% (P), =2eTr{ 26, m (3,4 By ) == T B 4) B)- G210

It is interesting to note the natural emergencehef QCD color factorC. =3, see [14] eq.
[2.98]. And itis also very interesting to notatlhe relationship between an abelian gauge field
A and the associated abelian (A) field strengtliFis, =id A, =k A, in view of i0 - K.

But k,J,; in (13.15) hagxactly the same form aB, ,. It simply containsJ, rather thanA,

and so is two differential orders lower thes), , . We shall thuslefinethe antisymmetric tensor
i®, =k ,J,, as the “echo field strength” tensor because iersa it is merely an “echo” of
iF,,, attwo orders lower. And to be able to think abihis tensor in a familiar way, we may

define its contravariant components by analogy smdB via bivectorskE - £ andB - S as:

0 -& -& -¢
e 0 -

D = gx P gz _’Bﬁ‘,’ _ (13.17)
& B, B O

Because (13.16) contair(kw\]v] )_1, we see that to further develop (13.16), we waed to take
the inverse of this tensor. Generally, to invetixd matrixA, the formula is [22]:

- :|A|‘1E((trA)3—3th 24 2tA 3)——;A (A )-®m 9)n & A 3] (13.18)

But because (13.17) is an antisymmetric tensdrats is zero and so the above simplifies to:
T=—|A["A%, (13.19)

The third and final simplification is to recognitteat if (13.14) does indeed describe the
amplitude densities of QCD, then we should alsonsetO in 77, because this is associated with

the “mass” of the gluons, and we know that the Qfinns are massless. Ordinarily, when a
gauge boson mass is set to zero, some uniqueness licause a degree of freedom is removed
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from the system, even when we enforce the contegtuage fixing of a conserved continuous
current density. In particularg,G” =0 is no longer a requirement but is relegated to an
optional gauge condition. This was a central eisptthe discussion in section 6 and 7. But we
also saw how contextual gauge fixing restores ungueness, and in effect forces the massless
inverses into the Feynman / continuity gauge. &gards (13.13), we then showed at (9.15) how
whenk k' — nf are associated with the gluons within a baryoegluon mass can be set to zero
at the same time the quarks are given a massniplysshifting one degree of freedom from a
gluon into a fermion in a type of Goldstone meckaniso that no uniqueness is lost in the
context of the overall baryon system. So as Iewg@associate (13.13) with the gluons within a
baryon that contains massive quarks, we can ssétheson masses in (13.13) to zero with the
implicit transfer of a degree of freedom that mattes quarks massive, and without any loss of
uniqueness. So in this context, we nowrse0 in (13.13) and (13.14). Together (13.15) and
(13.16), we rewrite (13.13) and (13.14) respecyias:

o (J)=Tr(J,7,J7)
ou(P)=-2eTr R, (5, ) By
= (n +71,_J,TT, J)

"1

= (kK + ig)_

: (13.20)

o (J), =Tr(3,7,3°)

(P) - 4£aﬁmTr(Fvaﬂ (Hﬂ‘]/])_l Bﬁy).

(13.21)
(77 +r_J. 1T J)

" 'n-1

:(kaT + ig)_

With this, we have the quark density and baryonstgramplitudes which should explain the
phenomenology of quantum chromodynamics for whikehgluons are indeed massless.

It is worth noting that sinc@rc(J)0 :Tr(J”nO du J”) for the zeroth recursive order is
simply the abelian amplitude density, we normabgariater,g,, = 9, /(k[ K + E‘) with the
abelian propagator (up to a factoripf This means thatr,g, generally represents the non-
abelian gluon propagator for a given recursive ordend thatr,g,, therefore represents the

physicalgluon propagator with all non-linear effects aauted for. But if7z,g,, represents the

propagator for a gluon field between tdeach of which represents a quark current dertbigy
what can we say abomlz(P’) which is the amplitude density for two monopokesvhich we

have shown have the color symmetries of baryong? kiéw that interactions between baryons
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are mediated, not by gluons, but by mesons. Saarslogy to @K(J) we expect that
ﬂn‘l(kaV])_1 will be the meson propagator at recursive ordern, and that

ﬂm’l(kw\lv])_1 = zrm,‘l(iq)w)_1 will define the propagator for thghysicalmesons with all non-

linear effects accounted for. So we see that ¢ohd” tensor is not just an interesting analog to
iF,. =k, A,, but rather, is an important physical tensor whithnverse form, see (13.19),

plays a definitive and central role in the propagabf the mesons which mediate interactions
. 1/ -1

between baryons and most importantly, nucleons. at Tk, 77, l(|CDW) fundamentally

represents the strong nuclear force between nuslaod other baryons.

So if ,g,, defines the propagator for gluons mediating itttoas between quark
currentsJ, and if (ITOOCD W)_1 likewise defines the propagator for mesons methainteractions
between monopole / baryon currefsthen a full development cﬁJrc(J) should establish the

confinement of quarks within baryons, while thd tidvelopment oﬁm(P’) should establish the

short range of the nuclear interaction. We nowettgy @K(J) in configuration space to
demonstrate confinement.

14.  Direct Quantum Field Theory Demonstration of Cafinement —
Abelian Calculation

While the physical amplitude density for interaos between quark curreniss given
by or(J) = Tr(Jgnm J"), the basic character of confinement is alreadyatetnated at the first

recursive order, that is, b;‘nz(‘])l :Tr(JgnlJ”). Because this calculation can be completed on

a wholly analytical basis, this will be our stagimpoint for dynamically demonstrating
confinement, and in particular, for developing aemtial energ\E between any twgd separated

in configuration space by a distancevhich tightly confines thel together as is increased
beyond a certain length on the order of the nudeale close to 1 Fm. The calculation we shall
now develop directly mirrors the calculation showrthapter 1.4 of [11], with the exception that
it uses sz rather thans,, and with the further difference that in (13.265413.21) we have set

m=0 because the non-linear current densities will thelaes take on a role analogous to the
massm as used in the calculation of chapter 1.4 of [11].

To start with, we use (13.21) to writg from the gluon propagator,g,, as:

(kK +ie) (kK + i)

= (7T0_1+7T0JT7TOJT)_]= kK+ig+ (14.1)
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Also, back before (1.2) we scalegf5, -~ G,, noting that thig can always be extracted back out

when explicitly needed. Now, it is explicitly nesstl Because the curredthave been shown to
have the features of quark currents, we assogatgth the running strong chargg,, and

because all of the gauge fiel@s, were replaced with like-indexed currenls via G, - 77, J,
back at (11.3), we may rescaleJ” — g*J J and then use the dimensionless strong running
coupling a, = g/ / 4mmhc in natural unitsh = c =1 to write (14.1) as:

kK +ig) +4m d I
( )
(kK +ie)

am 3. |,
(kK +i)

= | K+ i+ (14.2)

So now the running strong coupling is now parthis first-recursive-order propagator term.

Next we may use (13.21) and (14.2) to write theléode density:

A J. J'

o (J), =Tr(J,73°)=Tr| 4rmr, J,| k K+ k+(Kkr+i£)2

TF . (14.3)

If we use the SU(3) generators (the Gell-Mann roasril' ) to expandJ” = A'J'", we see that:

A AN T I
(kK +ig)

o (J), =Tr(J,73°) =Tr| 4 A* I, | kK+ E+ A e . (14.4)

So inverting involves taking{4mS)I‘)IjJ‘TJ“ +(K K + 18)3)‘1, which is the inverse of the 3x3

. S . \3 . . \3 .
matrix 4rm A'A'J' 3T —[—dl (K K+ IE) } for which —(k, K™+ |£) represent the eigenvalues of

Am AN I =4m J T via the determinant

4770'5/1‘/1]Ji,JjT—[—51 (kK + if)s}‘ = 0.

Further, commutingJ? from the right to the left of(krkr+ ie+4m J. J /(K K+ E)Z)’l,
which we will need to do at one point in the caddian following (at (4.10 supra)) is made much
more difficult becausel’ =1'J' and J* =A'J'" and do not commute with one another, but
rather commute vig 37,37 |= 37 37| A, A" |= if* ¥ 37 J" # 0 based on the group relation
(AL AT ] =ifRar

As a result, we shall organize the mathematicklutaion proceeding from (14.3) into
two main steps. First, in this section, we shaat all of thel in (14.3) as 1x1 matrices, rather
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than as the 3x3 matrice¥ = A'J'” which they are in SU(3) This means two things: first, we
cwnmws%KW+w+MmQJW(KK+ﬂﬁ*~14kK+E+Mm;JJ(kkkﬂﬁasﬁ
this is an ordinary denominator. Second, we cam fneat the current densitie¥’ as ordinary

abelian currents and so commute them past oneearming[J", JT] =0, at will. Second, in

the next section, we shall review how this abesismplification affected the overall calculation,
and use that review to generalize the overall abhetesult of this section, to non-abelian theory.

Accordingly, as arabelian simplification we may now use the inverse in (14.3) as if it
was an ordinary denominator, and so write (14.3) as

1

@K(J)l:(nggJ ):4770’SJ0 kar+i£+4770’573rJr F. (14.5)

(kK +ie)

Because we now take the$¢o be 1x1 objects, we remove the trace. At (1868dw, we will
also restore the overall coefficient &f which is eliminated once one introduces generator

matrices normalized t(irr(/li)2 =3. The above, (14.5), will now be our starting paior

demonstrating a confining potential between the fifosources.

Using the above, the amplitude density integratezt momentum space will then be:

d*k d*k d' k 1
W(J), = J)=|——=(Jdm T)= 4 J.(14.6
O =y Ol W)=t 3 9049

(kK +ig)

But this is all in momentum space, and we now niedo the Fourier transforms over into
configuration space. We know that in configuratspace, the propagathl(x— y) to first
recursive order, based on (14.6) is found via therier transform:

D, (x~y) =] d4k4 1 gt (14.7)
(277) kar+i£.+ 4ms‘]r‘Jr

. \2
(k,kr + |£)
Additionally, W( J), in (14.6) is also given in configuration spacelwirr, by:

W(J)l:—%ﬂd“xd“ v, (¥ x Y I( ) (14.8)
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This now includes the factor ot which doubles to compensate for generator matrices

normalized toTr(/li)2 =1 as noted after (14.5). It is included becauseareeapproximating

past the generator matrices by using the inversanagrdinary denominator. Using (14.7) in
(14.8) then gives us:

__1 d*k ot
W(J),= Eﬂd“xd“ yrmr, ) ( ))'[(277)4 s AT I(y. (14.9)
(kK +ig)’

Now let’'s get to work evaluating (14.9) as a deénintegral. The first thing is to
separate the time from the space components andpéeetime-dependent objects from the
momentum space-dependent objects, and so writ@)(4g-

.(14.10)

W(J)1=—%j'j dX dy[[ d xd amr, J(x) 9(y) dk® iké(x_y)oj(cﬁk dtxy)

2rr 27T)3 krkr +ic+ 4ms‘]r‘]r2
(k k" +ie)

In going from (14.9) to (14.10), we moveﬂi(y) from the right to the left of the overall
denominatorl/(krkr +ie+d4m J J' /( k K+ is)z), which was only possible because we are

using an abelian simplification in Whi({hJ", J’] =0. So in the next section when we seek the

non-abelian generalization of the results to bévddrhere, we shall return to dissect the step of
going from (14.9) to (14.10) in much more detail“teconstruct” whatever we are foregoing
because of the abelian simplification.

The expressioff[ d*xd® yarm, 3, (x) F (y)=[ & xg J( ¥ & yg( )y can effectively
be set to 1 given thag J, = g&'¢ = p defines the probability density. So in the reanfe,
[d°xa0( %] & ygo( y =00 ( ¥[ d yo,( y=100=1, where p, is the proper, scalar
probability density. Thus the integrfn_ﬁd3xd3 v J(x) Jy)=1. Additionally, as Zee does at

the top of page 26 in [11], we add a factor of Z¢eount for both of the interactiodgJ, and
J,J,. Thus, (14.10) becomes:

dk® ey Ok o)
——([ g® Jo(x-Y) , )
(kK +ie)

100



Jay R. Yablon

Next we use the Dirac delta. This infinite Gaussspike of area 1 is defined as the
Fourier transform of the number 1, that is, é@x)zj(dk/ZIT)lékX with jé’(x) dx=1 So

taking the entire termﬂdxody)j( dI?/Zﬂ) &0 in (14.11), and in the final step setting

k, =0 as at the top of page 26 in [11], we may rewoik t&rm into:
dk X= y 0 ikoX dl%) -

jjdedy’j et =[] dR df & -[271 & | 14.12)

:jjdx°dy>é<°X5(— y)=] iR & [5(- 9 =] K'e¢'=[ 4

Becausek, =0, k k' =—k?. Using this together with (14.12), and also reingwic because
with k, =0 we are not on-shell, there is an overall sign realeand (14.11) simplifies to:

é‘kfck-y)
K2 Am 3,3
4

jd)?j ¢ k (14.13)

Now for jdxo, we note that the path intengI:GexpiW(J) represents the quantum
operator(0|exp(~iHT )| 0 = exg~iET) so we may in this context usfedx0 =T. Thus, setting
iW =-iET = —iEI dX we reduce (14.13) to:

dk &0

El:_j(zn)?’ T (14.14)

The subscript inE; designates that this is taken at the first regersirder, and this should be
contrasted with (1.4.6) in [11] with which it isguisely analogous. The only difference is that at
the first recursive order the term”> = -4mr J J /k* (which means that is imaginary in the
nature ofi¢) plays a role analogous to the mass in (l.4.g1Ltf, which we see very clearly if
we usem? =-4mr J. J /k* to write (14.14) as:

d’k &)

14.15
(27_[)3 k2+mr2 ( )

& =]

Now, our goal is to get from (14.14) which is an agaio (1.4.6) of [11] as we see just
above, to an analog of (1.4.7) of [11], namely, thelian potentialE(r)=~(1/47r)e™. In

particular, just asnin this expression alters the inverse square nafutee@otential, we expect
that m? = -4mr_J J /k* in (14.14) will also modify the potential away from mverse square
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potential. And in particular, one would hope —vas shall now show — that the modification
stemming fromm'? = -4/m J J /k* in (14.14) might lead to confinement. So we nouacged.

The challenge presented by (14.13) is that althaugan be put into the form of (14.14),
this termm? =-4mr 3. (K) J ( K /k* is still a function ok whereas an ordinary massis not.

So this must be accounted for in the integral ¥k, which makes the integration much more
difficult than if m?=-4m,J (k) J(K/k* was not a function ok, as regards both the

explicitly-appearing®, and the implicitd” (k).

As a first step to analytically calculate (14.1%8}, us transform over from Cartesian into
spherical coordinatest =(x y,2 -» X =( 16,#). With this the volume element transforms

over to d’k=dk dk dik - dk' =k?d ksind dddp =k *dkdp si? @. The sign reversal in

the last term arises from the differential geometlation dx*dx = - dxX d¥ because area
elements not only have area magnitude, but alsmwvdoection. So the transformed (14.14) is:

3 jkifx-y) 2 i ik{x-y)
£ =] d k3 é :J-k dk,d¢s.3n9d9 & | (14.16)
(27)° |2 _ 43, (27) 2 v, J
- k4 - k4

Now, k [{x —y) in the exponent is a scalar (dot) product in tispace dimensions. So if the
angle betweetk and x-y is defined to bed, we may writek [{x —y) =|k|[x —y|cosf. Then
we may defing as the radial lengthn =|x-y|, so k [fx -y) =|k|rcosf. Further, let us do a

further coordinate transformation from* =86 - X'>=u=cosd. Thus, du=-sinddd, and
also, k [ﬂx —y) :|k|ru. With all of this, and carefully attending to thenges for the definite
integrals, (14.16) becomes:

2 ik[(jb( -y) - \k\ru
E = I dk, d¢ sind & :_ j Kok, [ d¢j . (14.17)
(2r)’ 2 _4mJ J’ mJ,J’
K okt k“

of coursejj”(dq)/ 2mm) =1 so that term comes out. And we can also readitfopm the integral

over du. Doing all of this and using” - € = 2isin x turns (14.17) into:
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u=1

N R TP | el 1 1w i _ ik
B = o K | =l gkl r
(27) iKr 2 _4mJ " (2m)"ir 2 Amd,
R P Kk (14.18)
2 1 sin|k|r
= (2]7_)2 r .[0 dkr|k|k2_4mSJTJr
okt

We now have oul/r dependence for the potential, and the final irdege need to do

is the one ovedk First, usingjomsiné’dB:%J._m sindd@ we extend the range of the definite

integral and divide by 2. Then, we may 035_; sinx = _w €* becausecosx is an even function

which cancels out when the magnitudes of the taplenttom of the integration range are equal,
as they now are with the extension. Thus, (14nb8) becomes:

2 1 sinklr 1 Ao sink|r
Ei_ (277_)2 r.[o dK’|k|k2_4merJr - (Zﬂ)ZrJ-_m dK|k|k2_4ms\]r\]r
k* k*

(14.19)

__ 1 _1J-oo g k| expik |r
(2n)’ir<= " 2 _4mJJ
k4
Now there is one final matter we must first resobafore we can integrate (14.19),
which is thatJ’(k") in momentum space is itself also a function of motam, and we are
integrating overdk which based on how we arrived at (14.19) is thenewtum in the radial

coordinate direction. Here we keep in mind tdft is not the same as the origindtk, and
that we have already integrated out over thredeffour spacetime dimensions including time
and the two anglesf=cos’uand ¢. So the way to resolve thd’(k’) momentum-

dependency problem is to choose a frame in Whibfk") is independent of the measuik in

this integral. One way to do this is to transfodh to the rest frame])’ :(,00,0,0,@, where
P, is the proper current density. Then, the spati@amentum vector fod will be zero,k =0,

and J,J" in this rest frame will be independent of tde measure. Then, after we have done
the integral, we can use general covariance to nioagk out of the rest frame. So, setting
J"=(,,0,0,0 to rest, we may write,J" = p,> with g, independentof the radial space
integration measurek , and (14.19) finally becomes:
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1 1¢e k ik 1 k k
E=-——p [ d [k|expi] |r2 —_ j —| | exp|<|; . (14.20)
(2n)"i T K2 _ 40P (2m)%i T k®-4m p,
k4

The onlyk dependence left in (14.20) is that which explc@ippears in thk.

Now we must embark upon the remaining integral,cWwhill utilize the method of

contour integration. As now constitute}kil:‘\/k2 andk? hencek” are all ordinary variables.

Thus, we may turn every reklin the above into a complex varialdend then do the integral
over a suitable contour. Specifically, the intégva now seek to evaluate based on extending

into the complex plane vik| - z is:

Sﬁ ) dz= (j-) gz 2EXPiZr zexplzr =<}5 g Z expizr (14.21)
2 ¢ ZG _4msp02 ' .
Z4

We now need to separate this out using the methpdrtal fractions. But as a predicate
for doing this, we first need to work with the demioator z° - 4/mr_p,”> which, with z= ¥ and

d =-4mr_p,’, takes the general form of a cubic equatibfx) = ax’ + bX + cx ¢ with a=1

andb=c=0. A good online reference to help evaluate theésr@d this function is [23], from
which it may be shown that:

26—47761’5002:(22—(4770'5)% poé)( 22_—1+i\/1_3(4ms)é poéj(zz —1—I\/_3( s) %J (14.22)

2 2

Therefore, the contour integral is:

Z° expizr
(ﬁ dz 95 oy —— 2’ -4mr p,’

5 .
-cﬁ dz Z’ expizr . (14.23)

(2~ (a7} pog)( z2-— Y3 (47 ,005]{22 B N Tp— pO%J

2

Now we can separate this into a sum of three mdistcontour integrals via partial
fractions. The result of this exercise is:
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é dZ CJS dz 2 &xp1zr z expizr
2’ - 4mr p,’
_ zexpizr zexpizr zexpizr [(14.24)
_q}qdz . 9 dz i3 +¢, dz -
3(2 _(4m3) pO ) 3[22_ 2 (4_]7015)5 poaJ {22_ 2 (4]70,5)5 posj

Now we need to directly reveal the poles of thetfarderz, so we can obtain the residues and

complete the Cauchiptegration.
(14.24) may be further written as:

gS dz<j>d

zexpizr
dz P

z explzr
2’ -4mr p,’

e 3(z+(4nas)% ,00%)(2—(4770'

zexpizr
+ p

) o)

It is readily appreciated that with eéxplicit pole separation,

(14.25)

dz
G,
3| z

-1+i+/3 11
+‘/ +2'f(4nas)5p03

’—1 iv3 1
z- +2I\/7 (4770'5)6 Po

1
3

+4SC3 dz
3 z+

zexpizr
-1-iv/3 1
J

%
Ao

-1-iv3 1
Z_V 2'[(47”8)61003

This contains six poles and it also contains squaoés of the cubed roots of unity, which are
thus sixth roots of unity. Additionally, il(l4720’s)% and pO% we see that other sixth roots have
been taken to arrive at (14.25). For two of thesth roots of unity, it is readily seen that:

/—1+|J§ 1f3 —1|J_3 1\/_3

which enables us to rewrite (14.25) as:

(14.26)
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5 .
¢ f(z) dz:(ﬁ dzﬂ
c c

2’ -4 p)’
6 dz izej(pizr -
@ 3(z+(4mfs)6 p03)( z-(4m ) ,003)
i . 14.27
o, dz A zexpizr = ( )
? 1 P 1 . PR
3{2{2 |j(4nas)6p03}{z (Z—ZIJ(WS)S,WJ

zexpizr

+qsc3d23[z+[;+*/§|J(4m ) péj[ Z—[21+J2—3i J(“rms)é Poéj

Now, we use the three rootszl:(4ms)%p0%, é:(%_gi)(gfms)%poé and

z,= (1+f )(47703) 0,° to extract the residue and evaluate the integfithwincludes an
overall multiplication by27i which is standard in such integrals. What we iokita

Z expizr
¢_t(2)dz=¢_dzz——— a0

= 27 é[exp(i (4)} pr |+ ex;Ei (; —f’ij(mx ) oot ]+ expE (zlJrfi ](4;7:;/5)é poérﬂ

The overall integral evaluated above’jﬁcsf (2)dz= J._m f( 2 dz fArC t X ¢, which includes both

. (14.28)

the entire range over the real argumeﬁ{sf (z)dz as well asfArc f () dz which represents the

contour arc through the complex plane. But itaadily shown and is well-known that for an
integral of the form (14.27),chf(z) dz=0. So (14.28) is a complete result, and it may

therefore be equated back to the original inteigrél4.20). So we now have:

Zexpizr _ - |k[expifk|r
(ﬁ 2) dz= qs oy —— 2’ -4 p’ I—w dkk2_4msp02
X . (14.29)

:2nié[exp(i(4ncrs)é pO%r)+ ex;El [2 f']( tw,)’ por ]+ exEm (;ﬁf’ij( A, )} oot H

Then, we use the above in (14.20) to compute ohengial, which is:
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,[ dk \k\k expi \k\r

-4
( i a0 (14.30)

. ;Trl;[exp((ms)ép;r)+ex{i 15 ms)épo;} E L) H

We see that forrg — 0 which is the regime in which quarks are asympétiycfree, this will
reduce to:

E1:

—le

05—0
-2 11(3) R (14.31)
4mrr 3

which is the inverse-square law potential thahifi.4.7] of [11]. This is an important check that
our calculation properly reduces to the expectesuilewhen the strong coupling is smaBut
(14.30) also contains a radial dependence insidestjuare brackets, which should give us
confinement if all is well.

Proceeding, we further simplify (14.30) by sepamgtihe roots of unity in the latter two
of the three terms in (14.30) into real and imaginzarts and then using the hyperbolic function

2coshx =€+ €*. We also note thap,> =J,J7. Although we earlier sedl,, to be at rest in
order to get through the integration ovek , after the integration everything is safely in
configuration space and so we can use generaliaocarto transform back out of the rest frame

1

and insertpO% :(JC,J")6 into (14.30). But the proper current density aibgot pO% is itself a
scalar number in spacetime, so it is simpler tgddhis as is. This yields our final result:

E, :‘%T%gl{exp(i(“ms)é poér)+ 2ex;€i%( 4, ) pjrj@:osr{g( aor,)’ poérﬂ.(m.sz)

It now helps to graph the behavior of this funetidf we set the “frequency” coefficient

which is common to all three terms th(4ﬂas)% 0, and regard this at this time to be a

constant (later we shall examine other behaviorghig), and also scale out the lead amplitude
coefficient A=1/12r except for the negative sign of the potential,ntlee can somewhat
unclutter the above by writing:

E = {exp(lfr)+ Zap( —fr l]:os}{— fr H (14.33)

Defining a dimensionlesR= fr= (47%75)% o,°t we further rewrite this as:
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E/Af=-R {exp( R)+2exp( 5 RJEOS{? !ﬂ (14.34)

Now, this is a complex number. Because obsersableergies in physics are real
numbers, we will wish to ascertain the square ntagei (modulus)|E1|2 =E* E and then

obtain |E| = +y| E1|2 . (We use+ because as with any square root of a positive eanthis can

be either positive or negative. TM: symbol here is not for the absolute value buttler real
magnitude.) Therefore, the real magnitude of @yBay be written as:

{cos( R+ 2co{% F%Ectosr(g %+ { sif R+ 25|E3 ﬁamcosE*/;s ﬁzﬂ
=-R*[a+ bl =-R'\[ ar b =- R\ B & G=- R & b

where we have defined the real and imaginary pastaff the complexg, via:

a=cog(R)+ 2co$t R cost( A

|E|/ Af =-R"

(14.35)

: (14.36)
b=sin(R)+ 2sin(} R Ecosk(@ F%
It is readily seen that the square magnitude:
la+bi" = a®+ b
=cog (R)+ 4cod(4 )E:oskf(ﬁ I§+ 4cobR cds I?Dcos(nﬁ 91
(14.37)

+sin? (R) + 4sirf (4 E:osk(f I§+ 4sir( R sirfs I?Dcos(l— I)l
:1+4cosrf(§R) 4 co{R) cofs R+ sii§ sift R] cos(’n—2 I)?

This is not separable via the quadratic equatiaabse it does not cross tRexis and so has no
real roots. S¢a+bi ==,/|a+ bi|2 is just the positive and negative square roota@fbove:

|a+bi :i\/1+ 4coshz(§ R)+ 4 co{ R co$t B+ sif B sifg R cos(uiz3 92 (14.38)

Consequently, we use this in (14.35) to write theevvable magnitud|£1| as:

IE|/ A :¢F€l\/1+ 4costt (% I§+ 4 co R co$t B+ sif R sift R cos(‘n@ )2 (14.39)
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At this point we would like to grapfE| as a function ofR. But before we do so, as a
baseline for discussion we plot the ordinzﬁyz—(1/4ﬂ) r* potential of (14.31). To plot this
on scales and with variables that can be compadredtly to those in (14.39) we us&=1/12r
and R= fr=(47m,)" p,'r to rewrite this potential a&, / Af =-3R™. The radial distance in
spherical coordinates is always taken to be aigesitumber, so we only show the curve for
r >0. This very familiar baseline potential is illustied in Figure 1 below.

34 E1

Af

(%]

E | Af =-3R"
A=1/12x

Figure 1: The Ordinary R™ Potential

For a charge situated matvhich is unlike-charged in relation to the chasgercing this potential,
the natural “geodesic” tendency will always be éelsthe lowest possible potential, so that a
charge aR will trend toward the left of the above graph andve closer toR=0. The like-
charge potential is simply the mirror image of Feyul flipped about theR axis, i.e.,
E,/ Af =+3R*. So, two like-charges will naturally tend to pusither apart. Additionally, a
charge situated at largedoes not require a whole lot of energy to separadém further, because
of the manner in whichg, / Af =-3R* asymptotically approaches theaxis from below.

Because of this asymptotic behavior of the potéfdialargeR, there is nothing in the Figure 1
potential to “confine” this charge. With the prsmin of sufficient finite, small energy, this
charge is free to move all the way outRo- co.

Now let’'s graph (14.39). We see from (14.38) ih&t possible to use either the negative
or positive sign. One choice will yield a like-cga potential, the other an unlike-charge
potential, and we will need to ascertain which ikick. For reasons that will become
momentarily apparent, we graph this using the megatgn from (14.38) which produces an
overall positive sign. The graph is shown belowrigure 1a:
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E]
Af 1ho
ch2 (A
ﬂ:ﬂ?“ 1+4cosh (TR)
Af +4[cos(R)cos(~i_nR)+sin(R)sin(%R)]cosh(—‘£iR)
A=1/12x
4
2
Z L F
R=fr=(47c, )" p,'’r
-4 -2 2 4 ] 8 10 12 14 G 18 20

Figure 2: The Yang-Mills Potential |E| of (14.39) at First Recursive Order

The +1/R potential dominates the behavior of this curveratll R. But at largeR the
terms containing:osf(@ R) take over and force the curve to reverse and becofimitely large
in the same way as does the hyperbolic cosine iunctBetween these two domains there is a
minimum in the potential at approximate(R| E1|/ Af)=(1.668,3.11§3. So by least action /

least potential principles, a charge situated ig plotential will tend to seek this minimum point
at R=1.66€. Starting from this minimum, energy is requiredpull the charge further away

from R=0 and also to push the charge closeRs 0. So the forceF, :6|E1|/6R associated
with this potential is attractive foR >1.66€, repulsive forR<1.66€ and zero aR=1.66€.

Although (14.39) is only an abelian simplificatioss noted prior to (14.5), we
nonetheless see in Figure la the first indicatibat tthe Yang-Mills potential, when

f 5(4720'5)% ,00% Is defined to be constant, iscanfining potential. Additionally, it is atable

potential, because at the same time it operategssaga charge being removed to a separation
much greater thafiR =1.66€, it also prevents a charge from getting too closte source of the
potential, because the potentidl+1/r for r - 0. We shall develop and explore these two
aspects of the Yang-Mills potential in great depihthe next few sections, together with
exploring its asymptotic freedom.

We proceed to gain additional insight into thisgobial if we examine the real portion of
(14.34), (14.35) by itself, namely:

Re(E,) /Af :—Rl{ms R+2ccs(% @mos{g rﬂ (14.40)
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BecauseR= fr :(4770'5)% ,ooér , inthery - 0 limit the square bracket terstillsequal to 3 as
in (14.31) and the dimensionless version of (14&komes.

E,/ Af = -3R*. (14.41)

As is to be expected, this is the pbtential of (14.31) and Figure 1. If we now p{@#.40)
using R= fr= (4ms)% 2.t while still treatingf 5(471115)% 0, as aconstantfrequency as we

did for Figures 1 and 2, the result is Figure el
Re(E,)/ Af =-R™ [cosR+2cos(%R)-cosh (%Rﬂ
Re(E,) A=1/127

Af

a0

Figure 3: The Yang-Mills Potential ReE, of (14.40) at First Recursive Order

This is the exact same function based on (14.84hat shown in Figure 2, except here
we are looking atReE, rather thanE|. We expect thalE,| will an abelian-simplified, first-

recursive order approximation to an observablerg@te and thatReE, in Figure 3, although

not observable because it truncates the imaginanyributions to|E1|, can still give us some

valuable insights into the observable Figure 2 mpidé Specifically, in Figure 3 we see the
usual —1/R potential melded with a confining potential thagims its uptick in the vicinity of

R=2. Both Figure 2 and Figure 3 shows this confinogential, but in Figure 2 the potential
continues to rise to infinity without ever retregyj while in Figure 3 this potential peaks at

around (R, Re( E) / Af) = ( 8.245,85.18y and then retreats due to the sinusoidal behatiats

disappear in Figure 2, see the term reductiond4n3f7). What Figure 3 clues us into, which
Figure 2 does not, islangthscalefor these confining behaviors. Specifically, hesmthe first
peak atR=8.24t is a natural length scale embedded in (14.34) bacduse both Figures 2 and
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3 show a confining potential, we shall now wishassociateR = 8.245 with some physically-
based radius which is indicative of confinement.

This brings us to the question whether Figure thespotential for like or unlike charges.
On the one hand, foR - 0, this approximates to &1/R potential, which is the potential for
like-charges repelling. Thel/R potential for unlike-charges attracting is whapegrs for
R - 0 in Figures 1 and 3. So, one might conclude thgare 2 is a potential for like charges
repelling. But at the same time, f&>1.66€ Figure 2 becomes confining, and so looks like a
potential for unlike charges attracting. And soaeene to the crux: in Figure 2 there is a region
of repulsion for R<1.66€, a region of attraction folR>1.66€, and a region of stability at
R=1.66¢, as already pointed out. But the charges do wittls from being like to unlike; it is
the potential that changes its character as aibmofr. Put differently, we normally take the
view that unlike charges attract and like charggser because the potentials we usually have
available, such asrl/do not at any point switch from repulsive toattive. But the potential in
Figure 3 does switch from repulsive to attractimad that is a very desirable feature of this
potential because this renders it both confining stable. So how do we interpret this desirable
feature of Figure 27?

Even since the time of Newton, and later Coulorilt, potentials have been a central
fixture of theoretical physics. This is because ddtentials are central to both gravitation and
electromagnetism. But at the same time, it has beédely understood — at least qualitatively —
that if one truly were able to experimentally stwdyl/r potential for — O, where zero really
meant zerpe.g., whera was a length even smaller than the Planck lergtimaybe even a
nuclear or atomic length, at some point the ghitential would no longer apply. That is, it has
long been understood that whiler-pbtential has very wide applicability to macroscdpngth
scales, its range of validity in the smaller sgalaot expected to be unlimited. This was one of
the problems confronted after the turn of th& 2@ntury, when the Bohr model of the atom
began to provide a mechanism for stopping the mectrom otherwise losing energy and
spiraling into the nucleus as its potentidid/r — —co. So in general, it has been shown that it
is wise to treat with caution, the applicabilityatlf for extremely smalt in the atomic domain
and below. On the other hand, ar+pbtential, often associated with the repulsionlike-
charges, does prevent a physically viable pictaresinallr. This potential, for example, would
prevent two protons from ever collapsing into onether. But if there was nothing further, the
protons would repel and fly apart, and there wdagddho atomic nuclei. This is really the inverse
of the problem of the electron spiral, and of ceutsday we know that the strong interaction is
what prevents this from occurring.

But what is still missing from present-day undemsgiag, is asingle potential curve
derived from quantum field theo(gis opposed to a potential which is simply postdlauch as

the V() = 1Pp* o+ A (¢ ¢)2 potential commonly employed in scalar field th§owyhich

permits systems of unlike charges to simultaneoagiyot collapse at extremely close distance,
and b) not disintegrate at larger distances. Thisot dissimilar to problem that Max Planck
confronted at the turn of the ®@entury in trying to meld together the Wein cufee short
wavelengths with the Rayleigh—Jeans curve for lavggvelengths. Figure 2, while an abelian
simplification limited to the first recursive ordef non-linear quantum field theory, is the type
of stable potential that is required to seamlessbld attraction and repulsion into a single
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potential curve that provides stability and avaditber system collapse or system disintegration.
And because it has features of both attraction rapdlsion, Figure 2 appears to be a stable,
confining-yet-collapse-averting potential fanlike charges, and more specifically, the type of
potential which is qualitatively suitable to govehe behaviors of the R, G, B quarks of unlike

color, inside a baryon. Again, while Figures 2 @dre approximations based on an abelian
simplification and consideration of only the fingcursive order of non-linear quantum field

theory, these very desirable features will caus® idevelop study this form of potential much

more closely in the next several sections.

Before concluding, let us do some order of magmitadiculations using dimensional
analysis, based on all of the foregoing. We seigire 3 for the real portion of the potential
that a sharp rise in the potential starts to oattine vicinity of R=2 to R=4 and peaks in the
vicinity of the dimensionlesf® = fr= (4720'5)% ,ooér = 8.24%. All experimental evidence suggests
that there are exactly six quark flavors existinghature, and we know from empirical data that
for six quarks,/\(G)QCD =(90.6+ 3.4MeV is the strong interaction cutoff arrived at thrbug
dimensional transmutation, see [9.24a] from PD@&@4].[ The deBroglie relatiorE = ic/ %

enables any mass / energy vaEie mc to be represented by an equivalent reduced |esugtle
A . Innaturalh=c=1 units, E=1/A. The PDG data at [25] states that the “wavelenfjid 1

eVic particle” hc/(1eV)=1.239 841 §531])x10° m.  Via a reducedz=h/2m this is
alternatively expressed as the GeV-to-Fermi conwerslGeV'=.197326963F or
1F =5.067 731163eV ", see also [11], Table 1.2b. These conversionsctfely provide a
shortcut to transpose betweBrand & in E =Ac®/ X without having to explicitly usé andc,
which is the practical upshot of usifg=c=1 units. So vialGeV=5.067 73116F ', the
mean empirical value/\(G)QCD=.09063eV has a radial length equivalent vieB=1/%, of

/\(6)QCD =.09065eV= 459F "= 1/2.178= 1. So we are able to defing =2.17& as the

approximate radial distance associated with the gaiark QCD cutoff /\(6)QCD which we
henceforth denote simply as.

Because this cutoff radius is the approximate eiogliradial length at which the QCD
coupling a, — « and thereby confines quarks in six quark moddis t, =2.178 is the

length scale at which we expect the confining paémnnside a nucleon to peak. Although
Figure 3 only accounts for the real portion of plméential and is abelian and is based on the first
recursive order only, it does provide a dimensissl [18.24F at which the potential peaks in
Figure 3. So in order to introduce an observahlesigal length / energy scale into Figures 2 and
3, we now associate, =2.178& at whicha, - o in six-quark theory withR [J8.24% at which

the real portion of the potential peaks in Figure 1That is, we now regard
r, =2.17& - R [ 8.24!to be two equivalent ways of expressing the sphysicalradius, the

former dimensional based on empirical data, andattter dimensionless and based on the theory
that led to Figures 2 and 3. So using the definilR= fr= (4ms)% 0,°T = constan leading to
(14.34), this means that we can implement the &stsocr, =2.178 - R [ 8.24! by way of:
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8.2450R=( 4m)" p,ir=( 4w ) p,} 2.178 . (14.42)
We may then invert this and usg ™ =.197 326 963GeV to obtain:

(47mr ) o} =8.2451145¢ * = 3.78F = .74TceV= 74MeV. (14.43)

So we see a (cubed root) density number that, ardar-of-magnitude basis, is what we expect
to see when we are talking about baryons such aston® and neutrons with

m, =938.272046 21LMeV andm, =939.56537¢ 2LMeV respectively, see, e.g., [26], which

establish the lower range of baryon masses whictergdy run from about 1GeV to about
6GeV, see, e.g., [27].

There is also another way to understand (14.4Bjctwin view of 4rmr, = g2 / 7ic, is to
cube everything and then write (14.43) as:

Jarmgp, = 9.0, = (. 74TeV)’, (14.44)

This contains the running of the coupliag andlibee (uncoupled) proper densipy of the
guark currents in natural units. BecauZd eV is a constant energy, as the strong charge

gs =+/4mr ¢ grows the bare proper density diminishes in invgmoportion. Asgg =./4m
weakens the bare proper density grows larger iarge/proportion. So the conclusion is clear:
bare quark current densitiep,  will be more greatly-caricated where the running coupling

as is smaller, and less-concentrated where the rgnooupling is larger. For an infinite
running couplingag - « , the bare proper densgy - 0 . Theree of course many reasons

to believe that confinement and the existence ofags gap are related to the running of the
coupling constant, which is an inherently quantdfect. The above is yet another way of using
the dimensional analysis in (14.42) to (14.44) éttdr understand the nature of confinement in
relation to this running of the strong coupling.

So, with all of these results, we have fully cated from the classical analysis of
sections 1 through 10 which gave us evidence Heaitagnetic monopoles of Yang-Mills theory
have many of the symmetry features of baryons hatithe electric current densities of Yang-
Mills theory similarly mirror the quark currentsy) & complete analysis relying upon quantum
field theory. We confirm via (14.32) and its vifimation in Figures 2 and 3 that even at first
recursive order, and even with an abelian simglifan, there is a very definitive appearance of
confinement in the form of a potential that growsreasingly rapidly at distances larger than

R= fr:(4ms)% ,oo%r [03, which based orr, =2.17& - RO 8.24!, has the correspondence

r=.79F = R=2C In other words, all of this suggests that cogrfient starts to kick in, in
earnest, once we try to separate tivby more thanR U3 , which is the dimensional length
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r, =.79F based on associating =2.17& - R 8.24!. So as predicted by the theoretical

results here in combination with the empiri¢sf’oc, = 906+ 3.4 MeV  isiat about792F

that one crosses over from asymptotic freedom &artsg0 encounter an uptick in the quantum
potential E, which we associate with confinement.

15. Direct Quantum Field Theory Demonstration of Cafinement — Non-
Abelian Generalization

At (14.5) in the prior section, we introduced drelean simplification of the amplitude
o (J), =(Jg7qJ”) which enabled us to trea(tnnng(I@kT tie+am I T /( KK+ -5)2)_1 as

an ordinary denominator and treat the currents aasnwting [J”,JT}:O . Based on this

simplification we arrived in (14.32). Now we wisb extend (14.32) to the generalized non-
abelian relationshig 3°,J" [= J7 J7[ A", A1 |= if* ¥ 373" #0. To do so, we will identify
precisely those points in the calculation of thevus section where the terfit* A*J'?J1" 20
was neglected, and thereby pinpoint what wouldheegeneralized form of (14.32) had we not
neglected this term. There are two aspects to wkatlid which now need to be updated: first
treating the inverse as an ordinary denominatat,seond, commuting witEJ", Jf] =0 . We

take these in turn.

As to inverses, for a square mathkthe inverseM ™ islefinedgenerally (and often
deduced) byM M ™ =0 |, whered is a diagonal unit matrix. isltcustomary to use the
mathematical notatiomM ™  rather thanM for two reasdsisst, this serves as a mnemonic
reminder that the objed!l is a matrix and not an ordinary number. But thigust a symbolic
convenience, and one could still writéM rather th&i' so long as one was very careful to
keep in mind that an object is a matrix and make that whenevet/M  was in fact calculated,
this calculation was performed using [ﬂl/M ) =0 . The moreoss issue is that matrices in

general are not commuting, and so the useviof watten 1/M  generally serves as a
placeholder to hold the commutation position of th&trix inverse in what may otherwise be a
string of matrix multiplications for which left-rig ordering matters. For example, suppose we
have three square matricAsB andC which have the relationshij= BC™* . If we wanted to
rearrange, we could multipiyom the rightby C, and thus obtailPAC=BC"'C= E . The fact
that we useA=BC™" rather thaA=B/C tells us that a righttiplidation is in order. Had
we instead started merely witA=B/C  we could end up wither AC=B orCA=B , but
the former would be right and the latter would beomg. Here too, one could still write
A= B/ C and try toremembethat A= BC™" and notA=C™B is the original relationship, but
that is not best practice for two reasons. Fitss illustrates thatA= B/ C is notationally
ambiguous and mathematical notation should be unambiguo&econd, in a complicated
calculation (such as the one in the last sectiomres original expressions undergo substantial
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metamorphosis, it may be difficult to properly agunbfor or reconstruct left and right ordering
even with a good memory.

And yet, there are benefits to théM notation, egfigavhen it comes to visualizing
cancellations of terms between a numerator and rdgrabor, as well as carrying out other

mathematical operations which do not involve anlieitgcalculation of M ™ viaM M ™ =
We saw an example of this in (7.20) where we ukedtibscripted down-arrow,“ ” symbol as a

marker to denote and hold commutativity positioncombination with the usual “divide by”
symbol “/” the eliminate this ambiguity in lieu ofsing the " notation. So with the present

example, we could writtd=BC™" al= B,/C and in this way cardito use an ordinary “/”

symbol without ambiguity. If the posited relatibips was A=C™*B we could then write
A= B/ C and similarly have an unambiguous expressionamadditional benefit, it may turn
out that after a complicated calculation is conglet matrixM which started out in the form
M~ ends up being reinverted backNbwithout it ever becoming necessary to do the eipli
calculation of M™ viaM IM ™" =J . A good example of this i®thesult (14.32) presently
under review: We already pointed out prior to 824.that one could revert m* =J,J°. Now
we do exactly that to rewrite this as:

E = _%ﬂr‘l{exp(i(4;'71315\](7\]")é r)+ 2ex;Ei%(4msJaJ”)é rj Etosk{%( MSJJJ”)% rﬂ (15.1)

Although 4/m J.J" originated in the inverse terr(wkrk’+i5+4merJT/(I§K+ is)z)_l in

(14.3), by the time we completed the complex setabéulations that led to (14.32), (15.1), this
inverted appearance efrr J,J* ended up reinverted in the form of (15.1) and éh&as no
need to explicitly calculate{J,JT)_l vid, J’ [QJ, J’)_lzd or make use lub tinverse in a
string of other matrix multiplications Instead, weund that the cubic and sixth root
mathematics that started with the denominatdr4mr p,’ 14.21), ended up with the

original 4rm J,J" appearing in an uninverted sixth r()d;mSJUJ”)E.

As to the second aspect, commutation, we now lask: would (15.1) change if we had
done the calculation of the last section ugiag, 3 | = 37 37 [ X' A" |= if* ¥ 3 37 # 0 rather

than [J", JTJ =07? Or, stated differently, how does (15.1) geneeaii theJ which it contains

commute via[J”, JT] # 0 rather than[J", JT] =07 If the calculation of the last section had

used no commutations between two or mdreith different spacetime indexes, then (15.1)
would remain as is. But if there was a commutatioas there was in in going from (14.9) to

(14.10) — then (15.1) needs to be reviewed andilpgsamended for[J”, JT] #0 . Let us now
trace this through.
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The abelian simplification began at (14.5) where treated the inversk which we
reorder asl = (4mSJ,JT /(k,K + i‘s)2 +k K+ Ls)‘l, as a denominator. Now, let’s treat this like
a true inverse. The mathematical skeleton of timgerse comes from substituting
4 J, I’ /(k, K + is)2 ~ x and k k" +ie - —k and representing this inverse bs (x-k)™.
Then, taking the series expansion, we have:

| =(x-k)™= —%[h% +(E)2 +(l|33 +(—®4 + j = —%(Z:ZO(—@” . (15.2)

So reversing this substitution and again reordernthe inverse now tells us that the inverse
written as a series expansion is:

| = Kk g+ TS
(kK" +ie)
, . (15.3)
_ 1 _Am ) | 4m 3T _ 1 o (| A 13
krkr+i€ ! (krkr+i£)3+ (k[kr+i€)3 e k,kr+i82n_0( ]) (k{k’+|{;‘)3

So let us now return to (14.7) for the Fouriemsfarm D, (x-y) and use the above
inverse instead, thus replacing (14.7) with:

d*k &0 o | Am 3,
D, (x-Yy)= — 1) —— . (15.4)
1( ) _'.(2”)4 krk + ISZn_O( ) (kar + i£)3
We then remove the leading coefficiegt from (14b@cause we are now reintroducing

Lo 12
J“=2"J with generator matrices normalized Ta(/l') =5  and restbeetrace that was
removed at (14.5), and so write:

W(3),=-Tr[[ ' xd ¥, J( ¥  x ¥ I( ). (15.5)

Then using (15.4) in (15.5) we obtain:

n

_ d'k &0 o | 4m 33 | L,
w(3),==Tr[[ & xd' yrm, J( >)I(2n)4 krk,Han:O( 1) m (y).  (@15.6)
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This now replaces what was earlier (14.9).

Now we can pinpoint exactly how the abelian appr@tion of the last section lost
certain information due to the fact that we treathé current densities as commuting

[J", JTJ =0. This is because in going from (14.9) to (14.0@) movedJ"(y) from the far
right, over to the left past the inverse withoubcern for commutation. But now, we are treating
[39,07]= 3737 [ A A |=if* ¥ 373720 as non-commuting, and in (15.6) we see that to
move J?('y) over to the left past the series saim we must effectively commuté” (y) past
(JTJT)n for anyn right up to infinity, that is, we must mO\(e],J’)n J(y) - F( ))( J J)n .
Accordingly, we see that what was neglected inabelian calculation of the previous section
was the non-zero commutatHrJ,Jr), J”] z 0.

One might think to attack the required commutation(15.6) by actually trying to
caIcuIate[(JrJT), J”] # 0, and then generalize {C(JTJT)n : J”} for largern. But that leads to

some very unwieldy expressions, and there is a rbetfer way. Instead, we make use of the

fact that for SU(N) generally, each” =A'J“, where A' are the group generators. Of course,
for SU(3): we use the eight Gell-Mann matrices, but thermiseason for the present discussion
to limit ourselves to one particular gauge group we can be perfectly general. So in general,

the number of group generators for SU(N)NS -1 and thei =1..N? -1 generators sit in an
adjoint representation of the group.

Now, althoughJ® =1'J“ is a perfectly good way to expantf, let us be even more
pedantic about this, and use the bra-ket notationake one ofA' and J'“ a row/bra object, and

the other a ket/column object. It does not mattieich is which because the result is identical in
either case, that is:

37 =23 = (A 37) = (374 ). (15.7)

Just to illustrate explicitly, suppose the grou@i$(2). Then (15.7) would be expanded to:

B o'
3 =03"=(d|3%)=(c" o* o°) 3 |=(F|d)=(3" F F)o?, (15.8)
JSH 0.3

and we see why it does not matter which is the boavand which is the column/ket.

So, going back to (15.6), we set adg(x)=(A'|J, (X)) and 37 (y)=(3(y)[A')
with opposite alternatives (15.7) and so rewriis #s:
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W (J), ==Tr[[ o xd ymr, (2| 3, ( )ﬂ(dﬂ(Wz:O(—l)”[MJ (37 ()| A1) (15.9)

2m)" kK +ie (kK +ie

In the above, we are now free to move (bé’(y)‘ bra over to the left past tf(elTJT)n, so long
as we leave th(#/l"> ket right where it is way over on the right. Thésbecause it is thd’
which hold the commutation position, not td& . The only restriction on movinQJi”(y)‘ to
the left is that we cannot move it to the Ieft‘dfg(x)> because now the ket and the bra will
“butt heads.” But most importantly, becau(slé” ( y)‘ is a function of configuration space while
J,J" inside the series is a function of momentknwe can move(J“’(y)‘ far enough left to
get it outside the integral over’k. Doing this move, and also moving t(u%“ (constant) bra

all the way over to left outside of th'xd* y integral, (15.9) now becomes:

SO O] i osao

W), =Tri] (kK +i

Contrasting with (14.9) and (14.10), the dlfferervm@ught by non-abelian gauge theory now
rests in the bras and the kets appearing above.

Now, let us focus on reducing:

Tatxd* yarm| 3, () 37 ( §]=]
:J'J.dxody’.[ d3xg| Jg(x)>J' d yg< i}’(y)|
As we did between (14.10) and (14.10), we can mav® the rest frame where
0.J, = 9w = p is the probability density. But now, we hawg;g\]i = defining a total of
N? -1 such probability densities, with the result tlfafxgs‘ J, >I o yg< I (y ‘ ‘1>< ‘
For the SU(2) example, to be explicit:

00 20|

(15.11)

1 111
)(F]=1)(1 1 3=/1 1 1= (15.12)
1 111

So _[d3xgs‘ 3, () o ya( 3°(y)| is an(N?~1)x(N*~1) matrix of onesl’, as opposed to a
diagonal unit matrix3’ . Thus, (15.11) reduces to:
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[[d*xd*

and in view also of A' \1” =(N?=1)(A \ (use (15.12) to see this explicitly for SU(2))5(10)
reduces further to:

g dik T o Amrd.JT n j
W (), = =2Tr|[ d® dy (4 \1j(2ﬂ)4 krk’+i£z”:°(_]) {(kf—ﬂg)sJ A7)

(NI Y =[] d% o2, (15.13)

(15.14)

-2 otar] O fkr+,£<mz:0<—n“[4"”s—%ﬂ )

(kK +ie

Above, we have also added a factor of 2 as we ti¢ddl) to account for both of the
interactionsJ,J, and J,J,.

Now that the seriex in (15.14) has served its function by showing xacdy what
commutations need to be carefully considered, detewert to remove the series via (15.3) and
rewrite the above it renaming the summed indaxesj as:

W (J),=-2( N -1

A ISP A PN CER T
(K Kk +ie)

Now, as in (14.10), we separad&® from d°k in the Fourier terms to write:

W, =2y ox el 5 e

i) [ Kk €i+(‘"70fs~’r~”2}”>. (15.16)
kK +ig

We then apply (14.12) witk, =0 so k k' =-k?* and we can removeie exactly as before, so
(15.16) becomes:

W(J),=2(N-2) Trf

d K W éwy( o2 4773;;LJTJ-1‘;,i>, (15.17)

Finally, as in (14.14), we seftdxo =T andW =-ET to obtain:

E, =-2(N*-1) Trj%@‘ Gt (kz —4mk5—;wj-l\A‘>. (15.18)
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This is the non-abelian counterpart to (14.14).isltdentical in form in all respects. The
substantivedifferences are as follows: A) There is an oveti@te (Tr) as expected for a non-
abelian gauge theory. B) There is an overall fadb 2 to account for the generator

normalizationTr(Ai )2 =1. C) There is a further overall factor &F -1 which accounts for the
dimension of the adjoint representation of SU(ND)) The integrand inside the Fouriefk is
exactly the same as before, with the exceptionithatracketed inside of @l" on the left and
a ‘Ai> on the right. We also note that (15.18) empldys ¢ustomary inverse notatiod ™

rather than the ordinary/ M employed in (14.14), but this is only a differerafdorm. If we
wish, we can as a matter of mathematical notagpnesent (15.18) exactly as we did (14.14), by
writing this as:

_ 3 jkilx-y) _ . .
E, =2(N*-2) Tr(A'| —j(gn‘;s . _é4merJ’ A= 2(N?=1) THA | B e} A')- (15.19)
k4

It is now to be seen that the term inside the redratackets above éxactly the samas
the integral forE, in the abelian simplification (14.14). We simplged to remember at suitable

points in the development that it is really an mseenot a denominator. It is the sandwiching of
this inverse betwee(vl“ and‘/l‘> which now contains the residue of the commutatiigsues

that we first started to tackle in (15.6) and (35.T7his is to say, in the non-abelian gauge theory
the inverse must be and must remain sandwichedeleet@fl“ and‘/l‘> in order to take proper
account of[ 37,37 |= 37 J7[A' A [= if* ¥ J°J" £ 0 in non-abelian gauge theory. These
(A'| and|A") carry and preserve the fact that in (15.5)( x) was to the left and (y) was to
the right of the inverse. Everything else has heen distilled out from (15.19).

Now let us fast forward a few steps from (14.14§1t4.20) during which we transformed
the coordinates to eliminate all but the integradrodk and in a final step set, J* = p,> where

P, is the proper probability density. Nothing oceatrduring that stretch of equations as
regards the inverse. So we substitute the reddi?Q) for E .., In the above and now

explicitly show the inversék6 - 477515,002)_l , to write:

2 _
Z(N—_l)}TrMi | dk ||k * expik | r(k - 47m’s,002)_1|)li> . (15.20)

57T (277)2| r

This is the non-abelian counterpart to (14.20).
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Now we need to again integrate ovek , and will look to contour integration via
|k| — z to help us do so. But there is an important dififiee between this integral and (14.20),
because in an SU(N) non-abelian gauge thegry has an NxN matrix representation
J I =223 I" =21 p, p} =ps2, which we emphasize using inverse notation. Sweeadid

in (14.21), we extend this integral to complex nemsband write the contour integral which is
identical to (14.20) in form, but for the denommrahow being an inverse:

. -1
SBC f (z) dz= IC dz Zzexp |zf %- 477175,002) : (15.21)
Using the same partial fraction separation empldy@a (14.21) to (14.27), we then arrive at:

<j§c f (z) dz= qSC dz zexp izf 72— 4770’5,002)_1

:%cﬁqdz zexp izr( z+ (4

)
+%q'>cz dz zexp iz{ ﬁ(%—%i](ws)é poéj z—[
+%<J.>C3dz zexp izr[ (E+£|](4m) ,03J z

This is the counterpart to (14.27), but now, beeaps=A'p, with i =1..N*-1 for SU(N)

which stems fromJ? = A'J'?, the steps we must take to further develop (15:2®)an analog
of (14.28) will bring us into qualitatively new, dwery deep territory in a number of ways.

By 0

-

-1
54’—2ij(477l’s)é poéj

First of all, becaus@, = A'p, is an NxN Hermitian matrix and the next step isise the
three rootsz, = (47m., )’ o}, z, = (%—%i)(4ms)% 0, andz, = (%+§i)(4ms)% 0,° to arrive at
an analog of (14.28), we must inquire about boéhrtature of the rootg,, z, z as well as about

the nature of,oo%. In the contour integration of the last sectioa twokz to be an ordinary

1 1 1\3
complex numbez= A+ iB. But if we need to take, e.gz, = (47m)* p,’, and if g, = (p(f) is

an NxN Hermitian matrix, then we must regardas an NxN Hermitian matrix for SU(N),
because this is the only way to make these roatesspns zero which is required to perform to
contour integral. Otherwise, these would simplyeligenvalue equations farin the form of,

e.g., ‘zl—(47ms)é p.:|=0 using|A =detA. Second, ifp, =A'p, :(p(,%)s, then we must find

out more about the cubed root objgaa%, because this is not an ordinary number but Iserat
the cubed root of an NxN Hermitian matrig, =A'p,. So what we really must do here is

122



Jay R. Yablon

harmonize the structure afwith that of ,00% and with that ofp, in a way that all makes sense in
a quantum field theory. Two pieces of historiaahtext will help set the stage for this.

First, in 1843 imaginaryi =J-1 and complexA+ Bi numbers were still fairly new
when William Rowan Hamilton sought to generaliZze= -1 to three dimensions by creating
two more numberg k different fromi which also are specified by =k?=-1. Among other

things, this helped to describe rotations in thspace dimensions. In a seminal flash, he
conceived the answer to his quest, and used hisngerto carve in the side of the Brougham

Bridge the quaterniong = j* =k *=ijk =-1. In so doing, he extended complex numbers into
three-dimensional spaces. These quaternions idreesy much in use throughout physics, but
in modern parlance they take the form of the Pspih matrices[ai 0, ] =ig, g, normalized to

Tr(o;,)* =1, which have the quaternion relationshig = 02 = 0% = -ic g0 ,=, .. Then, in
1954 Chen Ning Yang and Robert Mills took the ngbep and generalized all of this to even
higher dimensionalityN*-1 via the generator%/li,/lj]:ifijk/lk of whatever compact simple
traceless gauge group SU(N) one may wish to consifle, for example, the color group SU(3)
is an eight-dimensional quaternion-like extensibilamilton’s original complex analysis. So it
is natural, when trying to solve (15.20) by extemgdinto complex numbers vikk| -z and
dk - dz, to takez to be not the simple complex number A+ iB, but a Hermitian matrix of

NxN dimensionality And, after all, the matrices of SU(N) are simpigtrices containing several
real and complex numbers, rather than just a siagleA+ iB. So if dk. - dz in now an NxN

Hermitian matrix, we are simply doing NxN contontagrals all at once and packaging them up
in a single matrix. The off-diagondl x N— N of these integrals are over complex measares
and the on-diagondll of these integrals are over real measures. Bhisyportant to keep in

mind because thg, = A'p, which appear in (15.22) and which we need to®ebots such as

zZ= (4ms)% ,00%, make use of these very same generators whicthangrogeny of Yang-Mill's
extension of Pauli’'s and Hamilton’s extension ainpdex numbers into higher dimensionality.

Second, in 1928 Paul Dirac was attempting to abtiaé non-trivial square root of the
relativistic energy relationshigp, p” = nf but wanted to find a relationship which — unlike t
Klein-Gordon equation a.k.a. relativistic Schrodingequation —was linear in the spacetime
gradient 3°. In the process, he found that although the émpusmtof special and general
relativity were based on a Minkowski metric tengpt” which generalized to the spacetime

metric g, , there is an underlying fermion structure to spaeethat lays hidden in a set of
defined via a Clifford Algebra such thap*” :%{y",y"}. In this way, Dirac’s equation
V' p,|uy=m U is just the square root gf, p° = nt, but with a much richer substructure than
is revealed by the trivial root equatiqyw =+m. This is also important to keep in mind

here, because channeling Dirac, the presenqqﬁofn the root equations residing in (15.22) is
telling us that there is a cubed root substruateséing “beneath the hood” of Yang-Mills theory.
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This is a substructure that we shall now find aedetbp. And as we shall see, this substructure
will bring us to the very heart of quantum fieladny.

Both of these historical threads converge herealise now that we are takiago be a
Hermitian matrix so that we can set the roots tp= (47115)% P :(95,00)%,

z,=(3-%1)(4m.) o} =(4-%i)(00)' and z=(1+5i)(am.) o} =(1+5i)(0.00)
and complete the contour integration (15.22). Beeaof this we must find out about thqe(é
objects to which these three are proportional up to numeric factors. So notwuke closely

study p, and p,’ .

Insofar as,ooé is concerned, this is not just any ordinary objethe p, = A'p, of which
this is the cubed root is itself an inherently #igpace-dimensional object. Specifically, in the
rest frame, p, = 4mr J° = 4y gy 'y is aproper probabilitydensity of the source curredt” in

the three space dimensions of the natural woltdnatural unitsz=c=1, g, has a mass

dimensionality of +3 and a length dimensionality-®for 1/volume. So this means tfmﬁ has

a mass dimensionality of +1 and a length dimendiynaf -1, i.e., that its dimension is of
1/length. If we useu = ,00% to denote an object with mass dimension of +1ctwhvhen scaled
with the running charge tgf/,zz(gs,oo)% may be interpreted as a density along a singlgthen
dimension, then we may writg_o, = g° and thusp, = 4°. But these three dimensions for
which p, is a 1/length measure are not just some abstract space: thefi@physical space of
physical experience which we often refer to thet€aan coordinates x, y and z when we seek to
talk about measurements in that space. So rétherjust write p, = 1%, let us define three

distinct 44, iy, 1o, Which define proper linear densities along eacthese three measurement
axes, and thus writgp, = 4, 4, H,, as thedefinition of g, 4, 1,,- However, so as to not

introduce any bias toward a patrticular x, y, z ardgin view of the structure of antisymmetric
field theory, we should really define thegg using wedge products a8, = 5 44, U, O, -

Finally, becausep, = A'p, is itself an NxN Hermitian matrix, let us simikardlefine each of the
one-dimensional z4,, , , in like fashion, and then ascertain the detailpg(,LIOX,,uoy,ﬂoz)

relationship. That is we now define, = A'u,, , th, =A 1) and iy, = A<

Tending for a moment to notation, we now define thotations A =A% and
ﬁoEﬂok:(ﬂOanuoyknquk) to represent each ofi* and g* as a vector in the adjoint
representation of the internal symmetry (not spamxesk =1..N* - 1. This is to say, vectors
V in experiential three spaoaill be represented in boldface typeand vectors in theinternal

symmetry spaceill be represented by with an arrow above the object. We also usé tb
represent a dot product in internal symmetry spaeesus the [ reserved for experiential
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space. Further, in the same way that we use thenfren slasiV = y“V, to represent the “scalar
product” of a vectol,, with the Dirac gamma matricgg’, we will also define, E/To[zo with

a horizontal slash to represent the internal symyrsgtace scalar product gf, with the group
generatorsi . Note thatz, is itself a vector irboth internal symmetry and experiential space.
Thus, we now denote the X, y, z components @f by 4y, =A'1,,, o, =A 4, and
o, =A%, <. In these notations, this means that we are yredifining f by

Po =3 Ho Doy O,

All of this now means, using the group structlﬂ‘emionship[/li A J =if ™A™, that:

Po = bt D, Ooph, = 5 (o[ ooy thog| + o Hostbo) + o # o5t o))
= oo A =5 (N bt [ A o) A bl 142 pao) [ X g A gt J+ X g [ A g )
= L (AL ATV A AT 2 A ]) o o) 1
=L oy oy oy (/1 if Ko+ AR QG )/1

. (15.23)

From this we can factor out th® generator from very right, and simplify to:

Po" = 3 o Hoy Moy (A I+ i KT+ A 07)
= 2™ (o Ho,) Hox + Hoy Hod Mok + oo ol o) A - (15.24)
= 306 ™ (Lo, Hoy Moy + HoyHol Hoxt Hoo o' o)

For a particular gauge group SU(N) with free index=1...N°-1, this contains N* -1
simultaneous equations.

If we wish to gain a better geometric understagdifithis relationship in the three-space
of spacetime, we may choose the simplest interyraheetry group SU(2) just for illustration.

Here, A -~ o become the Pauli spin matrices (normalized with tactor) and f™ - &™

becomes the Levi-Civita tensor. With a free inaex(15.24) for SU(2) now contains three
simultaneous equations. To garner the pattesufiices to explore one of these three equations,

say, for p,'. From the middle line of (15.25), using boldfdgpe to represent vectoksin the

three-space of ordinary experience, and then usidigary cross and dot products in these three
space dimensions, we obtain:
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1001 2i (lqu luOy lqu +luOy:qu /'IOi; +IUOZ:qu:U Oy)ok

= 21 (( oy Ho,” = o 2t10) O o + (Mo 21t o= 10,7 o) Tt o4 (14 0 1 03— 0 0 ) 1 ) 1525)
=%i((ﬂozxﬂo"‘) T o+ (e x ps) T o+ (15 pt ) Ju&) o
=3’ x s’ ) o ) = 2ie" (g > gt ) o gy ) = 2ie™ (g x )
With this notation we can write oy, = o i,* in the final expression in (15.25) as:
Ho =00 fly = 0" 1) :( o ”Ol_if’oz} (15.26)
K 1, Ho

So in sum, (15.25) may now be written gg =1ig"” (,Uo' X Uy )E-luo- Given that this is
just for thei =1 component, we can generalize (15.25) to ithe2,3 components by writing
p"‘:lism”(y‘x,uoi)Dgo. Then, generalizing this back to any SU(N) by - A* and

g™ _ ™ we find that for any SU(N), withu, = A o 71, the relationship (15.24) is:

po" = it ™ (' g Gty = 35 ™ (g <t ) Ao (15.27)

As a final notational consolidation, recall thedalission back between (1.9) and (1.10)
regarding how the wedge symbil is used to represent a cross product in intesyametry

space. Specifically, we observed that wrileA B’ =(A ><B)k is used in experiential space, the
. . . - —\k
analogousf ™A' B! :(AD B) is used in internal symmetry space. So we wishs® this to

compact f™ (,uo‘ x ,uoi) to include the internal symmetry space cross pbdymbol (. But

there is already a spatial cross prodwan this expression. So the final notation weadtrce
will be O =x0 to denote a “super-cross product” for a situasanoh as we have at present,
where we unite [l ) a cross product iboth the internal symmetry and the experiential spaces.

With this notation, we emplofig, O )" = f™ (,uo' xu,) ) to write (15.27) as:

P =41 (0 o)" Oy (15.28)

Then we may suppress internal symmetry vector imeia g," - g, and 0™ — 0 as we did
at (1.10) to implement one final consolidation lué internal symmetry space vectors to:

Po =i ( 00 f1o) G- (15.29)
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The above is (15.24), reduced down to the geonadifrianderstandable Maxwellian language
of vectors and vector products in internal symmatrgt experiential spaces.

Now, returning to the original probability densitg, =A"p,™ with which all of this
started, we may take the scalar product of (15:28) A™ to finally write:

2o = A", =A™, 0 f1,)" et =i A o (1,00 1) o= 31 (165 1 ) Tt (15.30)

In the final expression, we have s&tl] = -[J=-3, which because we are symbolically using
O=x00 to represent a unified cross product, resultdTid™ =4 = . With the running

charge strength scaled back in, this becomgs, =+ i(gfﬂoEk gfﬁo) [gf,uO.

So if we want to see what this three-space proityaliensity which in turn is situated
inside the current density terd 3 = ,° looks like in terms of the proper probability diys
along each of the x, y, z space dimensions, SU@)iges a good illustration. From (15.28) and
(15.30) andg, = Ao fi, — G0 f1,, we have:

103 pl_ipz m -
Po=0"pm=| o P = tio™ (1, O )" Gy = i 6o (2,0 1) it
Po T10, ~Po
I L, _ (15.31)
=1j ('UOD#O) ('UOD’UO) —l(,LIOD,LIO) I:E #03 :uol_lluozj
(0 ) +i (1,0 1)’ ~(,0 )’ Mo+ —pg

The construction of the probability density for g dimensional groups SU(N) will follow this
same basic pattern.

When we used the analogy following (15.22) of Hawac having discovered a Clifford
Algebra substructure to spacetime in the fornm6f :%{ y”,y’} , it was (15.31) above that we

had in mind. Normally the consideration of thel@bility density ends withp, = A" p,"™ above

and goes no further. In (15.31) which uses SUR)lligstration, we deconstruct the probability
density which is a density in a three-dimensior@ume, into its component probability density
vector iz over each of the x, y and z dimensions (and dwerirternal symmetry dimensions).

Given thatJ,J? = p,” in turn, this is a level of substructure withic@rent density four-vector
J# = p,u” which does not appear to have previously beenuared.

Now, we come to thetr = (g, f1,.&,) = (4,11, 1% ) themselves. This three-space

vector of N?-1 internal symmetry vectors has a mass dimensiorIgfi.e., of 1/length.
Because these represent probability one-densttiesquestion now arises as to the origin of

these one-densities. Here, we simply introduceopey ‘probability field P (x, y, 2 = B(x)
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which for SU(N) representsl” -1 dimensionlesgrobability distributions spread over all three
space dimensions. Thereforko I30 =-H. We very deliberately refer to this as a prohbgpbil

field, because as we shall explore in the next severioss, the abelian relationship (14.32)
which were are presently seeking to extend to rmii@n gauge theory is quantum field
equation. So the question naturally arises: whatlze “fields” in quantuniield theory which

are analogs of the gauge fiel@g of classical theory which are the variable of gn&ion in the
path integralZ = [ DGexpi[ d*xS( §= expiW( J? That is, because the classical fie@®$

disappear during path integrationy definition what then are the “fields” ofjuantumfield
theory as representedW( J) following path integration?

The answer to this, is thétte probability fieldsP) (x, A z) are the fundamental fields
underlying quantum fieId theoryThe coupled Iinear probability densities will bermalized

such thatm. 9. (X) &, (%) dx=1 ”.[ 9. ( y) dy=1 and ”.[ 9. (2) i1,( 2 dz=1, which is

to say that coupled the field associated V\ggFiF(’,(x, Y, j will deflnltely be locatedsomewhere

along the x axissomewheralong the y axis ansomewheralong the z axis. We earlier did the
same thing between (15.11) and (15.12) with thetlpere-space-volume probability density. If
we then wish to ascertain the one-density of thidability along each of x, y, z, we simply take
the partial derivatives of each. This means thatg, from which we constructegb, in (15.31)

above are themselves rooted in the space graﬂiei(tax,ay,az) according to:

gs%ﬁo = %(ﬂo v Ho v Ho z) = gé(lu 7 iy!/’liz) = g%s/j

(9,00,,0.)(N(x .2 B(x ¥ ¥=0( =) ®x))=0( =0 ke o,

where a dimensionless running probability field glowg h(x) is definedin terms ofg, and z,
by the above first order differential relationship,and where thez, are defined by

Po =4 o, Oy, O, prior to (15.23) which became bys, =i (1, & f1,) G, in (15.30).
This h(x) not to be confused with the Higgs fief{x) . We simply uséx here because it is the

next letter afteg in the Roman alphabet. Taking (15.32) in the cactgd formgf,a0 = El(hl30)

(15.32)

, we also haveiogfﬂoz/iol:l(h%)= o4, =0( hR).

In terms of this bare probabilit?, (x) and its couplingh(x), (15.28) and (15.29) may
now be written together as:

J>I

0.0, =4i(0(hR) 00 (hR))" mM(hR)= gp,=4 (O hR)OO( hE)m( +. (15.33)

Further, we may take the internal symmetry spageoduct of the above witd =A™, thus:
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9A"0," = g ° By = 9Py
=2ia"(0(hR)00(hR)) m(hB) =2 W o(0( hR) D O( hE))m( +g. (15.34)
=1i(0(hR) B 0(NR))m(hR)

Again, |30(x) are dimensionless probability distributions. Faméntally,thesel% are the fields
of quantuntield theory. Each of the thre@fﬂo = I:I(hﬁ’)) in (15.32) has a mass dimension of
+1 by virtue of the gradierl =(9,,0,.0,), SO 4.4, :%i(D(h%)EFD( hT%)) m( hR) which is

the overall three-volume density has the requiradsiimension of +3.

We may also calculate olIt(hl%) =(Oh+ 1) B as shown in the last two expressions of
(15.32), to write the above as:

)&0(hR))m(RR)=1 {(Oh+ m) BE(O b &) HHO b B)—
(OR & 0R) DR
|+h*((onR & 0R) EI]]—P+(I:I B-6 0 he)M-p+ (0 BE 0 §D i
+h((OhR & OhR)MHR+(0 hpE0 §M hp+(D pE-0 AP K
+(DnhR -5 0hR) m kR

0(hR)=(0h+ 1) B

=1i (D(h%
3

h

.(15.35)

which now includes in the form of a first orderfdiential equation, the running of the usual
interaction chargeg, (x) in relation to that of the newly-established piaibity coupling h(x) .

In the next section we shall discuss the physidakpretation of these results, but at the
moment, our goal is to complete the mathematicdoaig the contour integral (15.22). So we

return to the 2 =(g0,) . 2, =(3-%£i)(gm)" and z=(3+%£i)(gp,)" poles, and now
approach these in view of what we have uncovemtkg(15.22). We now see that each of these
fox K U, represents a probability density along one ofehireear space dimensions x, y, z, and
that -g, =5 4, U4k, O#,,. We see that each of these linear probabilitystiess has a Yang-

Mills structure o, =A',, #h, =A'1,) and w, = A4, . We see that the probability
densities g, = p, , i =1..N? -1 for the gauge group SU(N) are related to the lipgabability
densities by (15.29), so that the original probgbdensity g, = A" p,™ which appears ayb% in
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(15.22) is related to thegz, according to (15.30). And we finally see in (15.3hat the

themselves are part of the gradient relationsj)ﬁm?o = I:I(hﬁ’)) of a dimensionless probability

distribution field P, (x) = B (x), so that the usual representatigis= p,", -8, =A'p, for the

three-dimensional (per-volume) probability densitg related to the probability field via (15.33)
and (15.34), which is intertwined with the relasbip between the running charge strength

9. (x)=y4m(x) and a couplingh(x) associated with the probability field(x) in the

overall form ofh(x) P ().

Given all of this, let us commence the contouegmation of (15.22) by associating each
of these three poleg, z, and z, in (15.22), which we take to be Hermitian matrktemsions of

the |k| of (15.20) into one or more complex planes, witte ®f the three,ct:(#x,#y,#z)
which have been defined, in essence, as the colo¢sl of the density, =g, according to what
was originally p, = 3 4, Ou,, Ou,, and what we now recognize following the developtran
(15.23) to (15.30) should be denoted = 5 44, D44, 044, ,, and which, in (15.30), calculates
out to be s, =%i (@, B 1,) O, First, we update (15.22) to include all that have learned
through (15.35), including the fact that the comtimegration variable is to be regarded as an
NxN Hermitian matrix. So we specifically establistf -1 real Z for SU(N), and then extend
into one or more imaginary planes via setting- A'Z2 =10 z=-z, and so write (15.22) with
Ay, =gl as:

§,f(2)dz=g_ dz-sexp if-2-( ga))’)"

:%Sﬁqdz—zexpi-zr(—ﬁ( 9790)%) l( z( 9’00)%)

1

+49, d’HeXDH{—H(E ﬁuj( 9o )° 1[_ [_; gﬂj( ga)’ - (15.36)
+%Sﬁczd-z—zexp-i-z{_z+[5+£q( 45, 1[% [_2+£), j( ) =

Now we come to.pO% which first motivated the development from (15.28jough
(15.35). We now know that each of thes%% should be associated with one of the

9. 4 =0(RR) in s, =4 44,044, Oy ,, because thesgy, weredefinedto be the cubed roots
of -, in recognition that this density, subsists in three space dimensions so that its cadt
naturally has an x, y, and z aspect, in other wdrdsauselV =3 dx[J dyll d: is the differential
volume element within whichg, is a density. So now we have migrated from thegirally-
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appearing 700% - ﬁﬁ = pbx%,pbyé,poz’) - M= (#w#w,#m) and the question now
becomes how to do the assignments in (15.36) as@the three contour integrals ovey, C,
and G. As with dV =3 dxO dydl d: we will want a balanced x, y and z assignmentctvhve

will do after the contour integration when the tighay to do this will become clear. First,
merely to get started, we assign t;ag% in C;, G, and G successively tc(.,uOX .,uoy,.,uOZ) and

then set pole valuesz, = gf#OZ, Z = (%—@i) gf%x and-z, = (1 +B3] ) gs +4,- With this, we
advance (15.36) to:

qSCf(-z)d-z=qgc dz 2 exp iz(—i—( %)2)—1

:%S[”qG'*'fﬂzexlfﬂzr(%+ gé#ox)_l(—;- giuox)_l
+1g[> dz—zexp4zr£-z+[% QIJ g%juoy _ (_g_[_l_igij é%yJ_ ' (15.37)

2
+%Sﬁczd-z—zexp4'-z{—z+(%+§ij g%-Hon (‘4 (_*'E'JQS%ZJ

Now we are finally ready to do the integral. Hay®set the three poles we remove those terms
and setz=-z, z=-2 and-z =-Z in the respective residue terms in C, and G. We then

tack on the usualsi factor, and relate this back to (15.20) with tHémaportant non-abelian
indication p, - ©,. Finally discard the contour arfArcf(-z)dz:O through the complex

planes. We thus obtain:

-1

<j>c f(z)dz= Sﬁc dz-2 exp—iz(’—?— 4ms.p02)_1 = J: dkk|k * expl| (k °- 470'5.902)

= 27 %{expg +10xr+exm[— ﬁ.jg g+ exp£_+§.J é%;} (15.38)

1 1 . 1 1
= 27| extig, ) + o404y ) expRo lun )+ (id0 Lupr Jexp(-L o r)|
This should be contrasted to (14.29). Now letis tto the X, y, z balancing. The structure of

this integral clarifies that a@(xyz+ yZX- zx), andnota 3 x[0y0 z combination is the suitable
way to spatially balance this equation, so we adedhe above to:
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[~ di [k * expik| r(k 6—(93700)2)_l
_exp(igf#oxr)+eXF(i%g§#oJ ) extla b )+ exbig ot ) efpto bur) _.(15.39)
=2nié—; +exp(io o, )+ extfi 30 e ) exflo Lt )+ exply tuor) efp-Sy iur)

rexp(io. o |+ extli 20 1 )exp[£ 0. )+ exidg L uh ) exb-La l )

The reason why; x Oy zis not appropriate is clear: it would zero out dhdire integral by
identity, and this is because there is never aagepin (15.38) wheréhree terms with spatial

aspects are multiplied. All we have are terms Id@(i%gf#yr) exp(@gj#)r) wheretwo

terms are multiplied. So we discafdg(xzy+ VA s yx)z as inappropriate to the way (15.38) is
structured and use on%/(xyz+ yzX+ zx); which is positive signed based on the right-hanid-r
convention. The above may now be consolidated ugitmshx = € + €* to:

[ ik e[k * expik |k °= (g.2)°)

_exp(igf%xr)+ exp(ig f#o;)+ ex;éig Syt )_
+2 exp(i%gj#oxr) cosiﬁ@gf%;) . (15.39)
+2exp(i%gj+¢0yr) cosiﬁ%gfﬁg)
+2exp(i 19, 441 ) cost2g 4 1)

Then if we define a unit vectod =U' =(1,1,]) as a notational convenience to consolidate the

line with exp ig% r], we can use the ordinary dot product in experkrkiree-dimensional
s Ho

space to further consolidate this to:

:'E;dkr |k|k“eXpi|k|r(k 6—(93790)2)_1

11 1 o - : (15.40)
=27 gg[u Eéxp(lgs3+10r ) + 2ex;€| 30 M ) Dcos(v?g SHY )J

Plugging this result into (15.20) Witgf :(4770'3)%, then yields our final non-abelian
result, which should be carefully contrasted wite abelian (14.32):
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e =200 ook -0 )
S ) . (15.41)
2(N%-1 ‘ . ) 1 |
=" ( 3 )‘%T%—;Tru‘[U@Xp(igssjuor)+ 2ex;(i%g§+¢or)Dcos fg;#or)])l'>

To express this in terms of the coupled probabikty finally substitutegfﬂ0 =I:I(hﬁ>)) from
(15.32) into the above in the fong;f,uO =0(hR) to write our final result:

E = —w%ﬁl—;ﬂ@‘ ‘[U rexp(id(hR) r)+ 2exdi0(hR) ) Dcos(@[l(hPo) r)])‘> .(15.42)

This expresses the potentigl at the first order of recursion, for the non-aéei non-linear
gauge theory, as a direct function of the couplethability field hR.

Given thatgf,uO =0(hR) is a definition of both the bare probability; field and its

coupling h and thatgj has a definitive interpretation as the cubed ad@t running interaction

coupling and that each df are running scalar coupling numbers, we may atsmelh directly
in terms of the knowrg, rather simply, by:

wl=

h=g (15.43)

s -

Then, in view of the definitiorg.’, =0(hR) ak.a. g}k =|Zl(hl30) in (15.32), (15.43) leads
to the differential equation:

0.4 =0(g}R)= o/OR+: gD gF (15.44)
relatingbare probability F; field to bare probability density,. This is easily rewritten as:

Og,

+ =0OR+5—=Fh, (15.45)

S

In general, we shall not find the need to explcitke (15.45) for the bare probability and bare
probability density, but shall work with tleupledprobability hR, and thecoupledprobability

density gf.,(,l0 as interrelated b)gj.,uo =0(hR). Although h= gj and we could write the
coupled probability a:gj—Po, we shall generally opt to use the fotff so that the equations are

not filled with a plethora ofgj cubed roots. More generally, this will help irse#ing us to
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think about the probability densities not in terofsthe three-dimensional coupled probability
densities g0, with which we are of course familiar, but in termfsthree independent one-
dimensional coupled probability densitiegﬁje.t0 = hg, into which a careful analysis of the
content of (15.22) has required us to deconstgJgs,.

Now we shall study (15.42) as well as its abeliaaonterpart (14.30) from a variety of
different viewpoints, to see what these teach witaiuantum fields in a non-linear quantum
field theory (NLQFT) such as Yang-Mills gauge theor

PART Ill: ANALYTICAL NON-LINEAR QUANTUM FIELD THEOR Y:
SPECIFIC EXAMPLES

16. Constant Probability, Zero Probability DensityFields: Introduction to
Analytical Non-Linear Quantum Field Theory

Beginning in this section, we shall use equatib’h42) above to analytically explore the
workings of non-linear quantum field theory (NLQET)sing several different illustrative
examples of coupled probability fields?. While E in (15.42) is based on the amplitude

density @K(J)lzTr(JUﬂlJ”) at first order of recursion, where from (13.21),

m:(ﬂo‘l+noJ,noJ’)‘l and ITOZ(kar+i£)_l, and while physical amplitude densities

@IZ(J) :Tr(Jgnw J”) in (13.20) are expected to have non-linear coutidns through infinite

recursive order, the use é)ft(\])l does introduce a first order non-linearity whistvery helpful

to flesh out a deep understanding of NLQFT asuaalytical field theory versus simply doing
numerical calculations with NLQFT without being @ltb obtain analytical functions involving
fields and source potentials.

In this section, starting with (15.42), let us fficensider a region of experiential space in
which the coupled probability fieldtF, = constan. This means thagf.,u0 =0(hR) =0 even
for g, #0 which is the approximation we considered to obta@E, =—(1/47)r™ potential in

(14.31) graphed in Figure 1. So for a region afistant coupled probabilitq; = constan,
(15.42) reduces to:

2(N*-1 , . 1 1 :
E :_¥%T%%Tr<)l' ‘[U @xp(igj (0) r)+ 2ex;(i%g; (e)r)Dcosbég; (ﬂ)r)])l'>
2(N*-2) 1 11, W AN 11
:_¥E?§Tr<j [ +2u |2 >:—¥EF—3Tr<A 194') (16.1)
110y 11
:—2(N2—1)E?Tr</] K >=_(N2_1)ZZTF
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This makes use ofr (A’ ‘A‘>:%(N2 —1) which is just another way of stating the normdiza

Tr(/]i )2 =1 for SU(N) with N? -1 generators. Contrasting to (14.31), we see thétis limit
of the 1/r potential, an overall factor of 1 in thieelian U(1) theory becomes an overall factor of
(N2 —1)2 for SU(1), and we explicitly see how the factor2oih 2(N2 —1) compensates for the

i\2
generator normalizatiofr (/1' ) =3.

But what is far more intriguing then comparing treefficients as between abelian and
non-abelian gauge theory is the very deep statemmant(16.1) makes about the non-linear
guantum field underlying the 1/r potential of lineabelian gauge theory: In non-linear quantum
field theory, a 1l/r potential goes hand in handhwat constant coupled probability density
hP =constan. Restatedin non-linear quantum field theory, a 1/r potentialthe_source of a

probability field which is constant, while any aatl spatially-varying probability fields are
sourced by other than a 1/r potentiaDf course, we can certainly set the cha@ezo a.k.a.
a5 =0 in (15.41) a.k.ah=0 in (15.42) to arrive at the very same result weise(16.1), or as
we did in (14.30) to arrive &, =—(1/47)r™ in (14.31). But setting the coupling, =0 — or

for that matter settingny coupling precisely to zero — is just a mathemaia@alization which
may be approached but never precisely attainetlarréal physical world as evidenced by the

fact that a,,, - 1/137.036.. and no smaller. But one could very readily haveoastant

probability density over a given region of spaceha physical world. Andi is an absolute
certainly that we do have and do observe 1/r paénin the real physical wortdthis is the
precise, very well-studied potential of electrodymes! So (16.1) it telling us something very
deep and physically real about non-linear quanteid theory, and we need to explore this. We
shall now begin to do so from a number of differ@etvpoints.

Let us start with Quantum Electrodynamics, QEDjclhs the paradigm of an abelian
gauge theory. Going back to (13.21), the QED atuti is simplydi (J)_ :Tr(JUﬂn J") with

T =71 = (krk’ + i,s)_1 and with the trace removed and a factor,ofestored because there are

no Tr(/li)2 =1 -normalized generators. That is, in QEDy (J), :%Jg(k[kr + 'E)_l J’, with

9 (J), designating that we are taking (13.21) througlo zecursions. Starting withi (J), ,
one can repeat the calculations of sections 141&ndnd in either case, one will arrive at a
potential energyg, = —(477T)_l for a Coulomb charge, as we did in (14.31), whiwn leads to

the Coulomb force lawdE,/or :(1/4ﬂ)r‘2. See again [11] chapter 1.4. If we scale in the

electric chargee which is related to the running coupling dym =e” /ic with the familiar
a —1/137.036.. at low probe energy / larger then these becomg, = —e2(477r)'l =—ar™

along with the inverse-square force |a&, / ar = ar > of Coulomb.
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ComparingE, = —e2(47'rr)_l with (15.42), we see that both of these equataresfor a
potential energf. And, we see that both of these equations aretifums of a running charge
e~ @ and a radial lengtm. But what (15.42) contains whick, :—e2(477r)_1 does not

contain, is gf.,uO:EI(hﬁ)) which is the gradient of the coupled probabilitgndity. So
mathematically, in non-Abelian, non-linear gaugeatty, the coupled probability fieltR and
its gradientd(hR) are the “new” elements which do not appear ainadl linear theory such as

QED. But the reason for this, as we learn from¥}L8s that in QED,O(hR)=6. That is,
when viewed in the context of a non-linear quanttield theory (15.42), QED has a
E, = —€ (47r)" potential because its coupled probability densifx)-R (x) =constan. This

leads us to concludé& seemingly-linear quantum field theory such as Q&Bctually a special
type of a non-linear quantum field theory in whibk coupled probability fieldiR is constant.

This is a very fundamental observation. It teisthat all quantum field theory in the
observed physical world — even QED - is a non-linbat that there are special cases such as
QED whichappearlinear because the coupled probability fi¢t#8, is constant. So while we
might ordinarily state that QED is a linear quantdield theory, we may with absolute
equivalence assert that QED isnan-linear quantum field theory for which the coupled
probability — the dimensionleskR field — is constant. Either viewpoint ends uphwihe

observed potentiaE:—e2(47Tr)_1. But the latter view allows us to consider QEDtle

broader context of non-linear quantum field thegrighich may be essential, for example, when
we consider how electrodynamics results from tleaking of SU(2),, x U(1), - U(2),,, where

SU(2),, indubitably is a non-linear quantum field thecapd U (1), is similarly expected to be a
non-linear quantum field theory once it is madet mdra larger groupgs breaking down to
include U (1), , see, e.g., [28]. In other words, the latter veavables us to view QED as a non-

linear quantum field theory just like all of thenet SU(N) gauge theories that one encounters in
particle physics.QED is then distinguished from all other phenomegimlal gauge theories not
by its being a linear quantum field theory, butits/coupled probability field being constant.
From this view,all quantum field theories are nonlinear, but therppkea to be particular
guantum field theories for which the probabilitgldl is constant, and these are the ones with 1/r
potentials. This means that electrodynamics issuod non-linear quantum field theory. And,
SO0 too, is gravitation in its Newtonian limit!

This also means that potentials other than 1/ sxscthe confinement potentials shown
in Figures 2 and 3, and presumably the short-raamgentials of nuclear interactions, all arise

from the common feature that their coupled prolitgbiields h(x)-R (x) arevariable over the
spatial regions being considered. So it is theiaphehavior ofh(x)-R(x) which drives the

spatial behavior of the potentiE(x), and vice versa. Consequently, this means thahwime

compares one type of interaction to another — eswgnetic, weak, strong, nuclear, hadronic —
one is in all cases dealing with a common non-lirggaucture. The dynamical feature which
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distinguishes the specifics of one interaction friimse of another is the nature of the behavior
of the probability densityh(x)-R(x), and via (15.42) which applies to any SU(N) inttic,

this ties directly to the potentidI(x). Sometimes we may posit a probability or probgbil

density and deduce the potential. Other times &g posit a potential and deduce a probability
density and via integration a probability. Butal cases, non-linear quantum field theory via
(15.42) fundamentally links a potentigl to a probability density? just as assuredly as the
classical field equatiotid = D* F = D* DG of (1.12) fundamentally links a sourd¢o a gauge
field G.

The foregoing is not just an analogy. It is a daed fundamental feature of quantum
reality. Classical theory contains coupled gaugld$s g&. But these are the variables of

integration in the path integral, so by definititbiey are stripped away and there is no gauge field
left in quantum field theory. Something else tattesplace of the gauge field, and (15.42) tells
us that this is the coupled probability fiekdP . And, while the sourcé does survive the path

integration into@rc(J)n :Tr(Jgﬂn J”), the dynamical source object in the quantum fibkbry
turns out not bed, but is rather the momentum-space integragpgantum action
W(J):j(d“k/(Zﬂ)“)@K( J which we see, for example, in (14.6). And, bg time one

carries out not only the*k but also the spacetime integrﬁlsl“xd4 ya’ (3 D(x ¥y I( Y

as in (14.8) and (15.5), what surviveshs=—-ET, see (14.14) and (15.18). If we factor out the
time T as we did in the section 14 and 15 calculationsn tthequantum action source \'g
replaced by ajuantum potential sourcg as in (15.42). If we were to do some alternative
calculation that did not factor out time-dependertbgn we would remain witV = —-ET which

is dimensioned as angular momentum a.k.a. actidnghais also the dimension of Planck’s
constantz. So just as the fieldfc = hP when going from classical to quantum field theory,

SO too, the sourcd =W. To sum up: in quantum field theory, the quantaction W is the
source of the quantum probability fieR] just as in classical field theory the currentsignl is
the source of classical gauge fi€d

The next several sections will explore and deefflerf these analytical statements, using
the respective examples of constant isotropic gntibadensities, isotropic Gaussian probability
densities, and the observed probability densitiesngle and double slit experiments.

17. Constant, Isotropic Probability Densities and @nfining Stable
Quantum Potentials in Non-Linear Quantum Field Theay

In the last section we considered the special aHsa spatially-constant coupled
probability field h® for which the probability densityD(hPo):O and showed how this

corresponds with an inverse-square potenlEaIt—(l/4m). As we now start to consider a
variety of non-zero densitie8(hR)#0 and thus spatially-varying coupled probabilitylde
ke, it will help to first transform (15.42) from Cadian into spherical coordinates
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X =(xy,2 - X=(r6,9). The first step is to expand (15.42) into eaclitohdditive terms

using the gradient vectdd =0, = (ax,ay,az) in Cartesian coordinates, thus:

exp(io, (hRy)r) + exdia, (hRy) r) + exgia ,(hP;)r)
2 +2exp(i 30, (hRy)r L0, (hR
El=_M 111, r(A| el 10, Cosré ( )r) A1).(a7.1)
3 4mr3 +2exp(i% ,(hR) 1 cosréfay(hl%) r)
+2exp(i1d, (hR)r cosréfaz(hPo)r)

Second, sinced =9, =(ax,ay,az):(a/ax,a 10y,0102) is a three-vector in physical

space, it will have the same transformation prageras reciprocals ofix = dx :( dx dy d).

Specifically, leaving the time as iglt' = dt, the invariant differential length element in the
physical three-space @l =dx’+ dy’+ dZ = df+ Pd*+ r’sin’d dp*. So we orientr =0 to
align with the positive x axis, so thalx=dr. With the positive z-axis a# =0, we define
0< @< to represent the descent angle from this +z axid,0< @< 27 to represent right-
handed rotation about the z axis with the posikvaxis at¢ =0. We can then pick off the

componentsdx' =(dr, rdé, rsinfdg) from the square roots of terms @i°. Then, because
O0=0,=0/0x, the transformeddx' will take on the formd; :(6r,ag/r,a¢,/r siné’). Thus,
throughout (16.1) we may substitude=(d,.0,.0,) - 8,=(9,.0, /1.0, /r sind) to obtain:

_exp(iar (hﬁ;)r)+ exy(la )+ exéi%(hPo) /siﬂ)_
(

‘/1‘>- (17.2)

Amg) /sie)

Third, keeping in mind that in spherical coordirsate= 0, let us consider only coupled
probabilities which are isotropic under rotatiot®atr=0. Thus, we consider the special set of

coupled probabilities for whicld, (hR)=9,(hR)=0. Given thatexp( 0 = coslf P= , such
an isotropic probability further simplifies (17.@).
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E1=—Mi—l—lﬂ< 2| exp(io, (nR) 1)+ 2exdiza, (hR) r) Ocosfia, (hR) 1)+ §4')

3 4irr 3
2(N? -
:—Q%ﬁl—?% ‘[exp(la( ) 1)+ 2ex{i1o Dcos(r—a )])I (17.3)
2 (e _q)? 11
_§(N ) airr

where we have usedr(A'|6|4')=63(N*~1) to separate out a pure 1/r potential which is
added to the rest of the expression, uditfg-1 independent coupled probability fielth&', .

Fourth, and finally, the expression@r(h%):/l‘ar(hPO) will have an NxN

dimensionality for SU(N). A main purpose of sentit5 was to obtain an equation for the
potential which contains the non-abelian probapilie =A'P, but in the process, we also
achieved a decomposition of the three-dimensiomabability density into each of its one-
dimensional components. This makes (15.42) digyirdifferent from (14.32) even without
B, =1"P,. So to gain an appreciation of the general baiafi (15.42) in a variety of forms
including (17.2) and (17.3), let us simplify (17t®)its abelian form akin to (14.32). The easiest
way to make sure we match up the overall coeffisiénto work from (17.2) and keep in mind
the correspondences laid out just after (16.1). ecBipally, we reverse-migrate

2Tr</1" ‘/1'> ~ N?-1, (Nz—l) -~ 1,andR, - R, to turn (17.2) into the abelian form:

hR)r)Ccosh2a, (hR) r
)r)Ceosi£, (hR)r) 7.0

9, (
4719| +2exp(i 10, (R,)) Coostf 20, (hR))
0,(hR) /sim) Ocosk2a,, (hR) /sid)

This now corresponds directly to (14.32) transfairte polar coordinates, and in recognition of
the finding developed throughout section 15 tha (Hms)% po%:(gs,oo)% in (14.32) all
represent probability densities deconstructed éotkinee space coordinates. We see that for a
constant probability density); =(d,,0,.0,)R =0, this will reduce to the electrodynamic
Coulomb potential E :—(1/4ﬂ)r'1, which is identical to the result in (16.1) excdéipat we

have used a spherical coordinate system and wedtaeeinted for the correspondences laid out
just after (16.1). For an isotropid,(hR)=0,(hR)=0, (17.4) reduces to an abelian
counterpart of (17.3), namely:
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112 1 . .
E = -E?(:—;@[GXP('@ (hR) r)+ 2exdia, (hR) r)Dcos(r@c)r (hR) r)D (17.5)

Now, in Figures 2 and 3 we showed how the potki(tid.32) behaves if we regard
f 5(4770'5)% 0y :(gspo)% as aconstantfrequency. Regarding :(gspo)% as aconstantwas an

assumptionve made at the time to gain a sense for the behatithis potential, and we saw
that even at first recursive order, this potenga&hibited attributes of confinement. In the

interim, we have seen thégspo)% really needs to be thought of as a probabilitysitgralong a

single one of the space coordinates x, y, z. 8o p (15.23) and thereafter we established that
for non-abelian gauge theory, =344, 044, U4, defines a spatial vector of probability

densities 4, = (#Ox’%y’#Oz) along each of the three space dimensions, whietiorship for
abelian theory simplifies t@, = 1, t,,1,,- Because (17.5) is an abelian equation, we may us

the simpler o, = fy, to Mo, Therefore, gspoE(gf,uw)(gfpoy)(gfpog, so the earlier

treatment assumingd :(gs,oo)% = constan corresponds in light of what we have learned since
to regardinggf,u0 =constant. Further, at (15.32) we linked this to the geadiof the coupled
probability field via g *fz, = El(h|50) which for abelian theory is simplgj,uO =0(hR). So the

assumption back at (14.32) theft:(gspo)% =constan from which we then proceeded to
develop Figures 2 and 3 corresponds to regarcﬂjﬁ%:lj(h%):constant in (17.4) and
(17.5). Further, with the isotropic probabilig), (hR)=0,(hR)=0 assumed in (17.5), the

former f :(gspo)% =constan assumption translates into assuming #athR ) = constan in
(17.5). So, we shall now examine (17.5) for thadition thatd, (hR)) = constan, which is the

same condition used in our earlier consideratiorf1df32) for f :(gspo)% = constan, which

was then drawn out in Figures 2 and 3. This allawsapples-to-apples” comparison. Finally,
because we are considering an isotropic probapihig means thatiR is a functionexclusively

of r, andnotof & andg. So whilep, = 4, 4,,1S expressed in Cartesian coordinates, for this
isotropic, radial-only-dependent probability fieldie have gfﬂox = gfﬂof gf,uo 2= gf,uo ,
with the consequence that = 1, °.

Given the above, if we now posit thdt(hP) = constant A whereA is a positive, non-

zero, real constant, that means thet hR will have the general form of a linear equation
y = Ax+ B with x=r and withA andB being constants. To simplify as much as possiéta)s

discard the constant of integrati@y and simply posit an isotropic coupled probabifigid of
the general linear form witlB =0, thus:
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hP, = Ar. (17.6)

Clearly, 0, (hPO) = A, consistent with our supposition of a constanialagrobability density.

BecausehR, has a mass dimension of zero anldas mass dimension -1, the constanmhust

have a mass dimensionality of +1. Now our task melto link this constarm to a confinement
potential and to phenomenological strong interactiata, and to see whether discarding the
integration constant runs into any contradictioMge do this recognizing that (17.5) is still an
abelian approximation, but a better one and witheniaformation developed than was (14.32).

The first thing we may now do is substitdte(hR ) = A into (17.5) to write:

E =- 41]”1(§+—;[exp(iAr)+ 2exp(i%Ar)Dcos(|§Ar)D. (17.7)

Next, so we can study (17.7) in a dimensionleshidas let us define a dimensionless radial
coordinate via the to-be-determined consfaniith a mass dimension of +1 as such:

R= Ar (17.8)

which also means that* = AR™. Therefore, we use (17.8) in (17.7) to write:

12 1
477%: R(S [exp(lR)+ 2exgiiR Dcos(\éj R)D (17.9)
Now, keeping in mind the way in which the potenttl in Figures 2 and 3 appeared to be

confining, we will want to similarly examine thehmvior of (17.9) above.

As with (14.34), this is a complex number, so wgaia wish to ascertain the

|E[* = E* E, and then obtaifiE|=+|E|*. This equation has a similar form to (14.34), but
here, it may be written as:

4ﬂi___[_+ coS(R)+— co$t R Dcos(wiF% { 9*‘ s{g RO CO(S@ Iﬂj (17.10)
=-R™(a+ bi)

where:

2+1cog(R)+2 cogt Dcos(w— I%

sin(R)+2sin( R Ebosl(flé

Q
Il

(17.11)

O
1}
©|=
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The decomposition of the probability density intoee separate spatial components introduces a
new term of 2 into the real portion of (17.9), which carries tdsutions from the two
coordinatesd, ¢ over which the present example is isotropic. 8w,rcontrast (14.37):

la+bif* = a? + b? :g+§[—1cos( R) +2 cogt I%Dcosb@ Fﬂ
+&cos (R)+4 cod(3 ROcosH L R+& cfsH cbs RO cdsh K
+&sin* (R) +4 sirf (4 )Ek:osﬁ(—2 I§+§‘1 sif R sift RO cos{lﬂg 92 : (17.12)
=3+ 2cos(R)+4 cosﬁ(@ R)

+[ #cos(R) cogi R+ sifi R sifk B+£cos(iR) ] cosréé R)

Making use of the above in (17.10 while takiig then yields:

£ 37+ 4 cog(R) +4 cosﬁ(@ R)
_iR_

A +[8ilcos(R co:{% ) S”ﬁa S'(“ |:)+27 C((SIE F{' Coé*% 92

The graph of this equation now appears in Figupeldw:

(17.13)

|£|~-14

-
P

R]\/§%+—§7—cos (R)+%cosh’ (I-R)

+[ﬁcos (R)cos(LR)+Zsin(R)sin (%R)+2—icos(§R)]cosh(§R)

_:4 o

[ Ba

-2
Figure 4: The Yang-Mills Potential |E| of (17.13) at First Recursive Order

We see that this curve exhibits characteristiosooffinement and collapse-averting stability, just
like Figure 2. But the decomposition of the threme&hsional probability density into three
separate one-dimensional components and the isoalgmg the 8,¢ space coordinates has
reduced the amplitude of the curve somewhat, mothegninimum of the potential to the right
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and down from(R,|E|/ Af) = (1.668,3.11 in Figure 2 toR,|E|/ Af)=(2.623,0.53} above,

and somewhat flattened the minimum region from &bRe-2 to R=4. As with Figure 2,
however, there is nothing in Figure 4 which givesaubasis upon which to introduce a mass
scale. As we did with Figure 3, let us now grapé teal portion only, of (17.9). We may obtain
this directly from (17.10) with the imaginary tersst to zero, namely:

47TA* ReE, = ~R*(2+3 co§ R +2 co RO cof? R). (17.14)

This function is shown in Figure 5 below:

AT ReE, = =R (2+4] cos R+2cos (4 R)-cosh (£ &) )

3

10

Figure 5: Equation (17.14) for ReE,, showing a First-Order Confinement Peak at
Ryeax 18.245

Although the amplitude of Figure 5 is significanteduced from that of Figure 3, as was
the Figure 4 amplitude reduced from Figure 2, Reoordinate of the peak appears to have

stayed essentially the same. The potential peak@é, Re(E) /Af) =(8.245,85.18) in Figure

3. In Figure 5 it peaks dR,Re(E) / Af)=(8.245,9.38). And the next upward sinusoidal

crossing of theR axis appears nedR=15.71, just as in Figure 3. So the decomposition of the
probability three-density into three one-densiippears to substantially diminish the amplitude
of these curves and thus the magnitude of the patesnergy, but has very minimal effect, if
any, on theR-dependent “frequency” aspects of these curvess diso interesting to note in
passing that with the peak in Figure 5 situatedRaf, =8.245 and the minimum in Figure 4

situated atR,, =2.622 (which Figures are both from the same underlyigga¢ion (17.9)), the
ratio R,/ R,,=8.245/2.623- 3.148 ir to the third decimal place. Of course, with the
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various sinusoidal activities going on in (17.9)isinot surprising to find the number is some
places, but this ratio is worth keeping this in dain

Based on Figure 5 and (17.8), let us now defieeaihproximate number:

Roeac = Al = 8.245, (17.15)

to be the radial distance at which the first peetuos in Figure 5. This means we may now use
(17.15) to write (17.6) as:

hR = Ar=R= R, =8.245- (17.16)

r

peak peak

Now, we want to associate the peakRat Ar[18.245 with confinement, at least at the
first recursive order. There are several stepsake to do this. First, we require that the only

domain over which the radial probability densi@y(hPo) is not zerq is the domain from
0<Rs< R, [8.24%, ie., fromO<r<r,,. So we effectively regard all of the portions of
Figures 4 and Soutside the domain 0sR< R, as having a zero probability density,
ar(th,):o, while all regions inside this domain are regardedhave a constant density
2. (hR) = A%0.

Next, we recall the discussion just prior to (P.4vhere we made the association
r,=2.178& = RO 8.24}, that is where we associated the peak potenti®| gt with the length

r, that is in turn associated with,.,. Earlier, we simply made this association tovarrat
some order of magnitude estimates. Now, we seekited/ ., directly into the equations for
the one-recursion potentiaE, . So let's do this again: we take the six-quatkoff
/\(G)QCD:.O9O&5eV to be the energy at which the strong coupling growfinite and
confinement takes place. From here simplifyingatioh to /\E/\(G)QCD, the associated

deBroglie lengthr, = hc//\(ﬁ)QCD is explicitly calculated to be, =2.178 in naturalz=c=1
units. So we now define:

1
Moeak =Ta = K =2.17& (17.17)

Roea = R\ 18.245 (17.18)

By so-identifying the peak in Figure 5 with the QCtoff we may rewrite (17.16) as:
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hP = Ar= R - 8.245 . (17.19)

A I

This means, including\r, =1, that:

0.k, =0, (hR) = A=Da = A 8245 (17.20)
M M\
Also, from (17.8) andA= R, / r, embedded in (17.19) amir, =1, we have:
A= R
R= Ar—r—r— RAT (17.21)
A

So with all of this, we return to (17.5) and udghR) = RA from (17.20), and divide
both sides byR,A = R/ r which is a variant of (17.21), to obtain:

Elz—il'(z 1

i §+§[exp(iR,\/\ r)+ 2exgiiR,Ar) Dcos(n@ RA r)D (17.22)

Now the QCD cutoff is embedded into (17.22) to jdewphysical mass and length scales.

The final step is to ensure that the density f pihobability integrates to 1 over the now-
sea that is, to ensure thej‘tr”eakar (hR)dr=1. To do this, we now
0

introduce a normalization constaNt and normalize (17.16), also using (17.6), (17.amy
(17.18) andAr, =1, to:

relevant domain oD<r <r

hP = NAr= NR= NR=8.245 N = NR\ ¥ 8.245N . (17.23)

IF/\ r/\
This effectively is alefinitionof N. Then to ascertain th@lueof N, we first obtain:

0.k, =0, (hR) = NA= N ek - 8245 (17.24)

r.peak r

peak

And then we evaluate the definite integral:

:eakgf,umdr=J.;peak6r (hF())) dr:I; DeakNM dr= NM = NBeakzl' (1725)

r r

peak peak 0

So from this, we fix the normalization constanbal& (17.18) to be:
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Nzt =1 1 (17.26)
Re R 8245

So having determinedl, and writing (17.23) a$ iR, = NAr= NR= R R with (17.26)
applied in the final step, we can achieve this radization by rescaling:

R= R/ R 0 R8.245. (17.27)

So as a result of the normalization (17.27), thetien in (17.16) is renormalized using (17.17)
and (17.18) and\r, =1 via:

hP, = R= F;\rL: RA = hp= R Berz/\ . (17.28)
N N

Also, based directly oir= R/ R in (17.27), the relation in (17.21) is renormatizea:

R=P - RAr= R=L=At

(17.29)
r./\ r./\
From the above (17.29), we also deduce:

E:ERA/\:}:/\_]'
r R r R

(17.30)

So finally we return to (17.22). From (17.29) we@ormalize withR,Ar= Ar and from
(17.30) we renormalize with™ = R, *r™*. Thus we have:

E = —i%(—§+é[exp(i/\r) + 2exdi /) Dcos(w@/\r )D .

(17.31)

We then divide both sides through By while moving over thedsr and theR,. Then with the
renormalization complete, in the second line belesubstituteR = Ar from (17.19) to obtain:

47TR/\ 5 = —i(g +_1

it 9{exp(i/\r)+ 2exp(i%/\r)Dcos(\J2—§/\r)D
1(2.1

| (17.32)
_ E(§+§[8Xp(iR)+ 2exdit R)Dcos(n@ R)D

It will be appreciated that the right hand sideha second line of (17.32) is absolutely identical
to the right hand side of (17.9), the magnitude @&l portion of which was graphed in Figures

146



Jay R. Yablon

4 and 5. But what was previouslg= Ar in (17.8) is nowR=Ar, with A replaced by
N=Nqep- On the left hand side of the second line abesea result of the connections (17.17)

and (17.18) to\ and the renormalization (17.26) to ensure thaptbbability density integrates
to 1, we have had the constant divigoin (17.8) replaced bYA= A/ R, OA/8.245, with the

result that the normalization ultimately bleedtigh to a rescaling of the energy By—= R, E
. As to the probability field, the original relatiship hR = Ar of (17.6) has been replaced by
hR =Ar in (17.30). And finally, following (17.16), and view of (17.18), we originally set the
domain for the non-zero probability density to fisom 0<(R= Ar)< R, 08.245. With the

renormalization (17.29), we now set the this domdacm commensurately run over
0<(R=Ar)<R, 08.24E.

Now, although (17.32) is the same function asQ)lgraphed in Figures 4 and 5, because
it now contains the physical content af,., following renormalization, let us again graph this

to include this new information as to physical ecaFirst, we write the magnitude of the second
line of (17.32), which we can obtain directly frofh7.13) with no more than aA - A and
R=r/r, substitution, thus:

%+%co{%)+§lcosﬁ(§:—J

E| N A A . (17.33)
r r r r f,r r r

+| 2cod — |cosi— |[+2& sin— | sint— [+& cosl— || cosh®—

{81 {r,\} {zr/\j " I’Ef,\j 'EerJ o {Sir/\ﬂ Ehgr/\j

As noted prior to (17.17), the mean empirical vabfighe QCD cutoff is/\(ﬁ)QCD =90.6MeV
with a corresponding, =2.17& . So A/4nR, =0.874VleV. Thus, for example, when
47R, |E|/A =10, this meangE,|=10[A / 47R, = 8.74VleV. So while we still use (17.33) to

graph the dimensionless randerR, |E|/A against the dimensionless domaiir,, we can

also show the actual physical energies and lergjthrgy the axes which correspond to this plot.
Since the cutoff is designed to be @t, =r, via (17.17), and since 20, we also limit the

domain toO<r <r,. Thus, as in Figure 4, we may graph the unlikarga potential:
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|E,|=14.82MeV iz A4 Los( J+ <-cosh” (IFJ
E L a Fa
115 T T
Al47TR ; ;
‘E]l " {—cos( } ( J+ sm[ }sin[;’—]+%cos(%LHCosl{ii—J
—— H ) Ty T
Al4ZR,
410
5
8.245r /1,
-2 B 8 10 12 14 16 18 20 22 24 26 258 30
r, =2.178F

Figure 6: The Yang-Mills Potential |E1| of (17.33) at First Recursive Order (Figure 4 with
Physical Energies and Length Scales)

The peak found in Figure 5 &, =8.245 corresponds to the cutoff length=2.178
, and is introduced into Figure 6. In Figure B, =8.245 has a dimensionless amplitude
477R,\| E1| IN=16.95%, which via A/4nR, =0.874MleV translates to a potential with the
magnitude|E,| =14.82MeV, at theR ., =8.245 of Figure 5 which has been set to correspond to
r, =2.178 . All of these correspondences are clearly showFigure 6.

Now, we went out of our way in the last two seati®do also develop the probability field
and the probability density which go along with dig 6. So we should now show those.
Following normalization the probability field is\@n by (17.28), namelyhR =r/r, =Ar.

Therefore gf,ur =0, (hPo) =1/ =A=.459F" = 1/2.17§& is the probability density. So over
the domain0O<r <r,, this denS|ty graphs out to:
1

__.-I
r

811,29, (hB) =1/ 1, = A= 4SO =1/ 2.178F

A=1/r, =.450F" {2

0.5 1 15 2 25 3
=2.178F

Figure 7: Constant Radial Probability Density
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The total probability density integrated over teéevant domair0<r <r, is equal to 1, as was
implemented in (17.25). Figure 7 simply contaims aea.459 'x 2.17& = .. Now we
integrate over to arrive at the coupled probability fieklR =r/r, + B=Ar+B, whereB is a
constant of integration. When we began the presestfcise in (6.7), we posited the linear form
hR = Ar with B=0. If we maintain this, then Figure 7 integratesh® = r/r, =/Ar, which is

the normalized (17.28). The integral of the proligldensity of Figure 7 into a dimensionless
probability field, with what is now a slope &f is shown below in Figure 8.

+1.4
WP,
11.2
1
hE, =111 hby =rlr, =Ar
-

2 2.5 3
+ | 4 b

r, =2.178F

Figure 8: Dimensionless Probability Field for Consant Probability Density gf/,lr over

O<r<r,

Because the probability density of Figure 7 is megfuto integrate out to 1 as we clearly
see by the dimensionless area of 1 inside thisityesce the integral is taken as in Figure 8,
then beyond the upper extremity of the non-zero probability density domain, thelability
field is required to also be equal to 1. This isatvfixes the constant of integration B0,
which was the assumption that we sought to testirgjaat (6.7). Specifically, while the
mathematics permits the plot in Figure 8 to beedhisr lowered by a constant of integrat®n
thephysical interpretation of Figure 7 as a probabjldensitywhich must integrate to 1 requires
us to discard the constant of integration so tbathe domain beyond, the probability field
carries forward this same 1 that is shown in Figurerinally, it should be made very clear that
Figures 6, 7 and 8 all describe exactly the samgsiph from three different views. Figure 6

shows the real magnituc{E1| of the potential of (17.33), while Figure 7 shoiigs associated

probability density and Figure 8 the associatedbaidity field, all as a function of radius
There is a one-to-one isomorphic mapping amongrégyé, 7 and 8. If any of these are
changed, then the other two are changed as well.
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Now, let us review what we may learn about anadytinon-linear quantum field theory
from the results in this section. We began at§JLBy positing a constant probability density

0, (hR) =constant A with A being real and non-zero and positive. But becau$eR)) is a
probability density, it operates under the very amant constraint that its integral ovemustbe

equal to unity,_[(:oar (th)) dr=1. So by positing that the probability density ip@sitive real

constant, and by positing thidie probability density is a probability densitye areinherently
and necessarilyositing that the probability density is constanér a finite, bounded domain of
the radial coordinate.r Why? Because the domainrafuns overO<r <o . If the probability

density 0, (hPO) were to be constant over the entire domain fil@gr <, then in order for it

to integrate to_[oooar (hR) dr=1, we would have to havé = constant= (, and in that instance,

we would have a zero probability density everywhexeept atr =0, which is the problem we
reviewed in the last section for a 1/r potentidlo visualize this, just look at Figure 7 and

suppose that we were to ha&g(hl%) =/ notover &&r <r,, but over the entirety add<r < o

. What would happen? As we stretchedfurther to the right and had it approagh— o, the

value of A would diminish in order to maintain a total ardalowithin the Figure 7 rectangle.
And at r, =, the constant probability density would necesgasikcome the constazero

probability density we examined in the last sectiand no longer be a constapositive
probability density. So, a positivapn-zeroconstant probability densityecessarilyimplies a
radially-bounded probability density.

Now, it is one thing to posit a positive, constaadially-bounded coupled probability
density, and quite another to assemblghgsical systemwvhat has such a probability density.
After all, at bottom, we are still doing physicatpust mathematics. What Figure 6 illustrates is
that if one is going to have a physical system wifhositive, constant radially-bounded coupled
probability density, it will be necessary to asstmd suitable potential energy distribution to
hold that probability distribution in place. Figu6, and equation (17.33) which is derived from

positing a constant, non-zet) (th)) =/, tells us what that potential must be. Specifycah

order to haved, (hPO) =/ =constant> (over the bounded domain<@ <r,, we are required,

as seen in Figure 6, to have a potential well whphlis” all of the physical fields constituting
the probability density together, and creates astiection” or “least potential” environment in
the domain from abouR=1.75 to R=4. If the fields were to try to wander to a larger
distance, sajR=6 or R=8, they would need to acquire extra energy to doléthey were to
try to compress themselves to a smaller distaraye Rs=.5, they would need to acquire extra
energy to do so. By least action principles, tl@ments of a system will move toward and
congregate near positions that can be maintaingdanmninimum of energy.

So the potential in Figure 6 provides the geodesgast action environment which
physically enables the probability density to remabnstant and bounded in the manner of
Figure 7. Because it is a stable, confining paéénthe potential of Figure 6 “holds together
both ends at the middle,” and tells us about thergetics of thehysical environmenthich is

required to support the positedr(hl%):/\:constanb (. So, while we can posit any
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probability distribution we want, we cannot actyalealize that probability distributiom the
physical universavithout creating the potential energy environmentissemble and maintain
that probability distribution. Figure 6 which iguation (17.33) tells us the energies we need to
maintain Figure 7. But more generally, (17.1) iar€sian coordinates a.k.a. (17.2) in spherical
coordinates tells us the energies required to mmnthatever probability distribution we may
wish to posit with whatever radial and angular distributions nvay wish to posit, because for
any posited probability distribution, there is ass@ciated quantum potential which can be
deduced from these equations. And these two emst(17.1) and (17.2) contain non-abelian
probability fieldsP, and so provide a complete set of tools to do Kaetesame development we
did here, for, e.g., the SU@yroup of QCD, and thus to understand with prenisio first
recursive order, the dynamics within a hadron tizatse quarks and gluons to be confined and
also subsist in a stable system, i.e., to live gpace outside of which their probability densities
are zero and to not collapse together in the nabfirhe ultraviolet catastrophe and atomic
spiraling that so-plagued physicists at the opepintipe 28' century. As stated at the end of the
last section, in non-linear quantum field theorgohability densities and potential energies go
hand in hand, with a one-to-one isomorphic mappitgveen them.

18. Asymptotic Freedom and Asymptotic ConfinementFitting and
Extending the QCD Running Coupling Curve

While the probability density of Figure 7 and is@morphically-related potential energy
curve of Figure 6 clearly show features of confieatmand stability, we have not yet discussed
the third critical aspect of QCD, which is asymptdteedom. As is well known, the running

strong couplinga, = g2/ 41 becomes very large and indeed asymptotically ambres infinity
for small probe energies below about 1GeV, and mesarelatively flat (asymptotically free) for

large probe energies in the deep TeV area and deydi the deBroglie relatiore = c/ %,
this is inverted when talking about length rathem energy as we are doing in Figures 6 through

8: the running strong coupling, = g/ / 47 becomes very large and tends toward infinity while
approaching the larger radial lengths- r, from smaller lengths, and flattens out approaching

very short length scales -~ 0. To provide a common point of reference, we adpce below,
Figure 9.4 from PDG’s [24] which illustrates all tifis based on a range of the most-current
empirical data, and make note that we have basegurds 6 through 8 on

A, =(90.6+ 3.4MeV for six quarks and thus used the length equivatgrt2.17& to

bound the probability distribution. Which is toysave have worked from the view that
a, =92/ 4m asymptotically approaches infinity at arougd.eMeV, which is about one order
of magnitude to the left wher® =1GeV is shown on Figure 9 below. The prevailing view i

also that the curve in Figure 9 will tend to asyntigilly flatten moving to the right beyond the
100GGeV shown below to higher and higher energies.
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Figure 9: The Running Strong Coupling a's(Q =hc/ r) (reproduced from PDG'’s [24],

Figure 9.4)

So, the question now is, precisely how does thential of Figure 6 and the bounded
constant probability density of Figure 7 connecthwine a's(Q:hc/ r) curve of Figure 9?
Here, it is important to keep in mind that FiguBethrough 8 as well as much of the development
here is expressed in terms otaupledproper probability densitygf,uOr =0, (hPO), and more

generally g4 = O(hR). Thatis, we have bare probability field 7 and abare probability

density 4, which then couples through a dimensionless runeimarge gf =h, see (15.43),
which is related to the strong coupling by = g2/ 4ric (or generally, to any given interaction

couplingg via a = g*/4mhc). So, for the constant probability density we daeveloped here,
the interrelationships, rather simply, are:

0k, =0, (hR)=A, (18.1)

or alternatively:
1 -1 0
Ho =NQ, ° =N\ (4mhea,)* =0 B+1—= P, (18.2)

where in the final expression, we have also apghedifferential equation (15.45) to (18.1).
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In other words, deepening the earlier discussiomf(14.44), thédare radial probability
densityy,, will run in inverse proportion to the sixth rodttbe a, illustrated in Figure 9 above,
becauseg,’ :(4770'5)%, and by (18.1) 4, =Ag,” =A(4m.)".
in the neighborhood of, =2.178 , the bare probability density will asymptoticalgnd toward
zero, 14, — 0. This means that the potential of Figure 6 effety causes any field quantum to
have a near-zero probability of situating near=2.178 . But, if any field quantum should
happen to situate neaf =2.17& , it will be very-highly-coupled so as to maintaire coupled
probability density at the constait per (18.1). This also means that there probability of
where one might find a field quantum is maximizedra 0, but that atr =0 the coupled
density still remains asymptotically constant beeaa, approaches its asymptotically-flat
minimum value. (We shall for now ignore any GUTeets that might come into play near
10°GeV probe energies and especially any effects thatamag at the scalém,” =7 ¢ of the
Planck massm,, and will return to consider possible GUT effeetsthe very end of this

discussion.) In order to obtain the differengguation which precisely governs the behavior of
the bare probability field, as a function of and g,, we rewrite (18.2) as:

Wherea, - « asymptotically

(18.3)

The bareP, obtained through this equation is the bare copatéto the coupledR illustrated
in Figure 8.

Of extremely high importance, all of the forgoingpyides us with the tools we need to
actually fit the running QCD curve of Figure 9 vemecisely to some very simple mathematical

functions by focusing on the bare probability dengi, given in (18.1) bygf,uOr =N\. We

make use of two well-established theoretical presi® do this, while at the outset neglecting
any GUT effects: First, based on asymptotic freedae assume that approaching- O from
r >0 the curve in Figure 9 flattens completely, i.battoa,/dQ -~ 0 asr - 0. Second, we

assume when approaching-r, =7ic /A from r <r, that the slope ofa, asymptotically
becomes infinite,0a, dr - «. Simply put: we accept and utilize the commondehtwin

premises a) that asymptotic freedom is really asgtigpalong ther or Q axis forr - 0 and
Q - «, and b) that confinement really is asymptotic glahe vertical o, axis as one

approaches - r, =fc/ A from smallerr, i.e., asQ - A from higherQ when moving to the
left of the domain in Figure 9. Vigf/,lOr =/, these twin premises tell us thaf must be flat
for r -~ 0 and thaty, must have a slope of negative infinity for- r, . Mathematically, this
narrows the scope of plausiblg, (r) becauses, (r) can only be a function for which

Oly, /10r =0 asr - 0 and oy, /or - —o asr - r, from smallerr. So now the question is
well framed: what set of mathematical functionsénthese required properties to simultaneously
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facilitate asymptotic freedom and asymptotic coafirent? As it happens, the most basic
mathematical function which fits these two requieents is a simple ellipse. And the simplest
ellipse is a circle. So let us now see if we dad & way to fit the running coupling in Figure 9

to what is effectively a mathematical ellipse oeea circle.

First, we go to (18.1), but because we want to figdand (18.1) only contains the sixth
root of a,, let us raise everything to the sixth power. Ttmasmay writeg.’4,,° = A°, or, with
Ay, = g2 /hc, in natural units:

au,®=N°14m. (18.4)

Now we are dealing withy,® rather than justy, , but this too should have the same
requirements agy, : a flat slope asr — 0 and a slope of negative infinity as— r, from
smallerr. So let us now set up the ellipse fa;°. And to keep things very simple, let us use
the simplest ellipse of all, a circle. So, foriecle of constant fixed radiu®, we have the

familiar x>+ y?=R?, or y=R’- ¥ . Let us now make the proportionality associations

A 14mOR,, 4,° 0y andr Ox. And to simplify further, let us seé®, =1. So we first write

the very simple, Pythagorean relationship for dtriziangle with a hypotenuse of 1 which
defines the unit circle:

y=+1-x. (18.5)
We shall now fit this to the QCD curve in Figure 9.

By (18.4)a, 01/ u,° 01/y. So the relationship that now becomes of intdrased on
(18.5), includingXx —» r - r/r, =R, is:

1 1

\/1—(r Ir,)’ i VI-R*

a. =

S

(18.6)

We note that in the formy:1/,/1—(v/c)2, this exact same mathematical function — the
inverted circle — sets another asymptotic limithe natural material world, namely that of the
speed of light. Indeed,, above takes on thexact same mathematical charactsr - r, as

does the speed of lightasv — c¢. This is how we set up the asymptotic limit foninement.
By deBroglie, we can also substitute=ic/ Q" where Q' has a mass dimension of +1. The

reason forQ' rather tharQ will become momentarily apparent. So now (18&9)dmes:
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a, = __ (18.7)

J1-(1Q)

This function (18.7) will have two asymptotes: atisal asymptote aQ’' =1 as Q' - 1 from

right to left, and a horizontal asymptote approaghw, =1 from above a£)’ — «. So as a final
step to move the asymptotes onto the vertical antzdntal axes aQQ'=0 and a, =0, we

simply displace this curve one unit to the left ameé unit down, by rewriting (18.7) as:

a. = 1 -1. (18.8)

) \/1—(1/(Q'+]))2

Now, let graph (18.8) and compare it to Figure 9:

+0.3

+0.1

05 1 15 2 25 O 3

Figure 10: The Running Strong Couplinga, Modelled from (18.8) based on the Unit Circle

This looks very much like it has the same formhesdmpirical PDG data curve in Figure
9. And in fact it would be the exact same curveusth it be possible to match up the height of
Figure 10 with Figure 9 and then rescale Figuralbdg the horizontal axis to get the shapes of
the curves to match. So, let us do just that. Vd&cmup the heights, and then stretch the curve
of Figure 10 along th&)' axis to the degree required to match Figure 9enTive move the
stretched Figure 10 curve left/right and up/dowmasded to superimpose it data point-to-data
point over Figure 9. What we obtain is Figure Elokv, with the curve of Figure 10 in the blue
dashed line superimposed over the empirical PD&ecof Figure 9:
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Sept. 2013
o v T decays (N°LO)
S(Q) ® Lattice QCD (NNLO)
a DIS jets (NLO)
03| 0 Heavy Quarkonia (NLO)
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® 7 pole fit (N3LO)
v pp—> jets (NLO)
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Figure 11: Superimposition of Figure 10 TheoreticalCurve over Figure 9 Empirical Curve
for a,

The possible match is clear, and we also now tesglyg that Q' bears a logarithmic
relation toQ, that is, Q' =1/r0logQ=1InQ/In10. If we write this simply asQ' = fInQ
wheref is a data “fitting” constant to stretch the honta axis on move it onto a logarithmic
rather than linear scale, if we then repld@+1) = ( f InQ+ A)in (18.8) to permit horizontal
movement of the whole curve via an unknown, toitied constanf, and if we finally replace

1 - B at the end of (18.8) to permit vertical movemeinthe whole curve by an also unknown
and to-be-fitted constal®, then (18.8) now becomes:

1

a,(Q)= .
[ap=——

As we shall now show, with suitable choice of these fitting parameterfs A andB, (18.9) can
be fitted to an exact match with the empirical riagrPDG data of Figure 9 favS(Q) within all

the indicated experimental error-bardVhat is especially significant about the fithigure 11
beyond the fact that it does fit, is that this @provides definitive predictions as to how the
strong coupling will continue to run in the regiabove 1TeV, and based just on what is seen in
Figure 11 above, the curve is now extended oubtnesvhat over 100TeV. In fact, we shall
return to this point shortly, because now that §L&an indeed be fitted to Figure 9 over the
entirety of the domain and range of Figure 9, dustl be possible to use (18.9) to extend Figure
9 way beyond the domain and range of the datatthantains.

- B. (18.9)

Shortly, we shall indeed use this to extrapolagufé 9 to both higher and lowé&: But
first let us backtrack to our starting point andlyfuevelop the logarithmic fitting of the radial
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probability density. By (18.4),° =A°/4mr,01/a,. So without the horizontal or vertical
shifting, we combine (18.4) and (18.6) togetheraselr =1/Q"'=1/f InQ to write:

. A - r2 Al (1Y
o = 4ﬂ\/1 R / /1 [—f |er’ (18.10)

Now, taking the sixth root and also including=1/Q"'=1/f InQ, we arrive at the following for
the bare radial probability densipy, =0, P,:

1
[3

(4/’\7)éarp = (4n)° ﬁf-ﬁé:\/l—(Lf:\/l—[ L ]2, (18.11)

M fr, InQ

Next, sinceQ has dimensions of energy, we def) - In(Q/ Q)) where Q, is some suitably
chosen scale against which to meas@geso that the quantity inside the natural log is
dimensionless. But, of coursén(Q/Q)=INQ-InQ. So, also definingf’= fr, and

A =-1'InQ,, we can extend (18.11) to:
1 2
= |1-
\/ (fr,\ InQ — fr, Inon

) ot
fr,InQ-fr, InQ, f'inQ+ A

This square root now is of the exact same formhasstjuare root in (18.9) fcan(Q), except
that it hasf'= fr, and A =-f'InQ,. But thef andA in (18.9) were simply unknown data-
fixing constants. So we can replaée- f' and A - A in (18.9) to write:

ol

, (18.12)

ol

a,(Q)= 1 -B= 1 - B. (18.13)

I
f'inQ+ A fr,InQ - fr, InQ,

Then, we restructure (18.13) into:

1 e 1 2
WMB_\/l Lm(an—an))J ’ (18.14)
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which means finally, that the multiple alternativexpressions of (18.12) can now be
supplemented to directly include, (Q), as follows:

|+ rna)
fr, InQ - fr, InQ,

ol
ol

(4”)%0 %:(477)@%:@%:\/1_(sz

N
1
6

- (matire) V) e@

The simplest way to graph this is Wi(HllT)% d.P/A=+v1-R". This is illustrated
below in Figure 12 along with all of the other imtgationships embedded in (18.15):

, (18.15)

ol

ol

L d P
(am)} 28
~0.3
74
- 1 56 1 -+
+0.6 (47)° af)= 1-R° =Jl—[mJ =(0’s(Q)+B)
n
/Lll)r:arls(.]
1% R=T=rA
r/\
l oo S =1
A=-f'InQ,
-0.2 | 0.2 0.4 0.6 0.5 R 12 1.4 1.6 1.8

Figure 12: The Bare Probability Density Fitted to he Empirical aS(Q =ncl r) Data of
Figure 9

Here, we see the running coupling(Q =hcl r) represented in terms of the bare radial
probability density 4, =0, P,, such that 1, =A(4m, +4ﬂB)_%, or via 4m =g’ and

0, (hR)=A from (17.28) and some rearrangement:

0, (hR) =ty (a” +478) =A. (18.16)
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The constant coupled probability density functidririgure 7 foro, (th)) =\ looks the same as

before, but when expressed in termsofit also acquires the fitting terizzB used simply to
set the height ofr, in Figures 10 and 11.

The final matter to point out, of course, is that&used P, is a probability density, it
must normalize to 1 when integrated over its emtomain <r <r, a.k.a.0sR<1, that is, we

must haveJ.;AarPodrzl a.k.a. j:aRFg)dRzl in Figure 12. It can be found via numerical
calculation by computer that the definite integral:

[ V1-R?*dR=0.95235 (18.17)

which makes visual sense when noting that Figurddsically contains a unit square with a
shaved corner on the upper right. So if we go lladkeR-based expressions in (18.15) and use
0, =dx /1, andAr, =1 and integrate over the domain @& R<1 we obtain:

0.952354 1 1
P,dR= R=—— [ +1- RV 624592= =—, 18.18
ja d INORd (arr j K (4r)* 62459 1.60104 N ( )

which defines a normalization constait=1.60104= ( 41)% /0.9523E. Then, we normalize by
multiplying everything in (18.15) beyond the fitsto terms byN to ensure thaﬁdRPodR:L

We then factor out the(47r)% which then appears in front of every term, andiragse
0, =0;/r, andAr, =1, with the net result:

2% 2% 2
aRF%):IUOr: 1-R 1 1- _r :—1 1- 1
0.952354 0.952354 |, 0.9523§4 | fr, Qn-fr, Qg

I S 1 Y1 (1 Y _(a(Q+B)"
0.952354) | fr, Q- fr, IQ, 0.952354" | f' l+A 0.952354

When established in this way, Figure 12, subje@réxise empirical determination of the
various fitting parameters, becomes an alternatiag to express the phenomenological running

coupling curvea's(Q) of Figure 9 in terms of (the sixth root of) a ¢&cwhich is one of the
simplest objects in the mathematical world. Plglbi¢c this centers around the expression

1-(r /r,\)2 . Contrasting Withy:1/1/1—(v/c)2 which set sets the speed of lightas a

natural limit in the material world, we see tl{&a8.19) places the QCD cutoff =1/A into a
precisely analogous role as the speed of lighta astural, material limitation And, of course,

1
6

(18.19)
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2
if we write the mathematical crux of (18.19) (e(@.95235410r )6) +R* = ., we see once again —

as is often the case — that the Pythagorean thesitsnin yet another guise at the root of the
inner workings of the material universe.

Finally, as we discussed following (18.9), becaokthe clear fit in Figure 11, it should
be possible to graph the curve of Figure 10 whelequation (18.8) over a greatly-extended
domain and range, and then fit a limited piecehdd turve from about 1 GeV to 1000 GeV and
from a, =0.4 to a, = 0.1 to the PDG curve of Figure 9. The theoreticaveuve shall graph is

(18.8) with Q"= fIn(Q/A) and with f' - f, Q -~ Q/A, A -1 and B -1 in (18.13),
namely:

a,(Q)= = -1= 1 -1. (18.20)

\/1— (1/(Q+1) \/1— (1/(f m(Q1A)+ 1))2

Specifically, in Figure 13 below, we extend the PBBve of Figure 9 one order of magnitude to
the left, i.e. over td0"GeV = 100MeV, and we also extend it downward to include the=0
axis. We then use the fitting paramdtto fit this to the PDG curve of Figure 9 by sthehg the
curve horizontally as needed to create a tighbWwer about 1 GeV to 1000 GeV and from
a,=0.4 to a,=0.1. We also bring to bear additional data from [@]2through [9.24d] of

PDG’s [24] for the QCD cutoffsl\(”‘) for n, =6,5,4,% quark flavors, by showing what would

be the confinement asymptotes for each of the@‘é. This is all illustrated in Figure 13 below:
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a.(Q)
20— A“ =(90.6+3.4) MeV
A® =(214+7)MeV

Ii—— A" =(297 £8) MeV
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I 1
1.07 a,(Q)= -1

Jl—(l/(fln(Q/A)H))z
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Figure 13: Fitting of the PDG QCD Curve of Figure 9to Extended Domain and Range for

a,(Q=hc/ r), based on the Theoretical Function (18.20)

Now let’s discuss Figure 13 in some depth. Wetlsed®DG data from Figure 9.4 of [24]
which is reproduced in Figure 9 here, occupyingery/small corner at the lower-left of Figure
13. When magnified, this corner has the sameditvben the empirical PDG data and the
mathematical curve of (18.20) as is illustrated=igure 11. But of course, this curve extends
that data well beyond the domain or range of Fig@er 11, so that the PDG curve fits to a
small yet important corner of the theoretical cue (18.20). Of special interest is the
extrapolated curve toward the vertical axes on lgfie It is very desirable to know the
magnitude of theQ at which the vertical confinment asymptote reacinésity. If the PDG

curve of Figure 9 is accurate as we must assuimednd if the/\(”*) for n, =6,5,4,%in [9.24a]
through [9.24d] of PDG’s [24] are accurate as wad ahust assume they are, then these are not

two disconnected pieces of empirical data. Theyiaterrelated such that one of thé”f) in
[9.24a] through [9.24d] of [24inustbe the asymptote of Figure 9.4 of [24]. And timgurn
should confirm from yet another view, the numbeqoérk flavors that exist in nature. What we
see from the extrapolation in Figure 13 is thatREs data, when extended with (18.20), moves
definitivcely to the left of then, =3,4 asymptote candidates, so that we must have dtbelc

quark flavors. But, this curve even moves to #fe past then, =5 asymptote candidate right
arounda,=1.5. Since there is still a long way to go from =1.5 to a, =, it look highly
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plausible that in fact it i\ :(90.61 3.1) MeV which is the asymptote for this curve. And
this, of course, fits perfectly with our in facts#sving six quark flavors in nature. So when we
in fact engage in the data fitting represented igufe 6, the first step is to se =A® in
(18.20). Then, aQ=A =A®, we will haveas(/\(ﬁ)) =co. From there, wehoosethe fitting

parametef such thatthe remainder of the curve passes properly throligtempirical PDG data
of Figure 9.

Having set the vertical asymptote o= AL and having sdtto yield the proper fit so as
to pass through the PDF data in Figure 13 by gcatllyi compressing or expanding the
horizontal aspect of the (18.20) curve as neededriext task will be to numerically determine
f), all that remains is to explore the asymptotaetffom region. The useBf1 in (18.20) for the

more general height-fitting parame®rof (18.9) ensures that, - 0 asQ - «. So now the
qguestion is whether this also accords with emdiritzga. Left to its own devices, the curve
which usesB=1 will tend toa, - 0 asQ - «. But this is just mathematical. We know that

physics intervenes, because at aroue 10°GeV we expect a GUT to bring together the
running coupling of the strong, weak and electronedig interactions, and we expect that near
the Planck energy, these will all meet up as wéthwhe gravitational coupling and will reverse
course and start to increase in magnitude. Scigdily, we do not expect to ever reagh=0,
because other things will intervene by then, inclgdhe exceedingly high-energy fluctuations
of quantum gravitation in the geometrodynamic vacutlihis means that must expect Figure 15
to lose its predictive ability as tar,, possibly nearQ=10°GeV, and definitely near

Q=1.22x10°GeV.

So the way to determine if we are correct to Bsé as the vertical fitting parameter in
(18.20), is not to expeatr, to ever become zero, but to study the empirichbal®r of a, in

whatever energy domains become experimentally-atitesat TeV energies and higher. When
studied more closely, Figure 13 reveals thaQat1TeV, a; is slightly less thanxr,=0.08 .

Close study also reveals that &=1PeV=10 Ge\, we have a,=0.035 , and that at

Q=1EeV=10 Ge\, we havea,=0.02C0 . So by mapping out the runningapfat deeper and

deeper probe energies, one can confirm whethefittising B=1 is the correct fit or whether
B <1 by some very tiny amount. In the event tBaf is confirmed to be correct, and given that

setting A =A® for the vertical confinement asymptote obviates tieed for any horizontal

fitting via the paramete”’ in (18.9) which is set tA' =1 in (18.20), we have by the analysis
and fitting of Figure 3 already determined that= B=1 insofar as horizontal and vertical
fitting is concerned and as seen in (18.20) and th@raphs out in Figure 13. Any fitting with

A’ other than 1 is absorbed into how we defifife- f . So the fitting parametérin (18.20) is

the only parameter which remains to be empiricliftgd via empirical data. Thistruly is an
empirical parameter, and this is the parameter hvbauses the curve of Figure 13 to compress
or expand (scale) as a logarithmic function@f Only the empirical data can determine the
proper numerical value d¢f and this now becomes a key number to determitie exiperimental
data. So let us now do just that.
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Starting with (18.20), our immediate objective asuse empirical data to determine the
value off. To do this, we fit (18.20) to two data pointsigfhthen uniquely determirfeand as a

result, the entirety of the mathematian(Q) curvene Tirst data point to which we fit the

curve is the vertical confinement asymptote, whigh set toA =A® =90.6MeV, right at the
mean of the empirical data reported in [9.24a]2#][ The second data point we use is the very

same one that is used in Figure 9.4 of [24] whicRigure 9 here, namely, thag(Mz) =.1185,
wherein we take th&-mass to beM, = 91.8G&V based on the mean empirical data reported
to be M, =91.187¢ 2)GeV at [25]. This is the common choice of cariian for defining the

running strong coupling. So, we plage= AL = 09065eV in (18.20), and then we sample
various numeric values fdrin (18.20) until finding a value fdrwhich fits a'S(MZ) =.1185 at

M, =91.187§ 2)GeV to five decimal places beyond,(M,)=.1185, that is, such that
a,(M,) =.11850000(. The value we determine fbvia this empirical fitting is:

1

f=—— (18.21)
5.610590¢
We then use this and = A®) =.0906GeV in (18.20) to write:
a,(Q)= 1 —-1= 1 —-1 (18.22)
\/1—(1/(f In(Q/A)+1) L[4[ n(Q/.090&eY)
5.6105908

Now, we simply graph (18.22) above, and to periose comparison to the empirical
data, we superimpose this over Figure 9. The tresbklow in Figure 14:
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Figure 14: Plot of (18.22) fora,(Q) fitted toA = A®) =.09065eV and a, (M) =.1185 at
M, =91.876&eV, Superimposed on Figure 9 from PDG

In the above, we have used (18.22) as fitted fo=A\® =.09065eV and
a,(M,)=.1185 at M, = 91.876eV, to determinea,(Q) at severak values, specificallly,
1GeV, m = 1.7768&eV, 4GeV, 6GeV, 8.25GeV, 20GeV, 40GeV, 60GeV, theindef
a,(M,) at M, =91.876eV, 200 GeV, 400GeV, 600GeV and 1TeV. And as stated
(18.21), this fitting yields the empiricaf =1/5.610590¢ . Weeth plot each of ther,(Q)
determined at these sevef@l by placing a« dot over the PDG Figure and labgllthe
associateo(Q,as) ordered pair next to each dot. We have genecilbsen at each order of

magnituden=0,1,2 to plot the1x10'GeV ,2x10'GeV ,4x10'GeV and6x10'GeV data
points, with certain exceptions. The execptiores are plot right atm, = 1.77683eV rather
than the nearb®GeV , because there have been diréebaticit studies conducted af, (m, )

, see, e.g., Figure 9.2a in [24]; we plot=a8.25VeV ratiman 10 MeV because the PDG
drawing shows an explicit empirical data pointlas tlocale, and this is the loweStDIS jet
point plotted by PDG; and we plot 8, = 91.&/ rather than the nearby 100GeV because

the former is part of the curve definition (the etlpart being/\ =A® = .09065eV). We then
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connect these dots with a bezier curve plotteietithe blue dashed curve overlaid on the PDG
curve, to provide a sense for the smooth curve 1&2Q) which connects these dots in
comparison with the PDG interpolated / extrapolatiede.

Generally, we find that (18.22) fits the empircata within many of the error-bars as
shown in Figure 14. Of course the curves matatiyxat M, = 91.876eV because they are

both defined such thar,(M,)=.1185. From m = 1.77688eV to M, = 91.876eV the
predicted Bezier curve is slightly higher PDG’semolated curve, yet it passes directly through
some key empirical data points. At = 1.77688/, (18.22) predicts that,(m,) =0.320¢,
This is slightly below the mean cafs(m,) =0.33 shown in Fig@r@a of [24], yet well within

the error bars (and more-so than the PDG curve)s dlso noted that three of the ten studies
plotted in Figure 9.2a of [24] (Baikov, Davier aBdito) are substantially above the mean, and
that the other seven (Beneke, Caprini, Maltman,jddatr Boito and SM review) are below the
mean and clustered more consistently. If one discte three above-mean studies as statistical
outliers which they seem to be when relative chisgeof the seven below-mean studies are

considered, then the predictexj(m,) =0.320¢ appears vary close to the new mean, and is in
fact right in the center of the Caprini study. &btold, the predicted fit ans(m,) =0.320¢ is
supportable by the empirical data.

The next point of interest is the predicted(=8.255eV) = 0.201. Although this is

somewhat higher than the lattice QCD prediction ahdhe high end of the nearby heavy
guarkonia study, this data point fits very clos&lythe high center of DIS jets study. In fact, in
general, the predicted blue-line curve similartg fivell within the high-center of all of the next

three DIS jets data, and just below the centeheflRIS jets data nears(: 4OGeV) = 0.139¢
Further, theas(: 4OGeV) = 0.139¢ prediction sits at the very center of the ee @id shapes
data as well as within the high error bars for nadghe other ee data.

As to the pp jets, the predicted curve fits fawgll within this data from about 60GeV to
400GeV. Above 400 GeV, the predicted drops more sharply than is indicated by the final

three data points from the pp jets, but not togreethat rules out the accuracy of the prediction
in this domain. For example, at 400 GeV, the mtéh is a, (= 400GeV) = 0.091« At this
very same data point, the pp data ranges from afoay = 0.08€ to a high ofa, =0.104 with a
mean of aboutr, =0.096 , which puts the prediction below rtiean but well within the error
bars. Certainly, under all circumstances will ohish further from here. So if we
extrapolate the a,=0.088 Ilow at 400GeV over to 600GeV, the predicted
a,(=600GeV) = 0.085' also appears to be highly feasible. And indefeohé were to pass the

interpolated PDG curve through the mean of the fimar pp points before the very last point at
abouta, (= 900GeV) = 0.08¢, and exclude this final point as an outlier, thiea predicted curve

appears to be supported by the low end of the tpakawell.
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Finally, returning to the lov®@ domain at the left end of the curve, it is of net to
observe that the predicted plot pohg(lGeV) = 0.400¢ veers the predicted curve sharply to the
left of the extrapolated PDG curve. This is reedirto get over to the asymptote at

A =A® =.090685eV, and it can already been seen by looking veryetyoat this same region
of Figure 11, and seen also in Figure 13. As vest 4b study data such as the predicted

a; (1GeV):0.4OOE, we are entering a region where perturbation thesimply no longer

applies, and one might surmise that the sharpéckupt the PDG extrapolated curve versus the
predicted curve is something of an artistic florie show that this curve will become vertically

asymptotic. However, if one hews tightly to theotempirical data points ars(m,) =0.320¢

and a,(=8.255eV) = 0.201! in the PDG Figure, rather than to the interpotatietween those
points whichis not tied to specific empirical data pointhen the leftward movement of the

predicted curve to make its way over Ao= AL = 09085eV actually does gain support from
these two empirical data points.

So in total, the predicted curve of (18.22) anduFegl4 does appear to be supported and
is certainly not ruled out, by the weight of emgali data. If this predicted curve is taken to be a
correct representation of how nature behaves,ithgeneral the PDG extrapolated / interpolated
curve is slightly on the lower betwean, = 1.77688/ and M, = 91.876eV and slightly
higher aboveM,. These deviations are systematically interreldtedauseM, is used as a
defining data point and so becomes something dfilartim” for the rest of the curve. And, by

virtue of selecting\ = AP =.09065eV as the other data item to establish the curvechwhi®

drags the vertical confinement asymptote well ®l#it of the/\(”*) asymptotes fon, =5,4,3,

see Figure 13, we see that the uptick drawn irPID& curve is too extreme, and needs to veer
more to the left. As to the entire curve, thidstels that the predicted curve has a curvature
which is slightly gentler than the curve shownhie PDG extrapolation / interpolation.

All of this gives us the foundation to now reflamt physics at GUT and Planck scale
energies. As already discussed at length, Figloraséd on (17.33) contain a deep potential well
which stabilizes the syem to which it relates aodfines the probabilities within the system so

that that are all between< <r,. The coupled probability density is that of Figut, which is

the constant probability density postulated fodgtprior to (17.6) and eventually illustrated in
Figure 7 after normalization and fitting ta\ =1/r,. That this should be a constant over the

whole domain &r <r, does not cause any consternation at least inssfatonfinment is
concerned, because as later shown in Figure 12baheprobability densityz, =0,P, - 0
goes sharply to zero at the same time that- « because of the inverse relationship they bear

in (18.4) based on the constant. In other words, very near - r,, the sharp rise in the

potential well of Figures 4 and 6 drives there probability density down to near zero, which is
exactly what is to be expected from least actionqgiples.
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But what abouty, =0d,P, asr — 0? Here too Figures 4 and 6 show a sharp riseein th
potential, which one expects will also drive theeb@robability densitys, =0,F, - 0 as
r - 0. But this is not so: in Figure 124, =0,P, - 1 asr - 0, notwithstanding that the
potential E, - « asr - 0, as is clearly seen in Figures 4 to 6. Of coutke, fact that
M, =0,Py -1 asr - O is rooted in one of the two premises prior to 41&amely, that of
asymptotic freedom; that as - 0, a, - 0 asymptotically. In other words, we built in a
constant bare probability density, =9,P, -~ 1 andd, x4, =9° P, -~ 0 asr — O from the start,

in order to build in asymptotic freedom. But the® used the non-linear quantum field
equations (17.13) amd (17.33) to deduce the palsntissociated with the implied asymptotic

freedom, and discovered that deep into the smalestone wherdR = r/r, =.125 the potential
rises sharply which would undoubtedly cause usately,,, =0,P, - 0, andnot x4, =0,F, -1

asr - 0. So the non-linear equations of quantum fielotie- via the steep rise in the potental
nearR=r/r, =.125 — are themselves contradicting the premise of psytic freedom!

Let's get right to the point: Figure 6 is telling that there is asymptotic freedam to a
point, and that that point is in the area of ab&ut r/r, =.125. It is telling us that at around
R=r/r, =.125, the asymptotic freedom ceases, because the plibbalvia the steeply rising
potential will be barred by least action from takion any substantial density when
R=r/r, <.125, and that the probability densities will have aguh zero aRR=r/r, «.125.
As directly as possibléEigures 4 and 6 are telling us to expect new plsysiowhicha, is not
asymptotically free, aR=r/r, <.125. The question we now ask is this: at wiais Figure 6

predicting that should we expect this new physié€s@viously, we were not equipped to answer
this question. But now that we have fitted the Q€Dve and found in (18.21) that the fitting
parameter f =1/5.610590{, we do have the ability to ask about te associated with

R=r/r,=.125. As we shall now seeR=.1318¢ corresponds to a GUT energy of

Q=10"GeV , and R=.1079¢ corresponds to the Planck ener@=1.22x16°GeV. So
Figure 6 in view of the fitting of Figure 14 vid =1/5.610590¢ is predicting new physics

precisely in the GUT-to-Planck energy domain. sTiBiexactly what we expect to se@riori,
so let us now examine specifically how this comssua

If we compare (18.6) with which we started therent development to (18.22) which is
fitted to the PDG curve in Figure 14, we see indige square root term that what orginally

started as the radial coordinake=r/r, eventually becam&/(f In(Q//\)+1), l.e., that the

latter occupies the same position in the squarethad was inititially occupied by the former,
which is also the same posotion in the same squateoccupied by/ c in special relativity
wherein the speed of light becomes a material &@bh. The 1 at the end of (18.22) is beside
the point here; it is just used to shift the cutgehe down so that the vertical and horizontal
confinement and freedom asymptotes approach thecaleand horzontal axes rather than
approach one unit away from the axes. So letpugsent this migration of the originalby:

167



Jay R. Yablon

R=" = Y (18.23)
r Cc

Clearly, whenQ/A =1, we haveln(Q/A)=0, and soR=1 and r =r,, which is the desired

correspondence. And when we hae=1/5.610590i as use this as in (18.22) we can fit the
PDG curve fairly within the empirical error barsepvthe 1 GeV to 1 TeV domain as seen in
Figure 14. We include the similarity to/c as a reminder that — r, from below, “sub-
radially,” has the same effect in this square rastv —» ¢ from below, “sub-luminally,” in

special relativity. If we use (18.23) to go backdsafrom (18.22), then with the vertical shift we
have:

a,(Q)= ! (18.24)
1-R?
It is simple to invert (18.23) and rewrite this a
Q:/\expi(—l—lj:/\ expl(r—’\— 3;@ (18.25)
f\R fur r

where in the final term we hawefinedr' =1/Q in naturalz =c =1 units. Becaus® is clearly

an observableenergy as we see in Figure 14, this means by dgiBrthat r' is the associated
observable length scale. We may also restruciBe%) viaAr, =1 and definingR' =r'/r,,

into the form:

r' 1 r 1 1 N
R=—=ex 1-2 | = ex = |=— 18.26
2 pT( rJ pf_( Rj Q (18.26)

So now we have two different radial coordinat&sr/ R, and R =r'/r,. With one more
inversion, (18.26) becomes:

1 1 1 v
_ _ Y 18.27
1-fInR" 1-fIn(r'/r,) 1-f In(A/Q) c’ (18.27)

r
R=—=
r-/\

which is a variant of (18.23) vidn(x)=-In(1/x), with some further alternative terms
including thev/ ¢ similarity.

Now, it will be appreciated thaR and R =A/Qin (18.26) and (18.27) are simply
different coordinates against which to plat in (18.24). Simply put, they are related to one

another by a general coordinate transformation lwkne can make explicit by deducing from
(18.26) that:
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ar =R dR=1—1exp—1(1——:J dF (18.28)

oR f R f

Similarly, so too isQ just another coordinate which helps us to piot From (18.25)Q is
arrived at fromR by the general coordinate transformation:

d0=2r=-n1 1 p—l(—l— 1} dF.

e 18.29
oR f R X fl R ( )

We will not directly use either (18.28) or (18.2%¢e simply write those here to illustrate the
point about how these are simply general coorditratesformations.

Now, let us return to Figure 6 for the confinirsgable potential, rescale that Figure so it
is expressed in term of the coordind&eover the domain0< R<1, and show this domain

simultaneously in all four coordinatesr, Q andr’' =R'r, .
A

A
Al47nR,
20
|E,|=14.82MeV
IA 1 %+§7—cos(R)+ﬁcoshz(€R)
BT Al4zR, R +[Hilc0s(R)cos(lZR)JrR—*lsin(R)sin(%R)+3i7cos(i2R)Jcosh(%R)
e PDG Figure 9.4
i TV o 1GeV >
R=0202 A =.0906GeV
r=0.440F £ =1/5.6105908
Q=3.67x10 GeV 171
-1
r'=5.37x10"F R,Q:Aexpf(——lJ
AR
12 0.6 0.5 1
R=0.108 R=0.132 R=0.376 R=0.5 R=0.700 R=1
r=0.235F r=0.287F r=0.819F r=1.089F r=1.525F r=2.178F
Q=1.22x10"GeV Q=1x10"GeV [ [Q=1TeV Q=24.76GeV | |Q=1GeV Q=.0906GeV|
r=1.62x10"F __||'=1.97x10"°F| [r=1.97x10*H [r=7.96x10" F | |r'=0.197F r'=2.178F

Figure 15: The First-Order Quantum Potential Well, as a function ofQ

Figure 15 raises at least two very intriguing pgirdne about GUTs and the Planck scale, the
other about measurements in spacetime on the stibamscale.

As to the first point about GUT and Planxck scalescauseQ bears an exponential
relationship tol/R, asR=r/r, =2.178& diminishes from 1 down toward 0, at a certain poin

Q will rise very rapidly. From right to left, ovedhe domain of approximatel§> R=> 0.70%
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things start slowly, and all we do is get fragn=A =.0906GeV to Q =1GeV which starts the
left side of Figure 9. The entire domain for tHeG@ Figure 9 from 1GeV to 1 TeV is covered
over 0.7032R= 0.37¢. At the coordinate R=r/r, =.5, which is r=1.098 , the
correspondingQ = 24.76GeV. But moving further to the left, the exponentiatks in and

things become very interesting. The minimum of poeential is found to be aR=0.202,
which is the coordinater =0.440. But the probe energy for this is now a whopping

Q=3.67x16GeV, which is equivalent ta’' =5.37x 10"°F . This is overl0°TeV and so is

way beyond any foreseeable direct experimental reb8en. But, because this point is the
minimum, by least action, one would expect that base probability density reaches its
maximum at this point, and given that the overalttext for this analysis is a constaupled

probability densityd, (hR)=A, see Figure 8, this would mean that reaches its asymptotic

minimum. But now things really get interestingcaese the non-linear quantum field theory
which gives us Figure 15 has somehow managed ltaigethat aboveQ =3.67x 16GeV the

asymptotic freedom ends, and the running couplilogvlg starts to rise again as the bare
probability diminshes due to a now-rising potentidlich by least action lessens the probability
for being in a higher-potential state. A GUT umfy electroweak and strong interactions is

expected to emerge at abd@t=10"GeV which corresponds t&® =0.132, which isr = 0.28
but r'=1.97x 10"°F . And the potential begins a substantial risehi@ tegion of R=0.10€
which happens to map to the Planck ene@y1.22x 10°GeV, which has the coordinates
r =.236 andr'=1.62x 10°F , namely, the Planck length. So it is a point @&l fascination
that Figure 15 together with the fitting =1/5.610590¢ motivated by empirical strong

interaction data is actually telling us via thangspotential to expect substantially new physics
to occur in the region of the Planck scale.

This also tells us that our supposition that agptnp freedom continues right down to
R=0 is an incorrect supposition that needs to be itedisand that that freedom bottoms out in

the region ofQ =3.67x 1§ GeV which is still way beyond foreseeable detectiés. to how one
corrects the asymptotic freedom supposition to @ceath the clear rise in potential at the
Planck scale, Figure 12 provides perhaps the hestlvexample for how to approach this.
Figure 12 is based on the +x, +y quadrant of tix¢hsioot of a circley=+v1-x. We
deliberately built this such thaty/dx=0 at x=0 to create asymptotic freedom at=0 and
such thatdy/dx=-c at x =1 to create confinment at=1, see (18.5) et seq. Now, if we want
the asymptotic freedom to bottom out around theesghace that the potential reaches its
minimum at R=0.202 i.e., Q=3.67x10GeV and for a, to then start to rise and soon
thereafter meet up with the other three interactionplings and become asymptotically infinite

at R=0 to ensure that the bare probability becomes zef®a0 because thdR=0 potential
in Figure 15 is infinite, we will need a functionrfwhich dy/dx=+c at R=0. So in sum,

whatever function we choose as our mathematicadséor thebare probability density, will
really need to satisfy three constrainly./dx=+o at x=0; dy/0x=0 at x=0.202, and

dy/ox=-c atx=1. We leave this to future study, but note thainaple shifting of a circle to
the right, e.g., using a function such yas,/l—(x—l) may be too simplistic, because this hits
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dy/0x=0 at x=.5, and the potential in Figure 15 appears to proeidar marching orders to

maximize the probability density near=0.202, not x=.5. Given that a circle is a special case
of an ellipse, it would be possible to rotate alpsé such thatdy/dx=+~ at x=0 and

dy/0x=0 at x=0.202 and dy/dx=-c at x=1, but it is not immediately apparent how one
would define the probability densities, because di¢dx =+ and dy/dx=-c points then
have different heights along the y=axis. Againnated, we simply point this out, but leave this
melding thea, curve at observable energies with the running logurves near the Planck
scale for the future.

The one final observation abou the GUT and Plawetes we will make is this: it was
noted earlier that becauskl, is used as a defining data point in Figure 14bdtomes

something of a “fulcrum” for the rest of the curv&lthough we have pointed out how the
predicted curve of Figure 14 does fit within expental error bars for much of the data over the
1 GeV to 1 TeV domain, it still must be noted tkfa predicted curve in Figure 14 “pivots”
about theM, point such that it is slightly higher than thetistical mean of all the data as

shown in the PDG curve fom < Q< M,, and slightly lower forQ > M, . If the asymptotic

freedom does indeed bottom out n€ar 3.67x 16GeV — and indeedve know that it will and
must bottom out at some energy before we get tBldreck scale- then these GUT type effects
will already make their presence slightly knowrlater energies by slightly raisings(Q) in

the Q> M, domain. So if one were to take Figure 14 andtpbsit there is some nominal
increase in the predicteds(Q) in the Q> M, domainonce these GUT effects are accounted
for, then along with this slight upward shift f@ > M, , the fulcrum atQ = M, coupled with

the fixed asymptote at = A =.09085eV will cause a slighttownwardshift in the predicted
a,(Q) curve in them, < Q< M,, and really in the entire\ <Q< M,, domain. So, to the
extent that the predicted curve (18.22) graphicgllistrated in Figure 14 is found to slightly
deviate from empirical data as represented in Ib& Rurve, it appears highly likely that this
slight deviation may be fully accounted for by faet that in the predicted curve we are treating
asymptotic freedom as if it goes on forever rightrt=0 and Q =« , when in fact the more

realistic physical supposition is that asymptoteetlom goes on only up to a certain, defiQite
which is less than the Planck energy and — baseBigure 15 — possibly less than the GUT
energy. So, in short, any true deviation betwéentivo curves in Figure 14 is likely the result
of not taking into account Planck-scale and / orTGéffects upon asymptotic freedom when
computing the predicted curve of Figure 14.

The second point of intrigue raised by Figure &S to do with subnuclear measurement.
This point is raised simply by noting, for exampieat atQ =10°GeV, which corresponds to
R=0.132, the first radial coordinate is =0.28 but the transformed radial coordinate via
(18.26) is r'=1.97x10°F . Or, for example, by noting that at the Planckergy
Q=1.22x10°GeV, the first radial coordinater =.236 while the transformed radial

coordinate r' =1.62x 10°°F , namely, the Planck length. So the theory ha®rgius two
coordinates which measure a length. One is thggnati radial coordinate which came out of
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the path intergation and its relat& r/r, . The second is the transformed radial coordimate
defined in (18.26) in relation tovia the parameterd =90.6MeV and f =1/5.610590¢ which

were used to fit the circle-based QCD curve toabserved QCD data, and which relates to the
first radial coordinate system p#¥ia the general coordinate transformation (18.28).

Now, we have known for almost a century, sincedtieent of General Relativity, that a
coordinate system can be chosen completely arbytrand that the laws of nature mst be
invariant with respect to any and every choice ajdinates that might be made. Sometimes a
coordinate system is chosen because it facilitatesathematical calculation such as taking an
integral, for example, the coordinate systeth=6 — X' = u=cosd which enabled us to do
the integral in (14.17). But eventually, we needihd and choose a coordinate system which
matches up with the clocks and measuring rods ealés that we use to measure what we are
observing. And when we observe sub-nuclear intienas; the measurable observable is the
energy scaleQ =xc/ r' and it associated lengti. So it is the transformations (18.28) and
(18.29) which get us from a length coordinaterhich we do not measure directly, to a length
coordinater’ which we do measure directly. How do we know thatmeasurag’ and notr?
Because the empirical data in Figure 14 tells uis so

A priori, there is no reason why should not provide the proper measuring rod to
measure lengths in the sub nuclear scale. Andanrfwould be a perfectly good representation

of a directly measurable length if the strong ctng)Ias(Q) ran linearly withQ rather than
linearly with InQ. But we know, for example, that =1.97x 10'°F which corresponds to

Q=10"GeV is a much better radial measure of the physitheatoordinateR =0.132 than is
r=0.28 . And in the directly observable domain, we kndwttthatr’'=.197 is a better

radial measure of the physics we observe at 1GaN ibr =1.57 ; just asr’' =1.97x 10*F is
a better measure of the observed physics at 1TeM isr =.81%F .

But look at what we have just said: the coordingt which is certainly a radial
coordinate that corresponds — or so we thoughta-rteeaureable physical lengtlges not work
as a direct observable measuring rod on the subeauncscale Rather, if we want a coordinate
that maps to what we measure on the sub-nuclebs, sha empirical data tells us thaé must
chooser’'. Again: bothr andr’ are perfectly acceptable and valid coordinateesyst But
only one of themy', is directly equal to a radial length which we etve when we do empirical
experiments on the sub-nuclear scale. So we mqgsire: what has happened to turfrom a
perfectly good coordinate which corresponds diyetctlobservable lenghts, into a perfectly good
coordinate whicmo longer corresponds to observable lengths and meigransformed inta’
to yield an observable length measure?

What has happened is that in measuring sub nucpdessics, we have crossed an
asymptotic barrier at A=90.6MeV and r, =2.178& . When we take “super-radial”

measurements at>r, =2.17% , the original radial coordinateis a perfectly good measure of
observable length. But when we take “sub-radia#asurements at<r, =2.17& , the physics
itself — of crossing through thé& =90.6MeV barrier with our measuring instrumentation —
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requires us to now use to properly represent the measurements we aragakAnd what
happens precisely at=r, =2.17& ? Studying (18.26), we see thatratr,, we also have

r'=r,. So right atr, these two coordinates are identicakr'=r,. But as soon as we move
away from r, in either direction, these two coordinate systetingerge exponentially /

logarithmically from one another, and the only otipdace where they meet up again is at
r=r'=0.

Let us try to understand this seemingly-requiredrdinate transformation from the
standpoint of a “super-radial” observer — an obsergsuch as ouselves situated in the
r>r, =2.17& world — taking measurements of “sub-radial” phgsie ther <r, =2.17%

behind the physical asymptotic confinment barrteA& 90.6MeV a.k.a.r, =2.178& . For that
observer, the radial coordinate which correspomddtiat is measured isfor r >r, =2.17& ,
r' for r <r, =2.17&% , and either coordinate at=r'=r, . This is laid out in Figure 16 below:

Super-Radial Observer

. Ircoordinate
W T T T T I
r,-2.178F

Figure 16: Variation of Observedr =4c/Q inrelationto r, =7ic/ A\ =2.17& fora
“Super-Radial” Observer Situated at r >r, =2.17&

So what has transpired at =7c/A\ =2.178& is that nature herself seems to have forced a
change of the coordinate system which correspomdket observed radial lengif} .. .., from

the originalr to ther' of (18.26). Of course, is still a perfectly good coordinate; it is simply
not a coordinate which any longer corresponds ¢or#idial lengths which are observed via the
relationr’' =xc/Q based on Figure 14. So the question which nowrsads this: is any other
physical precedent for this sort of situation iniethnature herself, as the results of crossing
some physically-meaningful, observable barrier,nsedo force a change in the coordinate
system needed to describe what is observed?

Actually, the answer appears to be yes: refraatidight at a surface between two unlike
media is very good analogy to what is seen in l[Ed. If we view the confinement asymptote
atr, =nc/N\=2.178& as analogous to the top surface of a body of water which the water

surface interfaces with the air, then a light rag dirst non-normal anglé, will, upon striking
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the surface, be altered to so as to refract twangkangled, # 8,. The incoming for the light

rays will becomephysically alteredo a differentr’ just as in Figure 16 above. Although one
usually describes this by using one set of cootdsand simply changing the angle in those
coordinates at the interface, one could alternptidescribe refrection by leaving the angle
unchangednd instead simply rescaling the coordinaé¢ghe interface. The only difference is
that for ordinary refraction, assuming a constaatlimm, the angle does not keep varying as one
goes deeper into the medium but rather stays aunsthereas in Figure 16, via (18.26), tHe
rapidly becomes exponentially smaller. As withraefion, it is possible in Figure 16 to talk
about what “would have been” the line fQf,..., if the r, asymptote had not interceded, just as

one can talk about the angle at which light wowddentravelled had it not struck the water and
been refracted. That “would have been” line inufggl16 is the “ghostt line. And the ghost’

curve shows what the observed radius would hava had ther, asymptote interceded even
further out than it did. It should also be notkdttalthoughr’ in Figure 16 has a sharp upward
slope atr =r,, this trend only continues for a limited range awnain. If one were to look at
this curve forr >r, , it would be seen that this curve veers sharplth®right right around

r'/r, =200, the then approachsherizontal asymptotevhich is fixed by the fitting constant

f =1/5.610590¢ at exp(1/f) = 273.305440.

If the viewpoint of a “super-radial” observer ikimto that of a person situated in the air
and observing light refract once it strikes theevathen one can equally adopt the viewpoint of
an observer who is underwater and viewing refracfiom that perspective. The equation
which describes this is the inverted relationsii®.27), and this is graphed in Figure 17 below.

Sub-Radial Observer
r
T i
observed ’
r,-2.178F - e £
Il observed
T 7
/
i ; ghost
i 1
AN ‘I' coordinate
T T T T ‘ T T T T ‘
r,-2.178F

Figure 17: Variation of Observedr =#c/Q in relationto r, =Aac/ A\ =2.178& for a “Sub-
Radial” Observer Situated atr <r, =2.178%

Here, we might imagine that the “observer” is d#gawith a quark confined inside the
asymptote ar <r, =2.17% , trying to design up a coordinate system whichardy describes
what is seen inside the nuclide, but also, maps tovehat is seen to be beyond the confinement

horizon. Again, while any coordinate system onghhchoose to use to describe this physics is
equally valid,this does not mean that every coordinate systenaltisect linear relationship to
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something observahldf the radial length which someone measures wigtrumentation is
luserveer thEN the only radial coordinatg,, ... Which matches up with what is observed is one
for which or_,_, e/ OF 71, or, without an integration constamf, ;. ..c=" opserne: 1N Figure

16 for the super-radial observer, .= osene 1S the 45 degree line toward the upper right
wherer >r,. In Figure 171 o is the 45 degree line in the middle of the Figure
wherer <r,. Note that Figure 17 is just Figure 16 flippedwrd the line at 45 degrees. It
should also be notedthat tihecurve, although headed to the rightratr, will start to veer
sharply upward, and will then approach a verticeynaptote fixed by the fitting constant
f =1/5.610590¢at exp(1/f) = 273.305440.

observe!

=r

observe

All of this suggests that it may be fruitful tcew the confinement asymptote of a nuclide
at r=r, =2.17& as a physical boundary at whichmedium chang@ccurs, just as it does
when light strikes water or glass or some othdratifive medium. Although one is permitted to
choose any coordinate system one wishes, if onkesito describe the effects of this medium
change using coordinatdéer which or_ ./ O osenei L, ONE IS required at the interface to
switch between theandr’ coordinates via the relationships (18.26) and22)8.which may be
couched as the general coordinate transformatiaB28) and (18.29). So the observable
physics of a nucleon at the physical barrierr, =2.17& forces a general coordinate
transformation upon any observer who wishes to gmgbordinates for which
or, /or 71 in that observer’s frame of observation. Agaimy &hoice of coordinates

coordinate

is just as valid as any other choice. But, if weselves decide that we prefer a coordinate for
which or /or F1, forall r . Whether large or small, then nature herself —tragh

coordinate observe

the physical barrier at =r, =2.17& — will force us to make the transformations (13.26
through (18.29) illustrated by Figures 16 and 17.

observe

observe

Referrig back to (18.22) and Figure 14, one fipaint should also be made before
concluding this section: we have observed, fongla in (18.25), and after (18.6) and (18.19),

that R=r/r, within the radicall/+/1-R* is exactly analogous t@/c within the radical

y=1/4/1- (v/c)2 which is central to special relativity, and thakiach circumstance, there is an
asymptotic limit being set which is associated vathobserved physical limitation. In the case
of 1/4/1-R?, one has a confining potential and quarks are atlotved to cross a radial

boundary atr,. In the case 01’}/:1/\/1—(v/c)2 one has a confining limitation which bars

material bodies from ever reaching or exceedingsfteed of light. In this analogy, the super-
radial observer of Figure 16 may be analogized saer-luminalobserver and the sub-radial-
observer of Figure 17 may be analogized tsué-luminal observer, while (18.26) through
(18.29) are analogized to coordinate transformatwhich relate between what is observed by a
superluminal observer and what is observed by diwsuimal observer.

Now, to be very clear, this is only an analogy. dAnradial coordinate has a different
physical meaning than a velocity=0r /dt which measures a change in the radial coordinate
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in relation to a change in the time coordinate And even if this analogy has some deeper
physics behind it, there is ropriori reason to conclude that (18.26) through (18.29)lgva
fact be the form of the coordinate transformatiovisch relate superluminal to subluminal
observations, thatf =1/5.610590¢ would be the empirical fitting constant for supeb
luminal transformations, and that Figures 16 andavibidld be the correct visual pictures for this.
Nevertheless, with all of these caveats, it is #enaf intrigue that the speed of lightand the
QCD cutoff A =1/r, are each understood to be material, physical dimomns which exist in

nature, and that they each enter into critical sysquations in the same wal/+/1- R*> for

the mathematical root of the running QCD curveeditin Figure 14, anq/:1/./1—(v/c)2

through special relativity. This at least raides prospect of studying the material barrier posed
by the speed of light and long-thought to bar sp@nous material transport, as a sort of
medium change analogous to the nuclear confineswefdce or to a refraction surface between
varying media. Then, we may embark to enquire aittmutransformation laws which nature has
so far hidden from human comprehension, as betvweensubluminal and the superluminal
universe.

19. Gaussian Probability Densities in Non-Linear Qantum Field Theory

The next example of a quantum probability densigy shall consider is a Gaussian
probability distribution. But in preparation fdrat, this is a good time to take stock of what the
examples reviewed thus far teach about the nafyseobability and probability densities in non-
linear quantum field theory.

In classical field theory, the “field” is a coupleghuge fieldgG° which has a mass
dimension of +1. A field strength tensor definetading to F* =9*G" - ig? [G", G“], see
(1.5), may then be thought of as the spacetimdd“ftensity” of this coupled classical field.
This has a mass dimension of +2. And finally, theurce” of this field is a current density
-J#=9,F” ~i[G,,F” |=D,F”, see (5.15) et seq. This has a mass dimension3of
Quantum field theory has an identical structure, with different mass dimensionalities. In
quantum field theory, the “field” is a dimensiordesoupled “probability field’hR,. When this
field is time-independent and isotropic and valiesarly with radial distance and stops its
ascent at a givem, , its character is illustrated in Figure 8. Theugum “field density” is the
spacetime gradient of the probability fie@},(hR) and it has a mass dimension +1. In the
situation where the quantum probability field iattlof Figure 8, the radial fieldensityis that of
Figure 7. And, in quantum field theory, the “sairof the quantum field i:W(J) obtained

from path integration. This source has dimensafraction, which is energyxtime. Ih=c=1
units, this action source is also dimensionlesst iByve remove the time dependency as we did
in sections 14 and 15, then the quantum field sousca potential energy which has a mass
dimension of +1. For the first recursive ordeaafon-linear quantum field theory, this potential
is E, in (15.42). And for the linear quantum probabifield of Figure 8 and the constant field

density of Figure 7, the magnitqul| of that first-recursive-order potential is illusted in
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Figure 6 and later, Figure 15. Further, it is lseathesourceof Figure 5 has a definitive peak
in the potential atR . [18.24E, we identify this with the six quark QCD cutoffnigth at

r, =2.17& and therefore concentrate all of the probabiligngity of Figure 7 inside the
0<r <r, range, as was all developed in the last sect®mwhat does all of this teach us about

non-linear quantum field theory in general, andrer®re so, about the nature of “probability”
in physics?

Let us first talk about probability, and dimensbty in probabilistic systems. While in
colloquial language one often hears talk that ghrBability” of some “event” or “outcome” is
P, where0< P <1, it is important when dealing with probabilistictochastic physics to keep
firmly in mind that such talk is really referring & probabilitydensity The probability itself is
then the cumulative integral of all of the probabibdensities, and this integral sums over the
domain of the density to the dimensionless numbeFdr adiscreteprobability system — let us
use the specific example of rolling a pair of digiéh a probabilistic result from 2 through 12 —
the “dimensionality” of the probability density measured in an “event” or “outcome” space.
One might say by analogy to physics that the priibabdensity has an “outcome
dimensionality” of +1. For the pair of dice, thatcomes are the discrete, closed event group
wherein one rolls a number from the closed set, & 2, 5, 6, 7, 8, 9, 10, 11 and 12. As is well
known, the probabilitydensityfor each of these successive outcomes in the m#&tcgpace of
outcome dimensionality +1 is 1/36, 2/36, 3/36, 48/@6, 6/36, 5/36, 4/36, 3/36, 2/36 and 1/36.
And of course, when summed over the entire eveatesghecumulative distributiorall sums to
a probability of 1. This rather simple, but vellystrative example of the discrete “probability
field” for rolling a pair of dice, is shown in Figel 18 below.

1
35/36

336 Probability Field
(Cumulative)

30736

26/36

21136

15/36

10/36

6/36

3136
QOutcome

1/36

2 3 4 5 6 7 8 9 0 1 12

Figure 18: The Discrete Cumulative Probability Fiet for Rolling a Pair of Dice — A Simple
Example

In non-linear quantum field theory, the probabifigid, such as the field shown in Figure
8, is the exact analog of Figure 8, because itg@rumulative distribution The only difference
is that the physical field in Figure 8 continuousldinear, while the physical field of Figure 18
is discrete and so contains step functions. ¢uré 18 the x-axis has the dimensionality of an
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“outcome”, while in Figure 8 the x-axis has dimemsility of a radial position in physical space.

Yet, this radial position space is really just d@vttype outcome space, with the outcome simply
measured by a continuously-variable spatial pasitadher than the discrete sum of the two die.
Specifically, if we take the gradient of Figure ibBthe outcome space, we obtain the familiar
1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/3663836 and 1/36 outcome density curve with the

peak at 1/6=6/36 for the outcome “7,” while if veke the radial gradier, (hP)) of Figure 8 we

arrive at Figure 7 which says that the “outcomeadield quantum being detectedrat 1F has
the same probability density as the “outcome” wimetiee field quantum is detected at 2F ,

or indeed, as the “outcome” wherein the quanturd fie detected at any other radial position
over the outcome continuum measuredoayr <r, .

What is most important to understand based on €i@8rin comparison to Figure 8 is
that the probability field in quantum field theoiy not an outcome density fielbut is the
cumulative integral over outcome densitiesAgain, the quantum probability field is a
dimensionless cumulative distribution. As the gné over outcomes, its value at the highest
part of the domain along the outcome axis nalwtysbe equal to unity. At the outcome of a 12
roll of the dice, the probability field is equal fo At the outcome of =r, in Figure 8 for a

constant density physical probability field, thelpability field is 1.

It is important to be cognizant of this, becauseireaofall cumulative probability fields
is such that they muslwaysstarts at zero at the minimum extremum of the doraad become
equal to 1 at the highest extremum of the domaid, lzecause this vastly narrows the sorts of
mathematicalfunctions which are suitable to be used as phlysicabability fields. For a
continuously-varyingrobability density, the probability field mustyasptotically approach 1 at
the upper domain extremum. This means tigtas a function of a dimensionleRsmust be

some type ofsigmoid function such as the logisitic functithg)(R):(1+exp(—R))_l, the
Gompertz functionhR, (r) = exp(- ex{~RY)), the arc tangenhR, (R) =2(arctar( R) /7, the

hyperbolic tangenthP, (R) =tanh(R), and the error functiorhR(R)=erf(R) which is of

particular interest as the integral of a Gaussiammal distribution. See, e.g., [29]. Indeed, it
will be recognized that the probability field ingeire 18 is itself also a sigmoid function, albeit a
discrete sigmoid. Alternatively, for a probabiliédensity which has discontinuousvariation,
i.e., a cutoff in the density such as the one shawkigure 7, hR will then have a similar

character thP(r)=r/r, =Ar in Figure 8. Here, there is a broader set ofiptessnathematics

functions which one may choose from, with the cawat the functionhR, must be a

probability field, and so must start at zero onlgfemost-extremum of its domain and end up at
one on the rightmost portion of its domain. Thehausts the mathematical options: there are
only two types of mathematical functions which a@gtable as quantum probability fields:
sigmoid functions for a continuous probability diénsand other functions with cutoffs designed
to range from zero to 1 between the low and higheexa of their domains for a density with a
discontinuous first derivative such as the oneigufe 7.

178



Jay R. Yablon

We have seen at first recursive order how an ipatrerobability density which is
constant over the radiud<r <r, as shown in Figure 7, using the abelian equatlgns], will

yield a potentialE, in (17.32) the magnitude of which is given in @3). and graphed in Figure
6. By way of contrast, let us again start with.g)7but now, let us consider the illustrative
probability field hR(R)=erf(R), which means that the probability density is a #an

normal distribution. Here, because we are startiiifp a sigmoid probability field which
asymptotically approaches at 1 at the extremal mami of infinity, we may assure right at the
outset that the probability will be normalized to 1

So, we start witthR ( R) =erf(R) and its associated Gaussian. Mathematically, e w

base the probability density on the functioryl(x):(llax/z_r)exp(—x2 /02), for which

j_m ydx= J._w (1/0\/7_7) exp(—x°' /02) dx= 1, and for whicho is the standard deviation. But we

will be operating in spherical coordinates and wiigh to associate with the radial coordinate
r>0. Because these Gaussians are symmetric abOutve can double the function fprand
integrate  only over the positive domain. Doing sowe instead use

y(r):(Z/a\/z_T)exp(—r2 /02), for which j: ydr:I:(ZlaJ;) exp(—r2 laz)dx: 1 The

standard deviation is stilb and the probability density still integrates to ldut we have
discarded ther <0 portion of the domain because of the coordinatceh In Figure 7 we
knew to setr =r, as the cutoff for the probability density, becausé&igure 5 we had already

found that there was a natural peak in potentidt gt [18.245 which we then identified with,

. So knowing what we now know, let us uge not as a cutoff, but as tiseandard deviatiorior
this Gaussian. So with the educated chaicer, , we now postulate an isotropic probability
density which has its peakrat0 and a radial behavior over the domam0 given by:

2 r
0, (th))Er ”exp areill (19.1)
A A

Then, we simply calculate the other physics thassociated with this, especially, the quantum
potential E, (r) from (17.5).

As to the integral of (19.1), we know as just pedhout that:

jo 9, (hR)d r\/_J. exp[ jdr-hP| =1 (19.2)

So the cumulative dimensionless coupled probalikig as a function of radial coordinates:
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2 re) .,
hP=erf(r)= rAJTTIO ex;{—r/\—zjdr . (19.3)

It is also worth keeping in mind that the Gauss'ya(rx) :(1/0\/7_7) exp(—x2 /02) will

become the Dirac delta functiad), (x) = Iirno(1/0\/7_7)exp(—x2 /02), that is, in the limit where

the standard deviation approaches zero. Once,dgsause this Gaussian is centered akeit
and we will wish to use this in spherical coordagatfor whichr >0 we can likewise define a

“half-delta” by doubling everything Whereb)ﬁg(r)=|im(2/a\/7_7)exp(—r2 /02), with the

recognition thatr >0 cuts off half the area under the curve. Thﬂ]sﬁ dr =1 as is
required. Consequently, we will want to have ala# based on (19.1), the half-delta function:
g (r )—Ilma (hR)) =1im

r.2
ex 19.4
()=m2 (8=t e L% as

With these preliminaries, we simply use (19.1)(17.5) to specify the one-recursion
potential:

E = _%Trl[g 91{ XP{I%KGXp( :AZ ﬂ+ 2expg|%:—/\ ex{—;—ZJJDCOSE%:—A ex;E—:TZZJJD.(lQ.S)

It is then simpler to use the dimensionlé&s r/r, andAr, =1 to rewrite this as:

4n%=——[— —{exp{ N Rexp(- Rz)j+ 2ex;{i% Rexy - ﬁ)chosE)%R ex;é—Rz)JD.(mﬁ)

Similarly now we graph the magnitude of this enerjrst, we write the above as:

% +Leo { Rexp j+—;co{% Rexp(— F?)chos ﬁ Rex;é— ?{)J

,(19.7)
+ Esin[%Rexp(—Rz)J+§sin(% Re>p(— F@)J Eboﬁ[ﬁ R xpi— I‘-“l)ﬂ
=-R*(a+ bi)
where:

> | m
mIH

180



Jay R. Yablon

a_—+ CO’{T Rexp #)}—Sco{% Rexp(— ﬁ)chos \/\/;3; Rex;é— P{)j

bs%sin[%Rexp(—Rz)j+gsin(% Rex;(— )jﬂ:oh[\/\/;i Rex;é— ﬁ)]

The square magnitude, contrast (17.12), is then:

la+bi" = + b :A+§[—1005(i Rexp(— Rz))+—2 cosé—l Rexp(— )Dcos@i’% Rex;é— Fe))}
+8i1co§( 2 Rexp( Rz))+ : co§( Rexp( )Dcos?( Rap )

(19.8)

Jn
+Lsin® ( 2 Rexp( RZ))+ L S|r12( Rex;(—RZ))l]:oshz(% R exré R?))
+icos( Rexp(-R )co%% Rexy{- )Dcsh(ﬁ Re<p(—R2)) (19.9)
+§‘15|n( 2 Rexp sm(ﬁ Rex;( )Dcosré Rex;ﬁ— ﬁ))
=3+ 27cos(f_ Rexp RZ))+ cosﬁ(f Rexr( ))

{[( 2 Rexp(~R)) | cof Rexq) )} 5 vl

+8ilsm(ﬁ Rexp(—Rz)) dn (ﬁ Rexp(— I?)

Using this in (19.7) then yields:

3744 ¢0 JZ’ Rexp(—Rz))+%l cosﬁ(% Rexr(— F%))

81 27

4n|/\—|=¢R‘ _{[287+ glcos(ﬁ Rexp(—Rz))}cos(ﬁ Re>p(— F%))

+8i15|n(ﬁ Rexp(— RZ)) Sh(ﬁ Rexp(— Fé))

,(19.10)
cosf(% Rexp(— RZ))

We then graph (19.10) using the negative root, wiishown below in Figure 19:
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R=r/r,

2+ 4 cos (%Rexp (—Rj )) +3cosh? (%Rexp(—R2 ))

T 4%%=—R“1 [%+;—lcos (ﬁRexp(—R:))}cos(ﬁRexp(—R:))

ssh (£ Rexp(-R*
+3rsin (- Rexp(=R’ ) Jsin (- Rexp(~K°)) ol Re ()

475H
A

Figure 19: Graph of Equation (19.10) Revealing Appeent -1/R Potential for Gaussian
Probability Density

We see immediately that this looks just like adimary -1/R potential for an abelian
gauge theory such as Quantum Electrodynamics? tNtigle just that? The key term driving

(19.10) Rexp(—Rz). It is clear that in all regions Wheﬁeexp(— RZ) - 0, equations (19.6) and
(19.10) will both reduce toE /A=-1/4nR a.k.a. E =-1/4mr which is the Coulomb
potential. AndRexp(—Rz) — OforbothR - 0 and forR=r/r, >=3. So because =r, is

the standard deviation, this meaRs- 0 andr >=30. Indeed, it is helpful to look at a graph
for Rexp(—Rz) which is shown below and illustrates all of this:

1
Rexp(—Rz)

0.5

25 3 3.5

0.5 1 15

Figure 20: Graph of Rexp(—RZ) which Drives (19.6) and (19.10) and Figure 19
The peak in this function occurs Rt=1//2 a.k.a.r =r, IN2.
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So if Figure 19 and thus equation (19.10) yields potentialE, = -1/ 47 except for in
the regions WhereRexp(—Rz)in Figure 20 is further from zero, the next questis this: by
what order of magnitude doerexp(—Rz) when it is in its non-zero range cause the Fidi@e
equation (19.7) potential weviatefrom E =-1/47r ? To answer this, we may use (19.10) to
define a deviation parametér= -477R| E| /A —1=~4rr| E| - 1, so that:

g+2i7cos(ﬁ Rexp(—Rz))+%l cosﬁ(% Rexp(— F%))
A= . [% +§4lcos(ﬁ Rexp(—Rz))} cos(ﬁ Rexr(— F?)) cosl‘(ﬁ Rexp(—Rz))_l' (19.11)
+silsin(ﬁ Rexp(—Rz)) sin(ﬁ Rexr(— R3)) o

We will haveA+1 - 1 when Rexp(— RZ) - 0, so A measures the difference between the entire

parenthetical expression above and 1, i.e., tletidrzal deviation of (19.10) from arlpotential.
A graph of A shows that:

1 3 cos [ Rexp (=R )+ rcosh ( Rexp(-£7))

10.015 A= [3—“7+;“j—cos(ﬁRexp(—Rz))]cos(ﬁRexp(—Rl)) -1

cosh (—"E—chp (ﬁR2 ))
+ipsin (: Rexp (~R7) sin (; Rexp (—1°))

A

Jz

+0.01

0.005

/ . ! : 2.5 3

Figure 21: Fractional Deviation of (19.10) and Figte 19 from a -1/R Potential

Just like Rexp(—Rz) in Figure 20, this deviation peaks R=1/y2 aka.r :r,\/x/z. So

within about 1 standard deviatiom=r, of the peak atR=r/r, =1/2, Figure 19 and thus

(19.10) deviates from the Coulomb potenti&l=-1/47r by no more than .015 out of 1, or by

less than two percent. Over the limited domainnehkis deviation from a -1/r potential occurs,
the potential slightly decreases, that is, the gadein Figure 19 is slightly lower than it would
be if it was a strict -1/r potential.
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All of this brings us full circle back to, and very informative about, our examination
in section 16 of constant probability, zero proligbdensity fields in non-linear quantum field

theory. We saw in (16.1) that folR =constan, Elz—(N2—1)2/4nr, which becomes
E, =-1/4mr when we go over to abelian gauge theory as in3(34. At the time of finding

(16.1), we had not yet established tieg = constan is acumulativeprobability field, as we

subsequently did see in Figure 8 and in the dis@aealogy of Figure 18. So this means not only
that h® = constan, but thath® =1 atr — «. And because we are using radial coordinates for

which r =0, we must also havét® =0 at r=0 (at which E, =-1/477(0)=-« becomes

singular also, as has long been known), becausemalative probability starts at zero at the
minimum domain extremum and ends up at unity atmtagimum domain extremum. So, how
do we start withhR =0 at r =0 and end up withhR =1 at r - « all while maintaining

hR = constanover the entire domairr <0< ? There is only one way to do this: the coupled
probability densityo, (hP) for a pure E, =-1/4mr potential must be a Dirac “half-delta”
precisely atr =0, so thath® can instantaneously step up from 0 to 1 right a0.

This is why we pointed out at (19.4) that the Gaas probability (19.1) becomes a half-
deltad, (r)= lim o, (hR)) in the limit where we taker =r, — 0, or A=1/r, - . The only

way in the context of non-linear quantum field theto have a potential which isrecisely
E, =-1/4mr over theentire non-zero domainr <O0<oo without any deviationis to have a

probability density:
2, (hR)=4 (r). (19.12)

So 9, (hR)=0 for r >0, but not atr =0. Then, we will have a coupled, dimensionless
probability field:
hR=0atr=0; hR= E constantfar> . (19.13)

And then, via (16.1) and (14.31), we will have agntial:

2 ] abelian 1
=-(N?-1) — = -—— forr>0 19.14
= ( ) 4w - 4w ( )
This means the potential ismdefinedat r =0, not becauseE, =-1/47(0)=- at r =0, but
because the probability densily (hR) =4, (r) has an infinite spike of total area 1rat 0 and

so the relationship (19.14) does not apply a0 becaused, (hR)#0 atr =0. In this sense,
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we counteract the singularitlg, :—1/471( O) =-oc at r =0 by having a controlled singularity
0, (hR) =4, (r) for the probability density at=0.

Now, let's talk about the observable physics assed with all of this. The Coulomb
potential E = -1/ 47r has been well-known ever since work in the lat8 @&8ntury by Henry
Cavendish and Charles-Augustin de Coulomb. An@ potential has always been taken,
without any apparent empirical contradiction, todsecisely E =-1/47r over all measurable
radial distances outside the charge density, where the charge density is zero. It has been
learned in the intervening centuries that thisasdal on the photon being a massless, luminous
entity, and that spacetime curvature can impactrdggusr due not to anything relating to
E=-1/4mr per-se, but to the effects of spacetime curvatpean measurements of length and
time. But in flat spacetime, insofar as is knovh=—1/47r for all finite, non-zera outside
the charge density.

We see in (19.14) that a precide=-1/47r potential over all measurable radial
distances, in the context of non-linear quanturtd ftbeory, presupposes th (hR) =4, (r)

Dirac delta probability density of (19.12). Via9(4), this means that the Coulomb potential
presupposes the Gaussian probability density (1®itt) r, =0, wherer, is a previously-

“invisible” parameter which is precisely set to@eBut while Dirac deltas are sometime-helpful
mathematical entities, it seems unrealistic to ekpigat the real physical world will present us
with probability densities which are infinitely tand infinitesimally narrow, enclosing a total
area of 1. This is a mathematical idealizatiom.thle real physical world, we expect thatwill

be very small, but not precisely equal to zeror &@ample, ifr, in, say, Figure 19 were to be

based onr, =2.17& which is in turn based ov?\(G)QCD =.09065eV, then Figure 19 would

represent a potential which is extremely closeete =1/ 47 over allr, but with a very slight
reduction in the potential fronk =-1/47mr on the order of up to 1.5 percent within 1 staddar
deviation of r,\/x/§:1.54: . So, if we are willing as a matter of physicsetotertain the
possibility of horizontally stretching the Diracl@esuch that, =0 instead becomes, = “very

small but finite,” therthe physical potential of quantum electrodynamicsile become that of
Figure 19 As seen in Figures 11 and 12, within about 1ndded deviation of

ol\2= M /N2 =1.54 , this deviates ever-so-slightly from Coulomiigs= -1/ 47 .

In fact, if one steps back, the deviation fromracts-1/r potential which occurs in Figure
19 and which is highlighted in Figure 21 ought tmtbe at all surprising. It has long been
understood that the strict -1/r potential of Cavehdand Coulomb only appliesutside the
region in which the source charge is distributéaside the charge distribution, the potential is
not expected to be -1/r, but rather something efe.if we use a probability density

0, (hR) =4, (r) from (9.4) which is a Dirac delta right at=0, then every spatial location for

which r >0 will be outside thed, (r) spike, and so the potential will be Coulomb’s fbirall

r>0. On the other hand, if we spread the Gaussianfront being a spike by using a
probability density (9.1) in whicto =r, is very small but finite, then in the domain cldse
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o=r,, one is no longer “outside” the source charge, rather, is right in the middle of the
source charge. Therefore, it is to be expectekhiegpotential will measurably deviate from that
of Coulomb within a fewo of r,. Once we go more than a few standard deviatieysrixl
o=r,, 9,(hR) - 0 in (19.1). This takes us effectively outside ttiearge density, and
contemporaneously, brings us into a region whege 1ir potential now applies just as much as
does the charge densig), (hR)=0. So the quantum field equation (17.5) which begsm

(19.5) when applied to (19.1) inherently takes aotmf all of this, by causing the potential to
deviate from -1/r where the probability density floe source charge is measurably non-zero, and
by causing the potential to return to -1/r where grobability density for the source charge
becomes zero — or to be precise — where our megsurstrumentation is no longer able to

detect the extremely tiny extent to whiah (hR) is not zero outside of a few standard
deviations fromr = 0.

Given all of this, let us make several postulaesding to a possible experimental test to
confirm the ever-so-slight modification to the Camlb potential as very close quarters, as
predicted by Figure 19 and highlighted in Figure AHirst, just as there is A,, associated

with the QCD strong interaction, we postulate some., associated with the QED
electromagnetic interaction. There will then beelated radial lengthi, o, =hc/ A, via the
deBroglie relation. Either, .., =0, or r, ., =“very small but finite.” Because the former

requires aphysical Dirac delta for the probability density, and wdeahe view that nature
entertains no such singularities as a matter o$igBywe shall now adopt tifiest postulatethat:

'\ oep = VEry small but finite. (19.15)

Next, if we adopt this first postulate, then theesfion becomes, what is the precise
magnitude ofr, ., ? Eitherr, ocp =\ ocp» OF Tioep ZMaocp-  That is, either the cutoff / standard

deviation length for QED is the same as the on&IGD, or it is different. If it is different, then
there is some heretofore unknow,., which represents yet another fundamental constant

nature. But nature is economical, and one shooifcider the prospect that ., =1, ocp- SO,
we now ask, wouldr, ., =T, ocp Make sense, or at least, would this not run intp &parent
contradiction with known theory and data?

What we learn from Figure 6 is that a confininggmtal appears when the coupled
probability density 9, (hR)=Aye, =1/1,op = CONstan.  What we learn from Figures 19
through 21 is that a very-close-to -1/r potentialeeges when the coupled probability density is
the Gaussianar(th))EZIr,\\/?Texp(—r2 /r,\z) of (19.1), wherer, may or may not be
synonymous withr, ., , which is question under consideration at this mietn And what we

learn from (16.1) and (14.31) and (19.4) is th&t trery-close-to -1/r potential will become the
precise E=-1/4mr potential of Coulomb when the Gaussian coupledbagvdity density
becomes a Dirac delta. So when one boils thidadin, we see that in the context of non-linear
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guantum field theory, the difference between a ioomj potential and a -1/r potential is the
difference between a constant coupled probabibtysity in whichr, ., is a sharp cutoff, and a
Gaussian coupled probability density in whigh,e, is the standard deviation of the Gaussian

rather than a sharp cutoff. But there is no appaedntradiction in having the same
Moo =Mhocp D€ @ cutoff fora, (hR) in QCD, and the standard deviation for a Gaussian

0, (hR) in QED. Furthermore, while QED of course apptieshe electrodynamic interactions
of electrons, it also applies to the electrodynaimieractions of quarks which hav@=+%,-1
for the up and down quark respectively. And fomids which are confined withim, .., or
some radial length close to this, it would certaimlake some sensefif o, =r, ocp- Then, once

this is done, there would be no reason to have »aeption for the electron, because
electrodynamic interactions are electrodynamicraggons, whether the fermions involved are
qguarks or leptons. So, we shall now adoptsieond postulatthat:

My oeo =Taocor 1€\ oep =N gep- (19.16)

If this second postulate — which we now proposeertapirically test — is true, then
although A, comes onto the physics radar and is derived whetyisg strong interactions, it

also plays a role in QED by establishing the steshdieviation o =r, ., for the Gaussian

coupled probability (19.1), which we take in liefi g, (r) with r, =0 in (19.4) to be the

coupled probability density for QED by the firstgpalate (19.15). Then, (19.10) which is
graphed out in Figure 19 predicts a very slight rircation to Coulomb’s law centered within

one standard deviatioor = r, ., Of 1, ocp IN2=154 .

This can be empirically tested if one can deviseegperiment, or find within existing
experimental data, the up to 1.5% modificationhe Coulomb potential shown in Figure 21

close to a 1.54 Fermi separation. Keeping in ntirad the Bohr radiug, =1/m, =5.29% 10 F,

we see that this is not a difference that would dedetectable on the atomic scale. This can
only be detected when two charged fermions areditoiogether with separations on the nuclear
scale. It would seem to be quite a challenge fattiple reasons to ever get two electrons
compressed to a 1.54 Fermi separation. Conseguérdbpears that the best way to detect this
predicted parts-per-million modification to the Gmmb potential — which is rooted non-linear
guantum field theory — is by studying the electrgne&tic interactions of quarks. The challenge
for this sort of experiment is that although quanlk naturally have the requisite separation on
the order of 1 Fermi which is required to test tthey are confined. So it would be necessary to
in some way to be able to study the electromagmatcactions of quarks within the nucleus and
see if their Coulomb potential varies from, andawer than, what is expected from a strict
E =-1/4mr potential by about 1.5% at an approximate 1.54nkFseparation.
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20. Single and Double Slit Probability Densitieand Guiding Potentials in
Non-Linear Quantum Field Theory

Richard Feynman referred to the double slit expent as “a phenomenon which is
impossible . . . to explain in any classical wagd avhich has in it the heart of quantum
mechanics. In reality, it contains tbaly mystery [of quantum mechanics].” [30] And indeed,
the double slit experiment was recently ranked htathong “Science's 10 Most Beautiful
Physics Experiments” at [31]. Having reviewed hovapply the quantum field equation (15.42)
which in spherical coordinates is (17.2) to theesavexamples of a constant probability field
(section 16), a constant probability density (sewil7 and 18) and a Gaussian probability
density including a Dirac delta (section 19), ittime to turn our attention to the single and
double slit experiments. When viewed in light efg., equation (17.2) which relates the
quantum probability density of a source or sinkatquantum potentiak, in the first recursive

order of non-linear quantum field theory, the singhd double slit experiments teach us some
very deep and previously unseen insights into #tare of quantum reality.

We start with equation (17.4) in spherical cooats for the probability density
drw(hl%) in Abelian gauge theory to study both single aadlde slit diffraction in the context

of non-linear quantum field theory. Figure 22 velis a schematic illustration of the envisioned
simple experimental configuration upon which wellshase the discussion to follow. We use
this Figure 22 for either of a single or a doubieexperiment as illustrated. We regard the slits
as elongated rectangular slits, with the elongatiommal to the page. We assume that the radial
distancer from the slit(s) to the detector msuch greater tharthe size and spacing of the slits,
and we show a circularly-concave detector so thahdocale on the detector is at substantially
the same constant distance r, = constan from the detector. We regardo be an observable,
macroscopic separation which could be convenientBasured, for example, in meters or
centimeters. We denote the center of the detegtox b0, so that the circumferential length
from there to any other locale on the detector ballx = gr, in radian measure. So for single slit

diffraction the intensity will be vary in approxitea proportion to sinéx= sirf x /x° in
accordance with the formulation of Fraunhofer aiftion (note:sinc(x) = sin(x) /x), while for

double slit diffraction the intensity in the certragion may be approximated 3os x, and
overall the single slit envelop contains this se ¢tbmplete double-slit diffraction intensity varies

with the productsinéx cog x=( six cox K’. It is also noted that the shunction is the
Fourier transform of the triangular function, inhet words, that if f(x)=sinc¢ (ax), then

f(p)zj:f(x)e'ZMXp dx=(1/| tri( g &
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Figure 22: Schematic Illustration of Single and / bDouble Slit Diffraction

These two diffraction configurations are of greaierest for many reasons. But they are of
particular interest here because the intensifissnc (x) for single slit andC sinéx cos x for

double slit aresynonymousvith the probability densitie8, ,,(hR). That is, when we observe

the intensity spread for photons or electrons or @her field quanta striking the detector, we
are directly observingthe probability densities?rﬂ#,(hF{)) which appear in (17.4). Thus, it

becomes possible to via (17.4) derive a commensquaintumpotential E; in the first recursive

order of non-linear quantum field theory. So ooalgn this section is to do exactly that for both
single and double slit diffraction, and then to tlsese results together with those of the last few
sections to arrive at a better understanding ohtyma field theory and the role of probability in
qguantum field theory, in general.

Now, to keep things simple, let us set constan so as to represent the fact that all
points on the detector are at approximately theesdistance from the slit(s). Even for a flat
detector, so long as the size and spacing of tteisimuch less than we can approximate the
locales near the center of the detector as beipgpapnately equidistant from the slit(s). So, if
we situate the slit(s) in Figure 22t 0, and the detector at=r, wherer, is much largerthan
any either the slit width or the slit spacing, waymwegardr =r, = constan' in the mathematical
equations. So we start with (17.4) and do theofalhg: First, we set =r, and then move,
from the 1f portion of the equation over to the left side. wNdoth sides of this equation are
dimensionless. Here, we are no longer lookinghat grobability densityarm(hF{)) and the
potential E, as a function of, because the probability density is projectedtragito the detector

itself, and all points of the detector are assutoede approximately equidistant=r, from the
slit(s). Since there is nevariation in the probabilities striking the detecto Figure 22, the
radial 6r(hl3g,):O along the detector. Similarly, because the elwdyaslit(s) are aligned
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vertically perpendicularly to the page, we knowttfa the detector regions of interest which
subtend a very smalp, we will also haved,(hR)=0. Finally, we make use of the deBroglie
relation m¢ =7c/ r to define an energy parametér, = 4c/r, which is associated with the
lengthr,. Specifically, we definé\, =#c/ r,, or in natural units and inverted, simply=1/A,

. All of this allows us to specialize (17.4) féret configuration of Figure 22 to (compare (17.5)
for the radially-dependert, ):

/\%:‘%@1 6+ explid, (hP,)) + 2ex;€i%69(hl30)jﬂcsh(§ae(hl%)ﬂ. (20.1)

So now let’s turn to the single and double slitqatoility densitiesd, (hR).

As pointed out earlier, for single slit Fraunhotkifraction in which the detector is at a
distance from the slit which greatly exceeds thiesste, the intensity, which is proportional to

the probability density, (hR), will vary with sin¢ (x) = sirf x /x*. Becausex =8y, in Figure
22, x0 8, and therefored, (hR) in (20.2) will also vary withsinc (6). Now, we need to pin

this down more exactly. Becausée(hPo) is a probability density, it is necessary that

f 0,(hR) dd=1. Therefore, let us assign:

2,(hP) =§Tsinc2 (gej, (20.2)

where A is some constant number that determines the wofitthe diffraction pattern. We
choose this definition because it correctly norzesdito:

- i AL 0
[ 9,(hR)d6= _mzﬂsmcz(AEjd? 1, (20.3)

and also becausA enables us to vary the width of the diffractioritgan. Physically, the

wavelengthA of the signal being diffracted in relation to thalth a of the slit will determine

the value ofA. For this discussion, it is not necessary to @re this relation, though for a
rough qualitative correspondence, we note thadtfieaction width will narrow asA increases,

and will also narrow with decreasiny and increasing, so thatA=a/A.

To simplify the mathematical and graphical devaiept, let us now transforrd to a
different dimensionless coordinatedefined according to:

Ag = 77X (20.4)
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Becausex =8, in Figure 22, this new coordinaeis related to the with length dimension in
Figure 22 according to:

27y X ; alternatively, X A __AX

X=0r = :
2 2m,

(20.5)

Making use of (20.4) as well ak, :(A/ ZIT)GX deduced from (20.4) as well as (20.5), we may
rewrite (20.2) as:

B A g)_ A _ X|_ A .
2,(hR)=—0, (hR) —2—ﬂsmcz( A—Zj—g_[smé( A?J—E siné(77 X), (20.6)

0
which contains the somewhat less-cluttered equation

0, (hR) =sinc (7 X) (20.7)
with the very simple normalization:

[ ay(hR) dX=[" sin¢ (7 X) dX=1 (20.8)

It is for these reasons that presents an attractive coordinate choice for aagryput the
mathematical and graphical development. Indeetdng (20.5), Figure 23 below shows the
well-known configuration of the single slit diffriaan probability density given by (20.7). We
see that another attractive feature ofXhmordinate is that minima occur at integer valoiex.

%]

151
d, (hP)=sinc’ (7 X)

A8 Ax

2 27,
i 1 _t1s_ 2 s

X

Figure 23: Probability Density / Intensity for Singe-Slit Diffraction
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For a double slit, as we noted at the outset, vidatow 0, (hR) =sinc (7X) for a

single slit is the envelope for what we now takebmaco§(BﬂX) oscillation within the
envelope, wher® is an independent parameter frédmn the definition X = A8/ 2 in (20.4).

Mathematically, the definite integraj_oo 2siné (71X) cod(BmX) dX= . independentlyof the
value ofB. Therefore, we may assign

0, (hR) =2sin¢ (7 X) co$( Br X) (20.9)
to the probability density (hPO), and thereby be assured that the integral:

[y (hR)dx=]" 2sin¢ (7 X) cod( BT X} dx= (20.10)
as is required for a normalized probability densi9f course, (20.1) in which we will want to

make use of this contairg; (hR). So, usingd, =(277/A)d, deduced from (20.4) and well as
(20.4) itself andd = x/ r, from Figure 22, we may write (20.9) as:

ax(h%):z—;\Tag(hPo):Zsimf(nX) cod( Br X) = Zsin%{ Agj C(fé ng

(20.11)
= 2sinc¢ (Aij coé[ BA—XJ
2r, 2,
This contains the equation:
ag(hl%)ziax (hR) :—Asincz( AQJ coé( BAé—’j:f‘ sing AX | c BAX
2 s 2 2) 1 Zx, 2, (20.12)

:%sincz(nx) co$ (BmrX)

which should be contrasted with its counterpart@p@or a single slit. The new parameter
determines the number of peaks within the ovemathain 0< X <1, and indeed, the number of
overall peak within any unit spread Xf e.g., there arB peaks froml< X < 2, from 2< X <3
etc., with the peak at the very center shared beivilee—1< X <0 and the0O< X <1 domains.
So, as a concrete example, if we graph (20.9Bws10, the curve is as follows:
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0y (hP,)=2sinc’ (7 X )cos® (BzX )

2

B=10
nili
ElN X:ﬁ: Ax
' 2 27w,
B 2 Ahhaa 5 | : oA 2 2D

Figure 24: Probability Density / Intensity for Double-Slit Diffraction, B=10 Example

We see that there are in faBt=10 peaks within each unit of domain, and that theeren
peak is shared and thus “double-counted” for bdtk 0 and X >0. Contrasting this with the
single slit Figure 23, we see a doubling of the l#ombe owing to the coefficient of 2 that is
needed in the normalization (20.10) versus theigdptoefficient of 1 in (20.8). Physically, this
results in a doubling of the overall height of trevelope owing to there now being twice as
many slits — two rather than one — through whioh diffraction signal may pass. And we
directly see how paramet®@r affects peak packing within the envelope. TheralVepread of
the envelope, as noted earlier, is determined ley parameteA which roughly varies as
A= al A with the slit widtha and the signal wavelength. Denoting the spacing between the
two slits add, because increas@&lleads to a proportionate increase in the density which the
peaks are packed within the envelope, we know bt increasedl and decreased also
increase this packing density. So while it is esgential to the development here, we may also
write down the rough correspondenBe=d/ A.

Now let’s use (20.1) to calculate the potentzlin the first recursive order of non-linear

guantum field theory. Fasingle-slit diffractionwe use (20.6) in terms of the mathematically-
simplifying X coordinate in (20.5) to obtain:

/\50 = _ié{m exp{i ?AT siné (X )j + 2ex6i ?AT sic’ ( 77X )j Etosf{%a‘ siné(nx)ﬂ .(20.13)

4T

Fordouble-slit diffractiorwe use (20.12) in (20.1) alsoXq to obtain:
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_6+ exp{i]—AT siné (71X ) co%(an)j _
£ 11 g 014
0 4 +2exp(i§Tsin6(nX) cez(an)j Etosv(%a‘ sint(77X) cdy B’TX)}

Now as we have done three times previously, can{ias35), (17.10) and (19.7), we
wish to obtain and then graph the real magnitqﬂ(ia: +,/E* E for each of (20.13) and

(20.14), using some realistic exemplary valuesA@ndB. In Figure 24 we use® =10 for
illustration, so to maintain consistency, we conéirwith B=10. As toA, we go back to (20.4)

and write this asA=(277/6) X. As we see in both Figures 23 and 24, the coatdiX is

designed among other things to place the firstmimn of the diffraction envelope & =1, so
that the width of the central peak is equal todhgltheX axis in the domain from1< X < +1.
So via (20.5) in the form ofX = AG/2m , over the domain bk tcentral peak we have
-1< AG/2m<+1, or:

gt T (20.15)
A A

Now, & is the angle illustrated in Figure 22, aaah the above lends itself to being discussed in
degrees rather than radians. First, even if tikralepeak was to be spread over the entire 180
degrees £ 77 radians) emanating from the Figure 22, slie would have-r/2<8<+m/2

So for anything to even make sense, mast have A>24 . ForA=4 , (20.15) becomes
-ml2<6<+ml2, which represents a full 180 degree spread forcdrdral peak, which we
denote by® =180°. For A=8 we would have ® =90° degree spread for the central peak, 45
degrees on each side of the vertical centerlin€iglire 22. A=12 is the parameter for a
© =60° total spreadA=16 foE® =45, A=24 for a® =30° spread. So withA=360 there
is a one-degree spread on each side of the cemtddialing® =2° of peak spread, and with
A =720 there is a total spread @ =1° with .5 degrees on either side of the centerlifibus,
with reference to Figure 22, if we use= 240 to denobetotal angular spread of thentire
central peak which sits in the domaii< X <+1 in Figures 14 and 15, we deduce from (20.15)
that, in general:

_T20 _ 4t
O, ©

A

(20.16)

deg rad

Consequently, to make things more physically megfnlnwe now use (20.16) above to
replace A=47/© with a direct measure of the peak spread a@len each of (20.13) and
(20.14). So fosingle slit diffraction also moving-4sr to the left side, we now have:

—4ﬂ%:§+%exy{ié sin&(ﬂx)j+§ exéié sir?an)jD co{h\é)—§ siﬁ(mx)], (20.17)
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while for double-slit diffractiorwe obtain:

4na :§+%ex;{ii siné (77X ) co§( an)j
N, o

(20.18)
+§exp(i% siné (71X) CO%(B]TX))DCOS[hzeﬁ singrX) sq B’TX)]

To obtain the real magnitudes for each of the ab@s previously done at (14.35),
(17.10) and (19.7), weefineeach ofa andb according toa+ bi = -477E /A\,. For the single slit
(20.17) this means that:

s}
1

§+—;co{é siné(nx)j+—§ co%al sirfc(ﬂX)jD co%h\é—§ sﬁ(aTX)J
(20.19)
b:%sin(é sin&(ﬂx)]+—g sir{al Sin%:(ﬂX)jD cos(hg Siﬁ(:ﬂX)]

and therefore that:
la+bi" = a®+1?
2 1 NEI
+£cog — siné(X) |+& cos= sifdzX) |0 cosh—  sif(orX)
O] O o
2 . 1 J’
+L co¢ 65|n6(ﬂx) +4 co ° sifd77X) |0 cosh—  siflorX)

+8ilsin2(é sin&(ﬂx)j+ 4 sﬁ(a siné( 7TX Dcofr{ sinc(77X) ] '

ol

(20.20)

+8ilco{é siné(ﬂx)j co%é sirfc(nX))D co{h\é—_ si?(cnx)}
+silsin(é siné(nx)j sir{é sin&(nX)jDCO{hg mz(ﬂx)J

This reduces down to:
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la+bi" = &%+ 1?
=3+4c s(— siné( ﬂX +-2 cosf{— sirfg 77X) J : (20.21)
(2 . . .
Silsm(a smé(ﬂx)j su{— sm&(ﬂx

+ cosf{— siné(77X) J
+{%+Bilcos(— smé(nX)ﬂ COEéSInC (77X)

So when we use (20.21) in (20.17) such taatbi| =471 E|/A,, we now use the square root
of the above, which has roots, obtain the real magnitude for the singtepsitential, namely:

%+zi7cos(é siné( nX +-2 cos?{— snﬁ(nxj
—4nu:i Silsin(é siné(ﬂx)j sir[g siné(ﬂx)j .(20.22)

+ Ccos ﬁ sinc( .
+[%+€41C05(§ siné(ﬂx)ﬂ coéés in%(ﬂx)j {G) “ X)J

As to the double-slit (20.18), definira+ bi = -477E /A, we start with:
a:§+%cos(g siné(77X) co¥( BﬂX)j
2 . 23
+%C0{6 siné(77X) co¥( B]TX))D co{h? sihfrX) cdsBr X)J
. (20.23)
b=1si n(@ siné (7X) cod( BlTX)j

+§sin(é siné (77X ) coé(BﬂX))Dcos(h%/§ sif¢rX)  sd B’TX)J

This means that:
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la+bif* =a + b7
:g+247c05[; siné(77X) co§( BITX)j

2 . 23 _
+2co 5 siné(7rX) co%(BﬂX)jD co r? sintrX) cdsBr X)
+811c052[:) siné(7rX) co?s(B7T>()j+81l sﬁ(; sirf¢ 77 X) cé@B'TX))
+g‘1co§[é siné(77X) co¥( BﬂX)jE:OShZ[g—SIHCZ (77X) cod( B]TXJ

+g‘15inz(;sin€(ﬂx)co§(BﬂX))Dcos 23 siff¢ X) C6@B‘[X]

w

C]

+g‘lcos(g siné(7rX) co¥( anj c(% sifgrX) c%(sB'TX O C{S%£ ife X “doBr )<)J
+g‘lsin(g siné (77X) ccsz(BnX)Jsi rEésincz(ﬂX)coé(BﬂX) Dco Er\/_ sifi¢ 77 X) oczéB’TX)] ,(20.24)

which reduces to:
la+ bi|2 —a’+ b’

:3—1+2i7c0{% siné(77X) co%(BﬂX +84l coﬁE 2/3 sifE X) c%(sB'TX)j

Silsin(gsiné(ﬂx) co§(an)j si66 sirfq 77 X) CGGB’TX)j (20.25)
+{%+§lco{i siné(77X) cod( Bﬂx)ﬂ CC{SCTZ) s (77 X) cos’( B'Tx)j
xcos}{ siné(7X) co%(BnX)J

So when we use (20.25) in (20.18) such thatbi| = -477]E| /A, we use the square roots of the
above obtain real magnitude for the double-slieptal, namely:
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%+2i7cos(g siné(77X) co%(BnX +g‘1 co@{ 23 siffr X) C%(SB’TX)j

gsin{ 2 siné (nx) co8(Bx) | sipZ siimx) osger)| . (2026)

I
I+

{% +€41005(g siné(77X) co§( an)ﬂ cr{% siR¢r X) cos’( B'TX)j

xcosk{ siné(7X) co%(BﬂX)j

So let us now graph the respective single and ldaslli potentials (20.22) and (20.26).
In both cases, we have some flexibility to chodse angle® which was defined so as to
measure the overall spread of the central peaksgares 23 and 24 about the centerline of
Figure 22. Simply for illustration, let us contato choose =30° = 77/ 6 and use this for both
the single and double slit potentials, so that gb&entials we obtain will match up with the
probability densities graphed in Figures 23 and &h for thesingle slitpotential of (20.22),
using ®=30°=/6, which is A=47/© =24 when expressed in terms of the original
envelope spread parameferwe now obtain:

%+2i7cos(1§ siné ( nx +4 cos?‘{— sirfg 77X) J
—4ﬂﬂ=i Silsin(l—zsiné(ﬂx)j sir(—6 sin&(ﬂx)j 63 .(20.27)
+ d " cosr(—3 sin(’:(ﬂx)j
+[%+?“lco{l—; Siné(ﬂX)ﬂ coEl—i si ﬂﬂx)j d

As to the double slit potential of (20.26) we cong to use® =30°=77/6 for consistent
illustration. At the same time, we chooBe=10 also for illustration, which means that we are
choosing to have 10 peaks within each unit of donraluding the double-counting of the very
center peak atX =0. Using ®=30°=7/6 and B=10 in (20.26), for thedouble-slit we
obtain:
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%+2i7cos(2—;' siné(77X) co$( 1)0X)j+8i1 co§€1—2];/§ siforX)  gs m&)}

Silsin(z—;siné(ﬂX) cod( 1ﬁX)J siE%z sif¢rX) cob ZVO()J
; + {%Jréco{ﬁ" siné(71X) co¥( mx)ﬂ as[l—zsiné(nx) cod( wX)}

.(20.28)

T

xcosr{— siné(7rX) coy{ mx)J

Now, before we graph the illustrativ@=30° = 77/ 6 single slit potential (20.27) and the
illustrative ® =30°=7/6, B=10 double slit potential (20.28) there are two powtsich we
first need to discuss. First, consulting with Ufigs 23 and 24, the probability peaks are the
places to which the maximum number of photons,tedas, etc. congregate during single or
double slit experiments. How do we know this? dWeerve it in our experiments, directly. By
least action principles, all of themaximum probabilitylocations in Figures 23 and 24 must
therefore correspond to tmeinimum energyocations in the potential. How do we know this?
Because particles moving in a potential will bewdratoward and thus congregate near the
minima in the potential. Second, in general, ttegnitude of a spatially-varying potential such
as E, is not itself a physical observable. A voltadge example, has no independent meaning.

This is also one of the consequences of gauge synpmmé@hat does have observable meaning is
adifferenceof potential, that is, @oltage dropbetween point A and point B.

Keeping both of these points in mind, first, itrtsi out that when one graphs (20.27) and
(20.28), the choice of the positive rabtwhen taken with the — sign on the left sid@ﬂ E1| I\,

correctly matches up the maximum probability lomasi to the minimum potential locations. In
other words, we get the correct least-action mappinprobability to potential by choosing the
positive roots in (20.27) and (20.28), which maimgahe overall negative sign. Second, it turns

out that477E,|/ A, = —1throughout most of the curve, and only drops defiely below -1 at the

probability density peaks closest to the centaheiX axis. Because it is the relative difference
between two potentials, i.e., the voltage drop Whscobservable, we will also add 1 to each of
the inverted potentials, to make zero the “groupatential, and to thereby have the probability
density peaks correspond to a “voltage drop” beimro. So, choosing the positive roots to
maintain the overall negative sign, and then addihg set zero to ground, we rewrite giegle-

slit (20.27) and theouble-slit(20.28), respectively, as:
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Graphing the single slit potential of (20.29) ¥anich © =30° = 77/ 6, which corresponds
directly to the single slit probability density greed in Figure 23, we have:

25 2 45 -1 1 15 2 25

_A0_ Ax
2 27xr,

0=30°=7/6

A=4z /0 =24

E, .
1+4zx lA—Ol = See Equation (20.29)

Figure 25: Single-Slit Potential for® =30° = 77/ 6, Equation (20.29)
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If we wish to see the behaviors for the envelopﬂﬂdndomaidx| >1 we need to zoom out from,

i.e., widen the aspect ratio for the vertical ax[Boing this, we graph the exact same function
shown in Figure 25, but from a wider vertical view:

O=30°=7x/6
A=4r/0O =24

E, :
| 1eanlBl [ = See Equation (20.29)
-0.004 1 O

Figure 26: Single-Slit Potential for® =30° = 77/ 6, Equation (20.29), Wide View

So we see how the potential draws the field quaritdigure 23 toward their maximum
probability positions via least action, which weakhdiscuss in further depth momentarily.
Figure 25 shows how the definitive minimum of thetgmtial is atX =0, and Figure 26 shows

the secondary minima at just shy pPf|=1.5 and |X|=2.5, matching up with all of the
probability density maxima in Figure 23.

Now let’s graph the double-slit potential of (20)3or which® =30° =7/6 and B =10.

This corresponds directly to the probability depgtaphed in Figure 24. Here we have the
potential corresponding directly to the double-stibability density graphed in Figure 24:
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2 45 -1 05 Vos 1 15 2
a0 ;e
2z 27,
@=30°=7/6
) A=d7/©=24
B=10

E
304 1+4x IA—" = See Equation (20.30)

Figure 27: Double-Slit Potential for © =30° = 7/6, B =10, Equation (20.30)

As with Figure 25, the potential minima away frokn=0 are much smaller in magnitude than
the minima near the center. So we again draw amwigw of the above for the vertical axis.

=GRV T AEERAL LA
A§ _ Ax
X=—=
2r 27,
0jp
©=30°=7/6
A=47/0=24
B=10
i
E :
1+47I|A—'| = See Equation (20.30)
o

Figure 28: Double-Slit Potential for © =30° =7/6, B =10, Equation (20.30), Wide View

Here too, the potential draws the field quanta igufe 24 toward their maximum probability
positions via least action, which we shall disans&irther depth momentarily. Figure 27 shows

a series of dominant minima ne&r=0 which reduce a{5>(| increases, and Figure 28 shows the
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smaller, further minima under magnification. H&ye, these potential minima match up with all
of the probability density maxima in Figure 24.

Now, let us use some actual physical assumptionsakculate the magnitude of the
voltage drops associated with the single and dosiiilexperiments. The single and double slit

voltage drops in Figures 25 through 28 are expdesséerms ofl+ 4771 E1| IN,, where A\, has
dimensions of energy and is defined prior to (20ML\, = #c/ r,, wherer, is defined in Figure

22 as the approximate distance from the slit(sjht® detector, which includes macroscopic
distances. So let's now choose a macroscopicrdistg, and to keep things simple, let’s

chooser =1m . Once we make this final illustrative ptgisassumption (the other illustrative

assumptions were® =30°=77/6 and B=10), we need to calculate the deBroglie energy
N, =hclr, associated with one meter. As we laid out prwmr(14.42), one can use the

shortcutlF =5.067 73116BeV " ini=c=1 natural units without ever havinguge 7 anct

explicitly in the calculation. Becaudé =10"°m  at@eV=1C eV | tlsural units shortcut
can be written asl0®m=5.067 731168 I0evV' . OIm=5.067 731168 1®&V' . Or

finally, Im=1/1.973 269 632 I0eV. This means that the energy equivalentr,o=1 meter,
is:

A, =hcl1,=1.97326963% 10eV. (20.31)

So, now referring to Figure 25, close inspectieveals that the minimum & =0 has
the four-digit valuel+ 477E,| /A, =-1.830¢ or |E| =-2.8309\, /47. Atthe same time,

wherever 1+4771E1|max IN,=0 at the potential maxima which are the probabilitgnsity

minima, we haveE| =-A,/47. So because it is thirop in potentialwhich is observable,
and not the potential itself, we can calculate thatsingle-slitvoltage dropat X =0 is:

E| . —|E]| , =-1.8309\, /47=- 28758 I0eV=- 4.6083 T0J, (20.32)

where we also include the eV to Joules unit coriorrieV =1.602% 10° J. At the same time,
referring to Figure 27, close inspection reveak tihe minimum atX =0 has the four-digit

value 1+47|E| /A,=-81.385: or |E| =-82.3854\, /4r. Once again the potential
maxima are akE1|maX =-N\,/4m. So here, the double slit voltage dropxat 0 is:

E| . -|E| , =-81.3854, /4r=- 1.2780 IbeV=- 2.04%6 T0J. (20.33)

These are thlargestvoltage drops which occur for a slit experiment abheter. For the smaller
peaks away fromX =0, the voltage drops are smaller, as seen in Figlgeshrough 28.
Because the absorption of a field quantum on actmtenherently creates a photovoltaic
reaction, it may well be possible to detect thesedipted voltage drops by measuring the
photovoltaic drop between peaks and troughs inptiebability density while field quanta are
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accumulating at the detector, keeping in mind tEﬁt is the potential at the approximation of
the first recursive order in non-linear quantumldfigheory. Due to the isomorphic
O(hR) = E(x) mapping between the probability density for a gi& andB over a range of

g, 8, d andE input parameters, another confirmation is to skiwat the photovoltaic behaviors at
the detector are dependent solely on the value® ofind B for the detected probability
distribution, and are otherwise invariant with resptoq, a, d andE.

It is worth noting that the maximum voltage drop.@3) for the double slit experiment is
44.4510= 81.3854/1.83( times as large as the maximum drop for (20.32)tlier single slit
experiment. Part of this — like the doubling oé throbability density peak from Figure 23 to
Figure 24 — is accounted for by having two slithea than one. But most of this is accounted
for because the total voltage drop when integratest the entire domain, i.e., the total area
between the horizontal axis and the potential gumuast also be twice as large for a double slit
potential as for a like-slit, like-signal-energyngie-slit potential. Because the double slit
potential drops comprise a series of very narroikespseen in Figure 27 while the single slit
potential drop seen in Figure 25 does not losd @rea due to the sharp spikes, the lost area
under the horizontal axis of the double slit patdnteeds to be recouped, and this occurs by the
distinctively larger voltage drop which occurs tbe double slit potential in the narrow spikes
where there is any drop at all.

Now we return to Richard Feynman who we quotetiastart of this section to see what
the foregoing teaches us about one of the greatemws of quantum theory, namely, the
interference pattern of Figure 24 which we obtairthie double slit experiment, notwithstanding
that photons reach and hit the detector one ana.tiThis goes to the heart of wave-particle
duality, because the interference pattern of Fidi#recan be and was fully accounted for for
many years by a wave model of light with constmreetand destructive interference yielding the
peaks and troughs in Figure 24. The mystery andsn it was discovered that light exists in
guanta which each have an eneflgly for light of a given frequenc§; and that they reach a

detector one at a time, and that the pattern air€ig4 thus builds itself up one photon at a time.
This can be visually seen, for example, in widergikable pictures such as Figure 29 below
which is reproduced from [32], and in visual sintidas such as [33] which highlight that this is
not only a phenomenon for photons, but for electrand even for composite particles such as
hadrons.
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Interfer

Figure 29: Buildup over Time of Double-Slit «
[32])

Because Figure 24 is the constructive / destrudtiterference pattern for light waves at a
distance from a double slit, but because this patbelilds up one field quantum at a time as
shown in Figure 29, this cannot be the result afstmctive and destructive interference even
though the patterns are the same. This must beetiudt of “something else,” and to this day,

the nature of the “something else” which is resjgdador the buildup in Figure 29 which leads

to the interference-like probability density fogkre 24 is not really understood.

Here, we obtained in equation (20.30) and grapheéigures 27 and 28, a double slit
guantum potentia1E1| in the first recursive order of non-linear quantdield theory. The

minima of the potential in Figures 27 and 28 matighwith the maxima in the double slit
probability density of Figure 24. The same holdgetwith the single slit potential (20.29)
graphed in Figures 25 and 26, for which the minimach up with the maxima in the single slit
probability density of Figure 23. If the “sometbielse” which explains why field quanta build
up into the interference pattern of Figure 29 ivéosome quantum field theory version of the
geodesic principle deast action then the quantum potentials of Figures 27 antb2@ double
slit configuration, and of Figures 25 and 26 fosiagle slit configuration, may well be that
“something else” which explains the type of buildsipwn in Figure 29 which looks like a wave
interference pattern but cannot be so becausitilisup one quantum at a time.

So, let us now pose the central question: takeingles photon with an energy

E=hf =hc/ A or a single electron or proton or neutron or mesgh energyE = hf = hc/ A

and fire that field quantum through a double skigure 24 shows the probability density for
where that field quantum will strike the detectofhat probability density happens to be the
probability density for constructive and destruetiwave interference, even though there does
not appear to be any way for a single field quantonmterfere with itself. So the question: why
will the field quantum strike the detector with eolpability density given by the interference
density of Figure 24, even though there seems taodobasis for explaining the one-at-a-time
buildup of Figure 29 as an interference phenomenBe%tated: what is the physical cause and /
or explanation for the observed fact that singtedifield quanta will build themselves up over
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time as shown in Figure 29 into the interferencigpa of Figure 24, when the buildup of Figure
29 appears to remove interference itself as theecand / or explanation?

This question brings us to the center of philoscgdhchallenges which have confronted
physicists over the past century. There exist @lshof thought which maintain that one cannot
even ask the question “what is the physical catmethe interference-like buildup of Figure 29,
because as an epistemological matter, one canmot knything definite about the location or
momentum of a field quantum unless and until tlet fquantum has struck a detector and been
detected. In other words, Figure 29 gives us epistogical certainty, because each dot tells us
that a field quanturhas struck the detectat the position indicated by the dot. But to hekv
it is that the dots came to build up in the ovenatiérference pattern of Figure 29 which when
made smooth and continuous is that of Figure 2@&sehschools of thought will maintain, is a
guestion which has no answer, because it requinest@ talk about what happens to the field
guantumwhile it is in flight to the detectarhich is epistemologically unknowable.

But the quantum field potenti¢E1| of equation (20.30) graphed in Figures 27 and 28

raises the prospect that this school of thoughtb®areversed, and that one can ask “what is the
physical cause” for the interference-like buildupFogure 29 and can ask what happens to the
field quanta while they are in flight to the detecand can obtain an answer / explanation rooted
in the highly conservative physics principles aideaction and geodesic motion. Least action
principles, in their simplest form, state that atigle moves through space, over time, the way it
does, because it is supposed to. Because it feliitne simplest, most direct path of least
resistance. Because it seeks a path which requieexpend or have to acquire, as little energy
as possible. When there is a potential involvedst action principles state that a particle seeks
the minimum of the potential. And because the mitd€ of Figures 27 and 28 has its minima
right at the locations where the probability densit Figure 24 has its maxima, the answer to the
qguestion “what is the physical cause of the interiee-like double slit probability buildup” of
Figure 24 appears to be rooted in the potentidiglires 27 and 28: Field quanta build up, one
at a time, into the interference-like probabilitgngity of Figure 24, because they follow least
action principles and seek to find to minima of tgeiding potential” of Figures 27 and 28.

Although it is attractive to think that the dowslié probability density can perhaps be
explained on the basis of least action principkesell on a guiding potential like those of Figures
27 and 28, putting this explanation rigorously iptace is not as simple as it may seem at first.
This is because the single and double slit quarpotentials (20.29) and (20.30), which are
rooted in (20.13) and (20.14) which are in turntedoin (20.1) which in turn derives from the
generalized spherical coordinate potential (1a,not quite the same as the classical potentials

such as the Coulomb potenti&| = —(1/47)r™ which we studied in section 16 and further in
section 19 in relation to sources (r) in (19.4) which are Dirac deltas. TheBgarequantum

potentials of an analytical, non-linear quantunidfigeory, notclassical potentials, and it now
becomes crucial to understand the difference betwesse two types of potential.

To explore this question, we continue to consitier double slit probability density of

Figure 24, and its associated quantum potentidFiglires 27 and 28. These figures were
developed to illustrate the particular case whieeeaverall spread of the major envelope running
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from -1< X <1 is given by the angl® =30° =7/6, and where there arB =10 probability
peaks over each unit of tikedomain including double counting of the very cemieak atX =0

. This is actually the reverse of how one usudiégusses double slit experiments: Usually, one
starts by stating four parameters: type of fielduggumq (e.g., photon, electron, hadron, etc.),
slit width a, slit separatiom, and the energies / wavelengtBs= hf = hc/ A of the field quanta

being fired through the slits. Based on these frarameters, and taking in Figure 22 to be

very much larger than either afor d, we will end up seeing some pattern on the detewiti
some © and someB. Here, we have postulated that one has chesene specific but
unspecified sebtf g, a, d andE parametersuch that® =30°=7/6 and B =10, which then
produces the pattern of Figure 24 on the deteclbat is why, as noted after (20.3) and (20.12),
it is not essential to the development here to #iae the specifig, a, d andE which lead to
©®=30°=7/6 and B=10, or which lead towhatever © and B one may observe on the
detector.

In fact it is very important to have organized #pproach to the slit experiments in this
non-specific way as tg, a, d andE, because of the fact that there i:i@-uniquerelation
between the “input parameterg’a, d andE, and the output paramete®s andB. Specifically,
for any posited® andB, there are a variety @, a, d andE which will lead to the posite®
andB being observed on the detector. One can makaragehfor example, ia and / ord, and
then make a compensatory changg,iiso as to produce precisely the saeandB. And,one
can even change the type of field quantwimch is being fired at the detector, and by a
compensating change @ d and E, one can maintain the exact sar® and B. Put into
invariance language, we may say that any gi@eandB output parameter pair will bavariant
with regards to certain changes in the input patarsg, a, d andE, which changes in the input
parameters can be specified with mathematical gi@ti And, as we see in comparing the
double slit probability density of Figure 24 withet double slit quantum potential of Figures 27
and 28, there is also a one-to-one isomorphic nmgpipetween probability density. We see the
same thing comparing the single slit Figure 23 Hthures 25 and 26, and we saw this also in
sections 16 through 19 for other probability deasiand potentials including the -1/r potential,
confining potentials, and Gaussian and Dirac daeltdability densities. So this means that not
only is the double slit probability density invartawith regards to certain changes in the input
parameters), a, d andE, but so too is the quantum potential! That is,cae change, a, d and
E, and so long as we do so carefully and cleverl/can leave the quantum guiding potenial

invariant. Put differently, any give® andB — which means any given double slit probability
distribution 0, (hR) and its isomorphically-associated quantum potera— will map on a

one-to-many basis over to a rangeyod, d andE which will produced (th,) and E which are
parameterized by andB , without any change. As pointed out after (2D.8&cause of this
isomorphicO(hR) = E(x) mapping between the probability density for a give andB

over a range of, a, d andE input parameters, the quantum field equations kwlgad to results
such as (20.32) and (20.33) could be confirmedhoyving that the photovoltaic activities at the
detector are dependent solely on the value® aindB for the detected probability distribution,
and are otherwise invariant with respect to q, amndl E
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Where the challenge arises in understanding hoswm evithout any overt interference
occurring, the quantum potenti&d, serves to “guide” the field quanta toward the obseé

interference-like probability distribution, is niot the invariance reviewed in the last paragraph,
but in the fact that while some changes in chapge d andE will leave © andB and therefore

0y (th,) and E invariantthere are other changes in g, a, d and E whichmall For example,

it is well-known that if one makes a slight chamgehe energy of the field quanta being fired at
the double slit, and / or changes the slit confgjon itself without changing any other input
parameter in a compensatory manner, or changeypkeof field quanta being fired without a

compensating change elsewhere, that the probaldigyibution 6X(th,) will also change.

This means due to the isomorphism betw@g(r(hl%) = E, that the potentialE, will also
change. Now, as to the input parametgrsa, d and E which affect the isomorphic
0y (hPO) = E, two of these parameterg,and E areintrinsic to the field quanta themselves.

The g parameter tells us what type of field quanta isdpdired, e.g., photon, electron, proton,
neutron, meson, helium nucleus, hydrogen atom, ocarimolecule, etc. And the
E=hf =hc/A parameter tells us about the energy of those figpldnta. The other two

parametersa and d are the slit width and the slit separation, andséh are completely
independent of, i.eextrinsicto, the type of field quanta being fired througk tdouble slit.

But all four of the input parametegsa, d andE would appear to be independent of, i.e.,
extrinsic to, the potential enerdy, at least if we think o, as a potential in the classical sense

as a preexisting background field which is not @Hd — or is at most minimally affected — by
the objects which travel through the potential. rdjlein non-linear quantum field theory,
something very different is going on than what we for a classical potential: We can change
the type of field quantung or its energyE, and by so doing, we will change the isomorphic

dy (hR) = E which results from the overai| a, d andE parameter set. And so, the change in
g or E will change the guiding quantum potenttl. Even more unusual if we think in terms of
a classical potential, is that we can even changedd, which are the slit width and the slit
separation, and that this too will cause a chandke guiding potentiak, , again because it will
change the probability density, (hP)and because of the isomorphisiy (hR) = E. In

classical theory, there is no way in which one wlogkpect a potential to be changed because of
the changing of a slit configuration. Yet in quamtfield theory, changing the slit configuration

definitively changes the guiding quantum potenial This is what we must now understand if
we are to place the prospect tHatis a guiding potential for the field quanta, oateigorous
basis.

As just discussedthe non-linear quantum potentialE, appears to very different

character from a classical potentialln classical field theory, potentials are regdr@s being
background fields which are not affected by thetigas which travel through them, except
perhaps at very nominal order due to the fieldhefparticles themselves. But in quantum field
theory, a quantum potential suchBsis not preconfigured. It only becomes configundten a

guantum particle (a single field quantum) traval®tgh that the quantum “vacuum.” When this
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happens, both the particle itsatid the configuration of spacetinrenearby locales, and even in

distant locales, coact in their entirety to “ligipp” the potential which then dynamically gives

rise to the probability distribution observed asiak (e.g., detector), because the travelling
guantum is itself disturbing and changing the quantvacuum and giving rise to the potential.
Specifically, once the potential is lit up, in ratlBohme-ian fashion (referring to David Bohn),

the field quantum simply propagates through thentiira vacuum so as to find the lowest
potential in a geodesic / least action / least mtede sort of manner, and strikes (sinks at) the
detector after so doing. Then, after that quanparticle has travelled through the potential
which is partially induced by that particle typedaparticle energy and partially induced by
everything else in the universe, and is detecteel,vacuum potential goes back into a latent,
non-configured state, awaiting the arrival of thexthquantum particle to travel through the
vacuum and do the same thing.

In sum, this is a case of the travelling partitéelf acting as an “observer” to the vacuum
in which it is travelling by disturbing the vacuuand causing the vacuum to respond by
configuring its vacuum potential. Then, the figldantum follows a least action patimough the
potential to which it itself has given rist its final detected location on the detectoAfter
enough field quanta have each traversed the vadouims way, and have followed paths of
least action based on the self-created potenkats Figures 27 and 28, the accumulated result

accrued one quantum at a time as in Figure 29,bgillhe probability distribution of Figure 24.
As to any individual field quantum, we cannot potdirecisely where this will land on the
detector, except probabilistically via Figure 248ut this is not because of any quantum-
epistemological bar to knowing what happens wHike field quantum is in flight toward the
detector for why the probability distribution ofgeire 24 is an interference pattern even though
there is no discernable interference when we censide quantum at a time. It is because of the
statistical distribution which it is most conveni¢a ascribe to the field quanta as they are being
fired from the source and as they make their wayuih the slits over a range of trajectories and
positions which are described statistically, rathan particle-by-particle, in the same fashion as
the 19" century probabilities which were used to desctiteekinetic motions of the particles in a
gas.

Now, it might be intuited how this sort of self-aton of a guiding potential via the
interaction of a field quantum with the vacuum cbelkplain how a travelling field quantum
might affect the quantum probability and the patdridased its own energy and type, i.e., based
on the input parameteis andg. But the real quantum theory-based mystery is haw that
changing theslit configuration which is part of the configuration of spacetimenearby locales,
can also affect a change the potential, since ltheanfiguration isindependentf the particle
type or its energy. This turns out to be rootedhe fundamental and qualitative difference
between a quantum actioil or a quantum potentid in W = ET, and a classical action or a
classical potential. Let talk about the quantunteptal E rather than the quantum actiowv
because that is what we have in Equation (20.3@}wik used to graph Figures 27 and 28.

A classicalpotential is a one-body potential sourced by asital object which is posited
to be situated in a particular location at a paféctime (which it will be appreciated already
raises quantum issues of “uncertainty”). But ewsore importantly, the classical potential is
used to calculate in a “controlled” or “sterile” wonment where anything else which might
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influence a particle travelling through the potahtther thanthe one body generating the
potential, is segregated out and ignored. As s@oime controls are relaxed — for example, when
one starts to consider a three-body problem, os&ya many-body problem — it becomes much
more difficult if not impossible to actually do aeful calculation. In sum, classical field theory
idealizes away the effects of all but the singleal@zed source creating the potential and the
single localized particle posited to be travellittgough the potential, and when there is a
deviation from these idealizations, classical fitldory rapidly loses its ability to make useful
guantitative predictions without inordinate heaiffing. To be sure, there are some classical
simplifications which do enable multiple sourceskte treated accurately. For example, a
uniform spherical distribution of multiple chargean be idealized to a single charge at the
center of the sphere which has a charge that isuhetotal of all the charges, and the Coulomb
potential may them be applied to anything travegllioutside the sphere. But these require very
clear symmetry assumptions and lose their predictapacity as soon as the postulated
symmetries are removed.

In contrast, thejuantumpotential in the path-integratey = ET is the precise opposite
of a classical one-body potential. It is @itbody potential And W is anall-body action To
get toW = ET one has already path integrated oabrof the possible configurations of the
classical field via the measubBGs, see (11.4), so all possible field configurati@ane included.
To then get toE, in (15.42) or all of its progeny such as (20.3®0)ck is used to graph Figures
27 and 28, one has further Fourier integrated allgpossible momenta via the measuitk,
and one has also integrated over all of spacetimbdth the source and the sink via the measure
d*xd*y, see (15.9). So thE, in (15.42) already contains implicit “quantum kriedge” about
the spacetime of which it is a function, becauseas arrived at in the first place by integrating
over all possible spacetime, energy-momentum, etdl ¢onfigurations. The quantum potential
E, is therefore not the product any one particulars® as is a potential in classical field theory.

Rather, it is the product of any and all sources ginks and configurations of matter and energy
throughout all of space and time. This, of counseludes any nearby slit configurations.

While E, is an all-body potential, this does not mean thatfeed everything in the

universe at all times and places into the equaiah as (15.42) or (17.2) or their progeny which
determine E;, or that E, is somehow omniscient enough to possess quantwwl&dge of

everything that has ever happened are will happsmiaere. Rather, it means that whatever
probability densitiesdx(th) we do feed in to determin& via the isomorphic mapping

0, (hR) = E, and whether this probability density is the knoprobability density for a

source or the known probability for a sink (at @&edéor), we will come away with an associated
quantum guiding potentig, that fully explains and indeed is tphysical resulbf the observed

probability density for the source, or thaysical causef the observed probability density for
the sink, via the isomorphic mappirdy (hR) = E. Using the examples already developed
here, let us see exactly how this works.
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First, as we saw in section 19, suppose we post dburce probability density
9, (hR) =4, (r) of (19.12), which is a Dirac half-delta defined (t9.4) right atr =0, and
which is zero everywhere else. Then, as seen9ri4) which we started to see at (16.1), the
quantum guiding potentiak, :—(1/47T)r‘l turns out to coincide precisely with the Coulomb

potential.  That is, the isomorphi, (hR) = E which we generalize t&(hR) = E(x)
becomes a probability densify (hR) =3, (r) mapping to a potentid, = -(1/477)r™, that is,
it becomes the mapping, (r) = —(1/4m)r™. This is the correspondence of non-linear

quantum field theory, to classical field theory.sdurce which is a Dirac half-delta rightrat 0
, yields a potential—(1/471)r'1 which is finite everywhere but at=0, which is the precise

same place where we have posited the controllgiisirity J, (r). The source af], (r) is the
physical causef the E :—(1/47'r)r'1 Coulomb potential. Further, in classical theafyve

had multiple charge sources, one would model thiplacing multiple deltag), (x,), J, (x,).

(3

o, (x,)etc. at various positiong,,x,,X, etc., and each of these sources would then generat

Coulomb potentials—(1/47T)r‘l centered ax,,X,,X,. Then the overall potential would be a

linear superposition of the individual potentials.

But in non-linear quantum field theory this worki$fetently. As our second example,
we also saw in section 19 that if we posit a soprodability density which is the half-Gaussian
0, (hR) =(2/ ) exp(~r* Ir,?) of (19.1), this will map over via thel(hR) = E(x)
isomorphism to the quantum potential (19.5) / (L9vBich has the real magnitude (19.10) and
which is graphed in Figure 19 and deviates fronlriats—(l/477)r'1 Coulomb potential in the

(N /2 region to the degree illustrated in Figure 21. nBw, the source probability density is a
Gaussian, which unlike the Dirac delta, hasam-zero spatial expanseBut to deduce its
potentiaI|E1| graphed in Figure 19, we simply plug the Gauspiaability density (19.1) into

the generalized radial relationship (17.5) and pops the isomorphically-corresponding
potential of (19.5) for which we graph the “almest” magnitude in Figure 19. When we refer
to the Figure 19 potential as an “all-body” potahtwhat we are saying is that the Gaussian

(19.1) isnot an idealized, localized half-del@ (r), but has a spatial expanse most of which is
concentrated within a few standard deviations',of and all of which spreads out in its “tail”

throughout the domain frond<r <. Once we specify the “entire body” of the Gaussia
source probability density (19.1) as one holisttitg with finite, unrestricted spatial expanse,
we immediately pop out the associated “all bodyteptial which accounts for the entire
Gaussian from body to tail, and find a small deeratfrom -1/r in the body, and a virtually
unchanged -1/r potential throughout the tail. &olong as we are able to specify the entire body
of the probability density for which we wish to as@in a quantum potential, we can indeed
deduce the entire potential and do not have to lgutathis task piecemeal as we would in
classical theory.
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Our third example was that the constant isotropigpted probability density explored in
section 17, which led to fitting the running strazaupling curveas(Q) in section 18. Here, we

posited a constant coupled probability fiehd® =Arin (17.28) following normalization, for
which the associated probability dens@ty(hR)=A is constant over the domar <r, as

illustrated in Figure 7. Here, via the isomorphi&hihR)) = E(x), we obtained the quantum

guiding potential of (17.33) graphed in Figure @ &mrther studied in Figure 15. Here, we begin
to really see the nature & as a guiding potential. How so? As noted eariies one thing as

a mathematical exercise to posit a constant derﬂ$i(ylPo):/\ over the domain0<r <r,
which drops tod, (hR) =0 for r >r,; it is quite another to specify the physics whiati hold
together the density, (th)) =N\ within 0<r <r, and not allow that any of the probability

density to “leak out” beyond >r,. Here is where the physics of the Figure 6 angdi&ntial

goes hand in hand with the probability density. e Tgotential in Figures 6 and 15 makes it
impossible for any field quantum to move to>r,, because the potentidt, at the first-

recursive order rises to a maximumrat and because of the expectation that the potedtahl
physical potentialE, to infinite recursive order will itself grow asyngpically to infinity. The
postulation of 9, (th)) =/ within 0<r <r, carries with it, isomorphically, the confining

potential needed to physically-enforce itself thlglouhe natural tendency of physics systems to
tend toward least action. Here, the “entire bodythe densityd, (hR)=A within 0<r <r,,

and the all-body potential which enforces the endiensity configuratio, (th)) =/ is the one
in Figures 6 and 15.

So, what we really do in section 17 is postulapeabability density which is confined to
O0<r<r,, and the quantum field equations themselves tlmgnqut the potential required to

enforce that confinement! This provides the phlsieast action, guiding potential necessary to
explain and cause confinement. And beyond confergrand the resulting fitting of the QCD
running coupling in Figure 14, and beyond the fhat the potential itself as studied in Figure 15
points toward new physics precisely at the GUT BRiahck scales where new physics is to be
expected, the key lesson taught by the potenti&igares 6 and 15 is that field quanta such as
guarks do not become confined just because we thasitconfinement. They become confined
because the positing of confinement carries wittant associated potential which enforces
confinement via principles of least action. Andtmeans more globally that notwithstanding
all of the conceptual and epistemological challengeesented by the quantum reality that has
been discovered and developed over the past ceamgryongerphysics is still physics; it is not
magic One who practices physics as a discipline still imusd the causal reasons which
explain why we observe what we observe, and ledgtnaprinciples remain a very central and
important cause for the natural behaviors that veserve, even in the quantum domain.

So now we return to the double slit experimentha present section, armed with the

understanding that in non-linear quantum field tlgea coupled probability density goes hand-
in-hand with a quantum potential with which it sdmorphic, which completely causes and / or
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is caused by every aspect of the fully specifiedpbed probability density. And it is in the
context of the double slit experiment that thiscalines into full bloom. To illustrate this, let us
return to the detector apparatus schematicallydatdn Figure 22, apply this specifically for the
double slit experiment, and superimpose both thdimg potential of Figure 27 in the region
where the field quants propagate from the slitshe detector, and the probability density of
Figure 24 which is ultimately viewed at the detedtwlowing a buildup of field quanta at the
detector in sufficient numbers to fill in the oneaatime strikes of Figure 29 and bring about a
curve with a the continuous appearance of douiilevale interference. We illustrate all of this
in Figure 30 below:

Figure 30: The Guiding PotentiaI|E1| and the Consequent Probability Densityd, (hPO) for
the Double-Slit Experiment

Now, as we did for confinement just discussed, w&tthe probability densitg,, (th)

seen at the detector. But even here, for a qoamteatment of the double-slit experiment,
physics is still physics; and it is still not magi@/e still require a causal explanation of whigit

that the individual field quanta aggregate togetteeproduce the observed interference-like
probability density, just as we required a causalanation for what held together the confined

system with a posited densit) (th)) =N\ over O<r <r, and found the guiding potential of
Figures 6 and 15 to do so. We see that suffigiiatl from the slits themselves, the guiding
potential|E1| creates what may be thought of as least actioovgin the vacuum which cause

the individual field quanta to strike the deteatoth the observed probability density. To use a
physical analogy, these are in the nature of “baxbsiacks.” Not every bobsled will register the
same time in a race, and not every bobsled willigmth the same place at the end of a race, but
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the bobsled tracks do definitively establish thebability density curve for where any particular
bobsled is more likely and less likely to end up.

However, lest one think that Figure 30 yields dyfalassical way to explain the double
slit experiment and removes all of the quantum lehgks from the required explanation, rest
assured, it does not. Unlike a classical potertti@ potential “grooves” do not preexist in the
vacuum. If one changes the field quagtar if one changes the energyof the field quanta
without a compensatory change to another ofgha, d and E parametersthen the guiding
potential itself will change This does not happen with a classical potentiBven more
guantum-indicative, if one changes the slit sizm the slit separatiod without a compensating
change to another parametdren the guiding potential itself will again chang&his most
certainly does not happen with a classical potentia

But the non-classical aspects of quantum thedoynot come into play via an
abandonment of cause and effect or via relinquistie requirement to explain why the
observed probability densities are what they ars@ane causal foundation. Nor do they come
into play via an abandonment of least action / geadprinciples as the mechanism to explain
the causation of why things happen the way they&amnd why the field quanta statistically
end up where they end up. Nor do the non-clasamaécts of quantum theory come into play
by taking the epistemological view that what adigbantum does while it is propagating has no
meaning and that the only meaningful thing we cay about an individual field quantum is
where and when it observably struck a detectoguriél 30 enables us to talk very definitively,
and indeed classically albeit statistically, abtnat behaviors of individual field quanta as guided
by a potential during propagation which directlyses the observe probability distribution at the
detector.

The non-classical aspects of quantum thedoycome into play when it comes to
understanding the non-linear guiding potentil itself, and how this potential itself arises in

response to, i.e., is caused by, tpea, d and E parameters in double slit experiments.
(Physically, one should always keep in mind tEgt deduced to infinite recursive order is the
physical guiding potential in the real universe aBd deduced here is just the potential

containing the first non-linear order of recursjorOne might very well fire a number of field
guanta, say, electrons, through a given doublegaitifiguration, and end up with what is seen in
Figure 30. Then, one might do nothing other thaange the enerdy of a new set of electrons.

Thereafter, the observed probability densﬂy(hPo) will change, and the isomorphically
mapped guiding potentiak, will change, and all of this change will be a alu®sult of the
change in the electron energy. This means thastadiectronA with energyE, will actually

give rise to and propagate througftiferent guiding potentiathan a second electrd® with
different energyE;. In a very quantum, non-classical sort of manguthe propagating field
guantum itself is affecting and changing the vacuomwhich it is propagating, almost as if a
bobsled managed to inform the bobsled course afitch particular bobsled was riding through
the course, with the bobsled course then reconfiguts bobsled tracks accordingly. Similarly,
one might leave all else the same, but change ldwdr@n to photons, and again, the vacuum
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itself will be influenced by the fact that it nowa a photon rather than an electron riding
through, and will lay out a different guiding poti@hthan the one that guides the electron.

And, the non-classical aspects of quantum theéorgome into play in superlative terms,
when one does nothing more than change the slihwidr the slit spacing without any other
change. Here too, if one changes the slit condiiom in the middle of an experiment, then the

observed probability density, (th) will change and its guiding potentidd, will change in

consequencall because of the change to the slit configuratidiis is a truly non-classical sort

of phenomenon, and it suggests that the quantunuwaactually has “quantum knowledge” as
to the nearby slit configuration and updates itsvidledge when the slit configuration is changed.
But this is understood by keeping in mind that tolinear quantum field equations which

generally related(hR) = E(x) on an isomorphic basis are arrived at followingpath
integration over all classical fieldﬁDG, following an integration over all momenfaj“k, and

following a integration over all of spacetime fastb the sourcqrd“x and the sinkjd“y. By

Huygens, all points along the front of a signalgagation can be viewed as the source of a new
signal propagation. For a freely-propagating wakis, is often a triviality, because constructive

and destructive interference serve to cancel etwr out. But when a source emits a signal and
then that signal travels through a slit, by Huygemscan re-source the source to the slit, and

thereby regard the slit as the source which wagnated over_|'d4x.

So from this viewpoint, by Huygens, the source dbable slit experiment is the double
slit itself. The probability density at this soarbas .5 of its cumulative probability situated at
the first slit, and the other .5 of its cumulatpebability situated at the second slit. This then

maps viad(hR) = E(x) to a related quantum potential. Meanwhile, tié sif a double slit
experiment which was integrated ovﬁd“y is the detector. This displays the probability

densities illustrated in Figure 30 which are causgdhe potentials also illustrated in Figure 30.
What Figure 30 does not display explicitly, is ttre .5+ .5 probability at the source slits, and the
related potential. Mathematically, noarry the source to the sink via the propagatiod aridge
the wave view to the particle view of quantum fittldory one may start with classical wave
theory, specify the probability densities over émtire continuum for both the coordinateand

6 — X, and then use the non-linear quantum field eqoatior 0(hR)) = E(x) to deduce the
El(x) which guides a field quantum all the way from s@uto sink. At that point, although we
have taken advantage of classical wave theory ¢eifsp0(hR) and then deducé, (x), the

El(x) so deduced now provides a least-action founddborguiding individual field quanta

over to the detector such that statistically, tivdydisplay the observed interference-like pattern
of the double slit experiment.

That is what we have in effect done in this segtion starting with the wave-densities
(20.7) and (20.9) for the single slit and doublé sink graphed in Figures 23 and 24,

respectively; and then deriving the associq\Egbguiding potentials (20.29) and (20.30) graphed
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in Figures 25 through 28. At this point, we araiipged to pass over to the particle view,
because now, as shown in Figure 30, these guidbtgn]jals|E1| provide a least action

foundation to guide individual field quanta througfieir propagation so as to statistically
aggregate at the detector sink in the interferdikeeprobability pattern shown at the bottom of
Figure 30 for the double slit experiment. Howetbe non-classical features of quantum theory
remain, but not in an abandonment of cause andtefferelinquishing of the need to explain
why we observe what we observe by least-actiorciplies. They remain insofar as the vacuum
itself gives rise to the guiding potential usegtopagate any particular field quantum from the
source to the sink, by interacting with and therdélaying quantum knowledge of and being
affected by: a) the type of field quantum thatriegagating through the vacuum; b) the energy of
that field quantum; and c) the configuration of thearby slits which by Huygens become the
sources. So each field quantum while propagatiogpled with the nearby slit configuration: a)
induces (causes and creates) the guiding potentihde vacuum which will then influence its
own propagation from source to sink; b) propagétes source to sink under the least action
influence of the self-induced and slit-induced guidpotential based on interaction with and
guantum knowledge within the vacuum, and c) strikes sink detector in the observed
interference-like probability distribution as a saliconsequence of having travelled through the
self-induced and slit-induced guiding potential.

In this way, nonlinear quantum field theory différem classical field theory because in
classical field theory the potentials are sourcgd bcalized source and are taken to be virtually
or completely unaffected by what travels througbsthpotentials; while in quantum field theory
a guiding potential arises in a vacuum in defi@tresponse to both the individual field quanta
propagating through the vacuum and to the quantnowledge held by the vacuum about the
surrounding spacetime including such matters asahfigurations, such that the propagation of
an individual field quantum follows a path of leastion in relation to its self-induced and slit-
induced guiding potentialin both quantum and classical field thepmdividual field quanta
propagate as they do because of least action plasciincluding a natural tendency toward the
minima of a potential, and when one is dealing Vattye numbers of field quanta the overall
pattern of field quantum arrival at a sink / debedés described as the statistical accumulation of
large numbers of statistically-distributed fieldaga each pursuing least action pathBhe
difference between classical and quantum field heests solely in the way in which the
guiding potential comes aboutn classical field theory the potential is prestixig and is taken
to be totally or virtually unaffected by anythingitbthe source. This limits the analytical
predictive reach of classical field theory to s@sravhich are either highly localized as in the
Dirac deltas which implicitly underlie applicatiaf the Coulomb potential, or have high degrees
of symmetry such as a uniform, spherically symroeatharge distribution, and creates practical
challenges analytically solving problems involvitgee or more bodies absent some exploitable
symmetry. In quantum field theory the potentiainduced in the quantum vacuum in real time
as field quanta propagate and takes full accounh@ftypes of quanta which are propagating,
what their energies are, and the configuratiornefriearby spacetime in the form of slits through
which the quanta are propagating. There is noteaplogical problem with discussing the
propagation of individual field quanta from sourte sink, and so long as one can
mathematically specify as source and / or sink complete fashion, one will be able to specify
the isomorphically-associated least-action guidipgtential in commensurately complete
fashion.
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21. Summary and Conclusion

This concludes the formal development of this pape let us summarize what we have
learned: In non-abelian gauge theory with gauglel$iG, although the magnetic charge density
P=DF =DDG=0 by a Jacobian identity (2.4) just as the abeliaagmetic charge density
P=dF=ddG=0 because of the differential forms geometry, thisrestill a non-vanishing

magnetic field qux<ﬂ>F :—i@[G,G]:—i”J'dGGiO (3.3) across closed surfacesictv

contrasts to the zero net fluifgg F =0 that one has idia@bgauge theory. These apparently-

conflicting features of non-abelian theory — namalynon-zero magnetic flux over closed
surfaces but no magnetic sources — are reconcyleddizing that the magnetic field flux is not

sourced@ F (P) by any elementary magnetic charge dewsiigh is P = DF = DDG=0 , but
rather is sourcedﬂS F(G) by a “faux” magnetic souRe=-id[G, G| =-idGG  onwhirises

totally from the gauge fieldsl?'(G) . But real gaugads do not arise spontaneously. They

must be sourced by an electric charge dedsignd in non-abelian gauge theory, the differential
equation which governs this i&J =D* F=D" DG . Further, we dtsow that in Dirac
theory, electric charge densities are in turn sedioy fermion wavefunctiongy  via Dirac’s

J“=ywy*y. Thus, we now need to set upon obtaining the rssvesolution to
*J=D* F=D* DG for G(J) to enable us to findpF (G(3)) anfpF(G(J(»)))

So in section 5 we develop the electric sourdd fguation*J = D* F=D* DG , and in
sections 6 and 7 respectively, we carefully devéhapinverse solution@(J) for massive and

massless gauge bosons respectively, paying vesg @tiention to issues involving uniqueness
and gauge-invariance and gauge fixing and “contdxgauge fixing” wherein anathematical
inverse which is non-unique becomes unique whemeplanto thephysical context of a

conserved current density. And in section 8 wersse G(J) is not really a solution involving
J alone, but is a highly-non-linear, recursive fimetG(G, J) which can be recursed as often as

desired, and then turned frof8(G,J)  in8(J) by setting peeturbationV =0 at any

desired order. We also noted how the physicalrsezeught not to depend on an arbitrary cutoff
of the recursion, but rather, ought rather to beeldaon the series (8.20) that results from
recursing an infinite number of times before zegdime perturbation.

So starting in section 9 we made use of the nafiaab solution for a massive gauge
boson, namelyG, =(-V +k K - nf + r)‘l J, of (6.27) to write o F (G(G,J))  in (9.2).
Then to keep the initial development simple andettgy the “ground state” symmetries, we
immediately seV =0 in (9.4) to writ¢p F (G(J)) i the zerosiwursive ordef(0)), , which

is the same thing as having used the abelian neassiutionG, :(k,k’ -nf+ is)_1 J, (6.17)
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ak.a. (6.28). After then usind” = Wy“¥  to replace cusenith fermions and thus arrive at
g{;ﬁ F (G(J(z/l))) in (9.7), we turned to the fermion Exclusion Pijite of Fermi-Dirac-Pauli.

It is the Exclusion Principle that drives the ottuction of a dimension-3 gauge group to
ensure that all of the fermions within th@sF(G(J(w))) systane in three distinct

eigenstates, turning this now intggF (G(J(z/lR,z//G,(//B))) which reactmesdoal established

at the end of section 3. The reason for theregottiree colored quarks in the ground state of a
baryon is then seen to be very simple: because ther three additive terms in the covariant
tensor expression (9.7) for a magnetic monopolas &lso brings with it, eight bi-colored gauge

fields. After applying a Goldstone-like mechani§l5) to reallocate degrees of freedom and
force the gauge fields to be massless and give rnwgbe fermions while contextually-

preserving the unigqueness of the underlying salutay (G(J)) , We arrive at the ground state

monopole density of (9.21). This monopole hasaisymmetricR[G, B+ G B R+ B R ¢

color-neutral wavefunction of a baryon althouglildes also contain fermions in three colored
eigenstates, and as we had already found in (Bgrmits no net flux of individual gauge fields
across its closed surfaces. But then we find @4(land (10.5) that this monopole does permit a

net flux only of color-neutraRR + GG + BB mesons, which fugtltements the confinement of

gauge fields first suspected in section 3 becawsiing other thancolorless RR+ GG + BB
fields are permitted to net flow in across closedaces. And we further find from (10.6) that
the dimension-3 gauge group must be SU(3)xU(1),jumstt SU(3), and that this provides the
magnetic monopoles with topological stability saadoas this SU(3)xU(1) group emerges
following the spontaneous symmetry breaking ofrgda simple groupgs O SU(3)xU(1) . We

learn at (10.9) that the U(1) generator providegaral platform for equipping each fermion
with a baryon numbeB =3  and the overall monopole Mdth1, which now introduce8avor

to these color-neutral monopoles and mesons aidcthlered fermions and gauge bosons. And
we see in (10.10) and (10.11) that one can therafrive at suitable generator assignments
which give rise to the correct electric charg@ss+1 r tfee proton and by a disconnected

assignment (which then requires a larger unifyingug) Q =0 for the neutron, as well as the

Q=+2% forthe up andQ =-3% for the down flavors of quark.

Although nuclear and particle physics are oftercwlsed as if they are one and the same
discipline, in fact, they are very distinct basedpresent understandings of each. This fault line
which separates nuclear and hadron physics froticlgaphysics is concisely captured by Jaffe
and Witten when they state at page 3 of the “YanlisMnd Mass Gap” problem [6] that:

“. .. for QCD to describe the strong force suctidhs. . . It must have ‘quark

confinement,” that is, even though the theory iscdbed in terms of elementary
fields, such as the quark fields, that transfornm-trivially under SU(3), the

physical particle states—such as the proton, neuytemd pion—are SU(3)-
invariant.”
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It is this difference between “elementary fields¢ls as the quark [and the gluon] fields,
that transform non-trivially under SU(3)” and “tiplysical particle states—such as the proton,
neutron, and pion—[which] are SU(3)-invariant,” @ell as the need to give flavor to color-
neutral baryons and understand the origins of pleeiic baryon flavors which are protons and
neutrons, which separates the elementary partiglsips of colored quarks and gluons, from the
hadron physics of the colorless baryons and mesom$,the nuclear physics of proton- and
neutron-flavored baryons.

As detailed in the discussion following (10.5),oifie advances the thesis that the non-
abelian faux magnetic monopole of (9.21) is in f®gtonymous with a baryon, then the results
reviewed in detail in section 10 would appear ttvesdhis confinement leg of the mass gap
problem at least in the classical context. Moreover,rdsilts presented here take a critical step
forward toward unifying elementary particle physrash hadron physics and nuclear physics. It
is equation (9.21) which operates as a “bridge'ween the elementary particle physics of
colored quarks and gluons and the hadron physitiseo€olorless baryons and mesons. This is
because (9.21), together with its related consemp€lD.5), demonstrates how quark and gluon
fields that transform non-trivially under SU(3) aswle together into theolorless, SU(3)-
invariant particle stateswhich are baryons and mesons, that is, hadronken,Tthe non-
vanishing trace of (9.21) forces us to employ SK(RL). This ensures topological stability
which is required if (9.21) is to be associatedhvgtable physical particles such as the neutron
and especially the proton. Further, via the new)denerator, this introduces flavor which then
allows these baryons to be flavored into the pretmmd neutrons at the heart of nuclear physics.

Of course, as discussed in section 4 there are measons to believe confinement is
related to the running of the coupling constantalths an inherently quantum effect. But as also
argued in section 4, one might take the perspethiatthecausefor confinement and baryon
compositeness is the classical field equation (8B)a Yang-Mills monopole which has the
symmetry (3.5), and that one of th#ectsof this is that in a quantum field treatment oésh
baryon monopoles, the strong coupling will weaken dltraviolet and strengthen for infrared
probes. Without more, however, one could fairlynaade that the connections suggested
between some identities of the classical Yang-Miigiation and confinement in the quantum
theory are simply still too speculative or weaklypported to constitute a viable theory of
hadronic physics, especially since quarks are atlud but not shown to be required.

But sections 9 and 10 overcome any such conclusitrese sections deepen support for
the argument made in sections 3 and 4 by demoimgfrittat a furthecausefor confinement is
the color-neutral SU(3)-invariance of both the muaole (9.21) and the meson (10.5), which
might then be expected in a quantum field treatnb@neveal theeffectof a running coupling
constant which is consistent with these root catisaisarealready seen in the classical theory
It is certainly true that an important view of coment is the quantum view of a running
coupling. But so too is Jaffe and Witten’s compdertary symmetry view of confinement as
utilized here, in which “even though [a] theorydisscribed in terms of elementary fields, such as
the quark fields, that transform non-trivially undg&U(3), the physical particle states—such as
the proton, neutron, and pion—are SU(3)-invariangéctions 9 and 10 here make clear that
Yang-Mills monopoles manifest these required carfient symmetries. And, this underscores
the value as argued in section 4, of finding ardHing out, the right classical theory to quantize,
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before trying to leap unarmed into quantizationoll@juially speaking, classical theory is the
“horse” which must one must precede the “cart” @wduggization.

As to the “cart” of quantization, two further pagntay now be made in light of the
development after section 4, to supplement thosa@dy made in section 4. First, as noted in
section 4, the chiral anomaly provides an objestde that not every symmetry which appears in
a classical theory carries through to the assatiqtentum theory. As pointed out in section 7,
any divergence there may be between classical aadtgm symmetries emanates from the
measureD¢@ which is the integration variable in ththpntegral. A classical symmetry exists if

some transformation leaves the actfﬁ('¢) invarignguantum symmetry exists (and inherits

the classical symmetry) if the same transformateaves the path integral :j D¢ expiS(¢)

invariant. So, for example, although the classmahopole (9.21) has the color-neutral baryon
wavefunctionR[G, B+ § B R+ B R ¢ and the classical net-flowing magnéigld (10.5)

has the color-neutral meson wavefunctiR + GG + BB , i@ chaissically invariant under an
SU(3) gauge transformation, it is valid to ask vileetthese symmetries will carry through to the
related quantum objects. This cannot be answelidd absolute certainty until one has the
complete quantum theory corresponding to the farggalassical development, but it is
encouraging to note that the observed baryons hadrtesons ofjuantumphysics are also

known to be color-neutral with the same respecti®G B+ Jd B R+ B R¢ and

RR+ GG + BB wavefunctions. Thus for example, when Jaffe antiew state on page 3 of [6]
that “the physical particle states—such as thegprobeutron, and pion—are SU(3)-invariant,”
they are not qualifying or restricting this statemé classical particlesQCD is a quantum
theory, and the invariance of baryons and mesaes, hadrons, under SU(3) is a well-known
feature not only of classical, but of quantum, choalynamics. That these symmetries appear to
emerge very naturally and inexorably from classi¥anhg-Mills theory without having to make
any separate postulates about SU(3) being a thebsyrong interactions, is highly compelling.

Second, the most important result pertaining tangmation in this paper, is the finding in
section 8 and its application in sections 11 andhk8 the inverse solutio®(J) s actually a
recursive solution fo5(G, J) , but that this can be tdrivéo aG(J) solution by recursing to

any desired order and then setting the perturbatierD. This is important because, referring to
page 6 of [6], the difficulty of being able to:

“Prove that for any compact simple gauge group @omxtrivial quantum Yang—
Mills theory exists orR* ...

is not a physics problem, it ismmathematicproblem, and more particularly, it iscalculation
problem of not knowing how to perform an exact giiehl calculation of the quantum path
integral for Yang-Mills theory in particular, andrfnon-linear physics theories in general.

Specifically, as discussed in section 8, the teplen of analytically calculating a path
integral Z:IDGexpiS( G =¢ expiW( J revolves around clever extrapolations tioé
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Gaussian integraﬂdxexp(—% AX - J>§ =(-271A° exp( J /2/) which only containsx and

x* and no higher order in the integration variaklePut anx’ or arx® into this integral, or
even worse, put any higher-order polynomial intcs timtegral, and it is simply not known
mathematically how to calculate this integral &t &o thephysicsrecipe for quantizing Yang-
Mills is very clear: find the action, and use itarpath integral. But the mathematical technique
for how to calculate this is not known. The bestlaody had been able to do thus far is to make

use of (8.25) to replace gauge fields wi) - d/9J* anch htmnoveexp(v (5 /5J)) from

the integral so all that remains behind to intemréd the simplefdxexp(—% AX - J>§ .
Generally speaking, we need to replace the gawgsic with current densitied, and leave
behind the simple quadratic foryﬁdxexp(—% AX — J>§ . What we fingéction 8 is a new and

different way to make aG - J  substitution in lieu ofetusual G, - d/3J" : recurse
G, :(k,k’ -nf+E+GK+ G G)_l J to any desired order, then s8t=-G k-GG

(becausek,G" =0 ) to zero so that all gauge fields are@veth By recursing to infinite order
and removing these gauge fields, we can arrivenaxg@ression fOtG(J) with all the gauge

fields removed, and be left with only having toeigltatejdxexp(—% AX - J>§ . In short, the

recursion preliminarily developed in section 8 pdas the needethathematicatools to carry
out exact analytical calculations of what are neermsingly-intractable path integrations for non-
linearphysicalfield theories.

In sections 11 through 13, we then show how tdyajyese recursive results to calculate
the non-linear Yang-Mills path integrals for botbagk current and faux magnetic monopole
densities over the gauge field porti®{s of the patagral measure analytically and exactly,
thereby proving the existence of a non-trivial tiglatic quantum Yang—Mills theory exists on
R* for any compact simple gauge group G by solvingaahematical challenge for which the
solution has not previously been known. The resoitthis are in (13.13) / (13.16) for infinite
recursion and (13.14) for finite recursion. Havimged recursive technique to prove a quantum
field theory for Yang-Mills, the question now assevhether recursive technique may be
similarly applied to other non-linear field theajenost notably, gravitation.

In section 14, we starts at (14.3) with the ampkt density@K(J)l = Tr(JgnlJ”) at first

recursive order, and uses this to derive (14.32}He potential energl; between twoJ’ as a
function of radial distance. In Figures 1 throuflve see how this leaves intact the nornial
character of this potential at very short distancgst how at around 1/6 F based on

/\‘G)QCD: 906+ 3.4)MeV the potential changes its qualitative charactaet sndominantly
driven by acosf(@(mms)é ,oo%r) contribution into being a confiningtgatial. Given that we

have now been able to ugéz(J)1=Tr(JgﬂlJ”) from (13.21) to analygicshow the
gualitative features of confinement as between twh and given that
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uvp’ 1 apy

@K(P')lz—gg"ﬂ”’Tr(P' ﬂ_l(lﬁﬂ \],])_l P ) is the amplitude density in this same (13.21) for

two monopole baryonB’, a good next step would be to develop this amgbditen similar fashion
(that is, Fourier transform it over from momentupace to configuration space) to see if it
reveals a short range interaction betweenRwvdensities. If this can be shown similarly to what
was done in section 14, one would be able to mptess rest the case that baryons are indeed
the magnetic monopoles of Yang-Mills gauge theory.

Another important step is to see if this can benexted to numerically-precise empirical
observations relating to protons and neutrons. w@gnihe important unexplained data that we
already know about for protons and neutrons arie thasses, as well as their binding energies in
a wide variety of nuclei. Thus, it becomes import calculate energies and as pointed out at

(10.13), the way to do so is to use (10.13) ingleeral energy formulatiok = —”_[53 d®x

gauge
using a combination oTr(FmF"T) inner aridF_ TrF”  outer produchge While we do not

do so in this paper, the author has done so befoiek published these results in [15], [16] and
[21]. Beyond the clear symmetry concurrences dpesl in section 10, these empirical
concurrences provide compelling experimental supjoorthe concluding that the non-zero faux

magnetic source densitid = —id[G, G] =-idGG are baryon densitia!s,.w. P' is a baryon,

that Fy,, =i [Gﬂ,GV] in (10.4) is a meson field, and that ttﬁJéF £0 ahoriginally

actuated this whole line of development represtirgsnteraction of these baryons via mesons,
and indeed the nuclear interaction protons androesitat classical level. As discussed, although
these symmetries were all developed using theickgbeory, there is no apparent reason why

these symmetries would be lost in tfiGDcDc' measurehef domplete path integral
Z = DGDcDC exp( |[S( 9-(1/2)[ d %o C}ZJ+ $ )() and would not carry over to the

qguantum field theory.

In fact, it is well known that the same color synnes which have been classically
developed in the present treatment solely emerfyent classical Yang-Mills theory, do carry
over to Quantum Chromodynamics.

Because the calculation of section 14 using an iAbedimplification which in which
certain matrix inverses are treated as ordinarypuamators, section 15 proceeds directly into a
full non-abelian calculation with no simplificatiarf the inverses. We discovere in section 15
that the probability density for the source currénivhich is of course a density in a three
dimensional space, i.e., which has dimensions\afldme=1/lengtfy cannot be properly treated
in the non-abelian case without deconstructing ttmee-density into its one-dimensional
component densities, i.e., into three separate Wx,and 1/z densities in x, y, z Cartesian
coordinates. The need to engage in such a deaotetr to properly develop the non-abelian
theory reveals a substructure in the quantum fegldations not dissimilar to the type of
substructure that Dirac found when he pursued eafirexpression for the energy-momentum

relationship p,p’-nf=0 and came upon the fermion substructure represeried

(y”pg—m)u:O.
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Indeed, the upshot of the overall result obtained(15.42) that there is a direct
isomorphic relationship between a coupled quantuobability field designatedh and a

quantum potentiakE, at the first order of recursion in the non-lingaantum field theory. This

teaches that analytical non-linear quantum fielceotly effectively involves studying
relationships between coupled probability fieldd #meir associated underlying potentials which
operate on propagating field quanta via least agtiinciples. Thus, it is desirable to study what
is found in section 15 using some specific, pamadigc quantum probability densities to help
flesh out something of an “operator’s manual” fpplying post-path-integration analytical non-
linear quantum field theory.

Sections 16 through 20 develop what are effectiielyr specific examples of the
application of non-linear quantum field theory, lea¢ which is informative as to how non-linear
guantum field theory actually works when analylicapplied. Section 16 shows that the
classical -1/r potential of Coulomb emerges in gpecial case where the probability density is
taken to be zero for all r except r=0, and a partd section 19 later shows that the probability
density for the Coulomb potential must be takebd@ Dirac (half-)delta right at r=0.

Section 17, which deepens the development of settdo shows how a constant isotropic
probability density bounded within a limited sphtiegion is isomorphically associated with a
confining potential. This may appear at first iegsion to be a tautology, because if we posit a
spatially-bounded probability density then we areaurse confining the locales at which a field
guantum contributing to that bounded probabilityynsdguate. But the point is that one cannot
simply posit a constant bounded probability denaitg then expect that density to hold together
by itself. Physics is still physics; it is not mag Even in quantum theory there must be some
explanatory cause and effect. So if one is goingasit a bounded probability density, then one
must at the same time demonstrate that there iasaaciated potential which is capable of
dynamically causing and enforcing that confinemdhis the isomorphism between the posited
bounded constant probability density and the camfirpotential which provides us with the
potential that is needed as a causal matter ofrdignphysics, to maintain the constant bounded
probability density.

Section 18 specifically examines the running of stikng QCD interaction coupling
based on the confining potential and the constawninded probability density developed in
Section 17. The results obtained in this Figuréodded on the theoretical equation (18.22) are
able to match the theoretical results developee,her within the observed error bars of the
empirical running coupling data. And, to the extihat the predicted curve in Figure 14 may be
nominally higher than the fitted PDG curve belbly and nominally lower abovelz, it is shown
via Figure 15 how this is both indicative of, armt@unted for, by new physics which we know
is to be expected in the GUT and Planck energy émaf 13° to 1G° GeV, and results from
positing that asymptotic freedom remains asymptagiot up toQ — o rather than accounting
for the likelihood that the asymptotic freedom bebris likely to change once we enter the
GUT to Planck-scale domain.

Section 19 develops the specific example of a Gamigsrobability distribution, and
shows that this distribution is isomorphically letkto a potential which is very close to the
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Coulomb potential, differing only within small stdéard deviations about the Gaussian peak.
This is how we show that in the limit where the &dan becomes a Dirac delta, the potential
maps precisely over to the Coulomb potential asdhabove in relation to section 16.

Section 20 tackles perhaps the most intriguing lehges of quantum field theory,
namely, those presented by single and double xgierements. Here we start with the sinc-
based probability densities which are observed dtgalors at a distance from the slits which
greatly exceeds slit width and separation, and as done in the previous three examples, we
obtain the isomorphically-related potential. Whe find is that the accumulation of field
guanta on a detector in an interference-like proiablensity is in fact guided by this potential
via long-standing principles of least action progamn. The quantum paradoxes of slit
experiments come into play not by discarding leation as a causal principle to explain the
dynamical evolution and propagation of a systentagfe numbers of field quanta, but by the
fact that this guiding potential is itself inducedthe quantum vacuum by interaction with the
field quanta themselves as well as by the slit igoin&tion, in contrast to a classical potential
which is taken to be a preexisting background pakmnfluenced minimally if at all by
anything other than the source of that potential.

Taken together, the ability to analytically conipléhe path integration of the classical
action and then study some specific examples o§ipalysystems in non-linear quantum field
theory, gives us some deep new insights into sdnieeomost perplexing problems which have
confronted theoretical physicists since the dawnifithe quantum era at the outset of th& 20
century.
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