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Abstract: We develop in detail, the classical magnetic monopoles of non-abelian Yang-Mills 
gauge theory and show how these monopoles, when analyzed using Gauss’ / Stokes’ theorem, 
appear to confine their gauge fields, and also, appear to be composite objects.  Of course, 
baryons, which include the protons and neutrons at the heart of nuclear physics, also confine 
their gauge fields and are similarly-composite objects.  This raises the question whether the 
magnetic monopoles of Yang-Mills theory are in some fashion related to the observed physical 
baryons.  After developing inverse solutions for the non-abelian electric charge densities while 
carefully examining uniqueness and gauge fixing, we use these solutions together with Dirac 
theory to “populate” these classical monopoles with fermions.  Applying the Fermi-Dirac-Pauli 
Exclusion Principle to these fermions forces the selection of a dimension-3 gauge group initially 
chosen to be SU(3).  We then find that these non-abelian magnetic monopoles have the exact 
chromodynamic symmetries of baryons and interact via colored magnetic fields with the exact 
chromodynamic symmetries of mesons.  We show that a required U(1) factor ensures that these 
monopoles are topologically stable, and also “flavors”  these monopole as protons and 
neutrons.   Because this exposition is classical, we also discuss the extent to which classical field 
theory can be used to effectively analyze baryons and confinement.  We point out how a 
recursive aspect of the non-abelian electric charge solution may be used to perform an 
analytically-exact quantum path integration for Yang-Mills theory, proving the existence of a 
non-trivial quantum Yang–Mills theory on R4 for any simple gauge group G.  Finally, we use the 
results of this path integration to develop four examples of the application of analytical non-
linear quantum field theory, which includes a quantum field explanation of confinement, a fitting 
of the running QCD curve to the known empirical data within experimental error bars, and a 
careful review of single and double slit experiments.  
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PART I: CLASSICAL YANG-MILLS THEORY 
 
1. Introduction:  The Field Strength Curvature Tensor in Gauge 
Theory, and a Review of Gauge-Covariant Derivatives 
 
 In 1918, [1], [2] Hermann Weyl first conceived the idea that electrodynamics might be 
unified with Einstein’s recently-developed geometric theory of gravitation [3], by analyzing a 
“twisting” of vectors under parallel transport to measure the geometric curvature of a gauge 
space.  While Weyl first conceived of this as a local “gauge” symmetry, in 1929 [4] he corrected 
his original misconception into the modern view of a local “phase” symmetry.  Notwithstanding, 
the original misnomer “gauge” is still used to name Weyl’s theory, perhaps as a reminder to 
posterity that even the most foundational physical theories are sometimes properly-conceived in 
the abstract but misconceived in some details that need to be worked out over time. 
 
 In gravitational theory the Riemann curvature tensor Rσ

αµν  may of course be defined as a 

measure of the degree to which the gravitationally-covariant derivative ;µ∂  is non-commuting 

when it operates on an arbitrary vector Aσ , that is, as  ; ;,R A Aσ
αµν σ µ ν α ≡ ∂ ∂  .  What Weyl 

essentially found is that the antisymmetric, second rank, field strength tensor / bivector Fµν  

which appears in electromagnetic theory may be defined as a measure of the extent to which the 
gauge-covariant derivative Dµ  is not self-commuting when it operates on an arbitrary scalar 

field ϕ .  That is, Fµν  may be defined analogously to Rσ
αµν , as a type of curvature in “gauge 

space,” by: 
 

( ) ( ),F i D D iD D iD Dµν µ ν µ ν ν µϕ ϕ ϕ ϕ ≡ = −  . (1.1) 

 
It is instructive to review how the explicit relationship between the field strength Fµν  and a 

gauge / vector potential Gµ  then arises from this definition (1.1). 

 
Gauge-covariant derivatives, like covariant derivatives in Riemannian geometry, take a 

form that depends on the representation of the object they act upon.  Taking the gauge field as 
the defining (fundamental) representation, the form of the gauge-covariant derivatives in (1.1) is 
D iGµ µ µ= ∂ − .  But in other situations to be reviewed, it is a bit more complicated than this.  (In 

general, for compactness, we scale the interaction charge strength g into the gauge field via 
gG Gµ µ→ .  This g can always be extracted back out when explicitly needed.)   So, applying 

D iGµ µ µ= ∂ −  in (1.1), we may write: 

 

( ) ( ) ( )( ) ( ) ( )iD D i iG iG i iG G iG

i G G G iG G

µ ν µ µ ν ν µ ν ν µ ν ν

µ ν µ ν ν µ µ ν µ ν

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

= ∂ − ∂ − = ∂ ∂ − + ∂ −

= ∂ ∂ + ∂ + ∂ + ∂ −
, (1.2) 

 
as well as the reverse-signed, transposed-indexed: 
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( )iD D i G G G iG Gν µ ν µ ν µ µ ν ν µ ν µϕ ϕ ϕ ϕ ϕ ϕ− = − ∂ ∂ − ∂ − ∂ − ∂ + . (1.3) 

 
Using (1.2) and (1.3) in (1.1) then yields: 
 

( ) ( ) [ ], , ,F i D D iD D iD D i G i G Gµν µ ν µ ν ν µ µ ν µ ν µ νϕ ϕ ϕ ϕ ϕ ϕ ϕ     ≡ = − = ∂ ∂ + ∂ −      . (1.4) 

 

In flat spacetime where ; ;, , 0R A A Aσ
αµν σ µ ν α µ ν α   ≡ ∂ ∂ = ∂ ∂ =     and removing the arbitrary 

operand field ϕ , the above becomes the more familiar: 
 

( )[ ] [ [ ] [ ],F G i G G iG G D Gµν µ ν µ ν µ µ ν µ ν = ∂ − = ∂ − =  . (1.5) 

 
Again, D iGµ µ µ= ∂ −  above is the gauge-covariant derivative when it acts upon gauge field 

objects Gν  in the fundamental representation, but in general, when operating on other 

representations, it is a bit more complicated as we shall now see.   
 

If the gauge fields commute, i.e., if , 0G Gµ ν  =  , then (1.5) reduces to 

[ ]F G G Gµν µ ν µ ν ν µ= ∂ = ∂ − ∂  and the gauge theory is known as an abelian gauge theory.  If the 

gauge fields do not commute, , 0G Gµ ν  ≠  , then (1.5) becomes the field strength for a non-

abelian gauge theory, often also referred to as Yang-Mills [5] gauge theory. 
 
 Using differential forms, we may write the abelian field strength as: 
 

1 1
[ ]2! 2!F F dx dx G dx dx G dx dx dGµ ν µ ν µ ν

µν µ ν µ ν= ∧ = ∂ ∧ = ∂ ∧ = . (1.6) 

 

In general, the wedge product ,dx dx dx dx dx dx dx dxµ ν µ ν ν µ µ ν ∧ = − =    is antisymmetric under 

adjacent index interchange, and the differential elements are anticommuting, dx dx dx dxµ ν ν µ= − .  
So, by inspection from (1.5) in view of (1.6), the non-abelian field strength is: 
 

( ) [ ]1 1
[ ]2! 2! , ,F F dx dx G i G G dx dx dG i G G DGµ ν µ ν

µν µ ν µ ν = ∧ = ∂ − ∧ = − ≡  . (1.7) 

 
Here, compacted into differential forms, the gauge-covariant derivative is not separable from its 
operand as was D iGµ µ µ= ∂ − when operating on Gν  in (1.1) to (1.5), but rather involves the 

commutator of G with the operand which, in this case, just so happens to also be G.  That is, it 
involves [ ],G G .  This in fact reveals the more-general form of the gauge-covariant derivative as 

we shall review next. 
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  Now, focusing on non-abelian gauge theories, we introduce a set of traceless Hermitian 

generators †i it t=  which form a closed group under multiplication via ,i j ijk kt t if t  =  , where 
ijkf  are the group structure constants and are antisymmetric under the transposition of any two 

adjacent indexes.  For any simple group SU(N), the internal symmetry indexes of the adjoint 
representation 2, , 1... 1i j k N= − .  We may then define k kF t Fµν µν≡  and i iG t Gµ µ≡  and use 

these in (1.5) to expand: 
 

[ ] [ ] [ ], ,k k k k i j i j k k ijk k i jF t F G i G G t G i t t G G t G f t G Gµν µν µ ν µ ν µ ν µ ν µ ν µ ν  = = ∂ − = ∂ − = ∂ +    . (1.8) 

 
Factoring out kt  this simplifies to the recognizable: 
 

[ ]
k k ijk i jF G f G Gµν µ ν µ ν= ∂ + . (1.9) 

 
 Now, for illustration, let us momentarily consider the situation where the it  are one half 

(½) times the three (3) Pauli spin matrix generators of SU(2), 1
2

i it σ= , so that ijkf  simply 

becomes the rank-3 Levi-Civita tensor, ijk ijkf ε→ , which again, is antisymmetric in all indexes.  

In spacetime, if we were to write ijk i jA Bε  for any two vectors iA  and jB  and were to regard 
, ,i j k  as indexes for the space dimensions x, y, z, then, for example, 

( )33 1 2 2 1ij i jA B A B A Bε = − = ×A B  is the z-component of the cross product ×A B , and more 

generally, ( )kijk i jA Bε = ×A B .  But of course, the , ,i j k  indexes in (1.9) are not space indexes, 

but are internal symmetry indexes.  So rather than using the cross-product symbol “× ” which is 
used for vectors in physical space, and because we still wish to be able compactly represent the 
fundamentally-antisymmetric character of ijkf  in the form of a “cross-like product” in internal 

symmetry space, we instead employ the wedge symbol “ ∧ .”  Although iG µ  and jG ν  in (1.9) 

both are gauge fields G, they have different spacetime indexes µ  and ν , so we may still think of 

them as two different vectors just like iA  and jB  above.  So analogously to ( )kijk i jA Bε = ×A B  

in the three space dimensions of spacetime, we write ( )kijk i jf G G G Gµ ν µ ν= ∧  in internal 

symmetry space.  Then, we use this in (1.9) to write ( )[ ]

kk kF G G Gµν µ ν µ ν= ∂ + ∧ .  Because the 

general form of this equation holds in SU(N) for each of the indexes 21... 1k N= − , we may 
suppress the k index throughout to write: 
 

[ ]F G G Gµν µ ν µ ν= ∂ + ∧ . (1.10) 

 
Then, compacting (1.10) to differential forms as in (1.6), we have: 
 

( ) ( )1 1
[ ]2! 2!F F dx dx G G G dx dx dG G G d G G DGµ ν µ ν

µν µ ν µ ν= ∧ = ∂ + ∧ ∧ = + ∧ = + ∧ ≡ . (1.11) 
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Now, Jaffe and Witten point out at pages 1 and 2 of [6], that: 
 

“If A denotes the U(1) gauge connection, locally a one-form on space-time, then 
the curvature or electromagnetic field tensor is the two-form F dA=  [see (1.6) 
above], and Maxwell’s equations in the absence of charges and currents read 
0 *dF d F= = .” 

 
They then proceed to explain that in “non-abelian gauge theory”: 
 

“at the classical level one replaces the gauge group U(1) of electromagnetism by a 
compact gauge group G.  The definition of the curvature arising from the 
connection must be modified to F dA A A= + ∧  and Maxwell’s equations are 
replaced by the Yang–Mills equations, 0 *A Ad F d F= = , where Ad  is the gauge-

covariant extension of the exterior derivative.”  
 
Equation (1.11) is precisely F dA A A= + ∧  with the gauge field simply renamed from A to G, 
and what Jaffe and Witten write above is a condensed explanation for what we have laid out 
above in equations (1.1) through (1.11).  When we use the generalized one-form G and two-form 
F without any particular generator set it , then the differential forms equation is written as 

[ ],F dG i G G= −  in (1.7).  But when one does introduce a set of group generators it   and the 

antisymmetric structure contestants ijkf → ∧ , the differential forms equation is F dG G G= + ∧  

in (1.11).  To display the particular 21... 1i N= −  field components for a compact simple gauge 

group SU(N), this equation is ( )ii iF dG G G= + ∧ .  So [ ],F dG i G G= −  (commutator form) 

and F dG G G= + ∧  (wedge form) are just alternative ways of saying the same thing.  But a 
benefit of the wedge form is that we may write ( )F d G G DG= + ∧ ≡  so as to define a gauge-

covariant derivative ( )AD d G d≡ + ∧ =  in a form which is fully-separable from its operand, 

and which is generally applicable to any and all operands.  We will find it useful in general to 
develop both these forms. 
 
 Indeed, the reason we have gone through the exercise of (1.8) through (1.11), is to 
explore the question of how one generally performs Ad D= , independently of its operand, 

“where Ad  is the gauge-covariant extension of the exterior derivative.”  That is, we want to be 

able to generalize the taking of these derivatives, and especially, to ascertain the correct way to 
derive the equations * * *AJ d F D F= =  and AP d F DF= =  in the presence of the electric and 

magnetic three-form charge densities * J  and P . 
 

Specifically, as already stated, if we write equation (1.11) as ( )F d G G DG= + ∧ ≡  with 

D d G≡ + ∧ , we find that D d G≡ + ∧  is in fact the generalized definition of the gauge-
covariant derivative which tells us how to take higher-rank gauge derivatives, independent of the 
representation of the operand.  Thus, the Maxwell equations for Yang-Mills theory, with electric 

and magnetic sources, in differential forms, where it  and ijkf  are specified, with index i 
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suppressed, for SU(N), where we use the duality operator *, and with F dG G G= + ∧ , are 
merely the 21... 1i N= −  equations: 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

* * * * * * * *

* * * *

J D F D DG d G F d F G F d dG G G G dG G G

d dG d G G G dG G G G

P DF DDG d G F dF G F d dG G G G dG G G

ddG d G G G dG G G G

= = = + ∧ = + ∧ = + ∧ + ∧ + ∧

= + ∧ + ∧ + ∧ ∧

= = = + ∧ = + ∧ = + ∧ + ∧ + ∧

= + ∧ + ∧ + ∧ ∧

.(1.12) 

 
The duality operator * was first developed by Reinich [7] and later elaborated by Wheeler [8], 
and it makes integral use of the Levi-Civita tensor as laid out in [9] at pages 87-89. 
 

In this paper, we shall develop the classical Yang-Mills magnetic monopole density P 
and a related “faux” magnetic charge density P′  in detail, and shall show how this related 
density P′ , when analyzed using Gauss’ / Stokes’ theorem, appears to confine its gauge fields.  
Of course, baryons, which include the protons and neutrons at the heart of nuclear physics, also 
confine their gauge fields.  So this will raise the question we thereafter explore in detail, whether 
these magnetic monopoles of Yang-Mills theory are in some fashion related to baryons. 
 
2. Classical Field Equations for the Yang-Mills Magnetic Monopole 
 
 To further develop the monopole density P, first, akin to the derivation (1.1) through 
(1.5), we calculate the commutator: 
 

( ) ( )( ) ( ),

,

D F D F F D iG F F iG

F F iG F F iF G F i G F

σ µν σ µν µν σ σ σ µν µν σ σ

σ µν µν σ σ µν µν σ µν σ σ µν σ µν

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

  = − = ∂ − − ∂ − 

 = ∂ + ∂ − − ∂ + = ∂ −  

. (2.1) 

 
We can use D iGσ σ σ= ∂ −  in the above, precisely because this is a commutator, and so the gauge 

field will be commuted with the operand Fµν  as in [ ],F dG i G G= −  a.k.a. F dG G G= + ∧ .  

Removing ϕ  we see that (2.1) contains the useful identity: 
 

, ,D F F i G F D Fσ µν σ µν σ µν σ µν   = ∂ − =    , (2.2) 

 
with the commutator included in the gauge-covariant derivative.  In differential wedge form this 
is ( )DF d G F= + ∧ , which is part of the monopole density in (1.12).  Then, combining (2.2) 

with (1.1) in the form ,F i D Dµν µ ν =   first yields: 

 

, , ,D F D F i D D Dσ µν σ µν σ µ ν    = =      (2.3) 

 
containing an anticommuting succession of gauge-covariant derivatives.  This in turn means that 
the index-cyclical combination: 
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[ ]( ), , , , , , 0P D F D F D F i D D D D D D D D Dσµν σ µν µ νσ ν σµ σ µ ν µ ν σ ν σ µ        = + + = + + =         , (2.4) 

 

by the Jacobian identity [ ] [ ] [ ], , , , , , 0a b c b c a c a b     + + =      .  So we see that the Yang-Mills 

magnetic monopole densities vanish, just like those of abelian gauge theory.  Consequently, we 
can append 0P =  from (2.4) onto (1.12), and so write  0P DF DDG= = = .  This is the non-
abelian analog to the abelian 0ddG= . 
 
 But there is another zero in the monopole P of (1.12), and that is the zero which comes 
from this very same abelian 0ddG= .  This is rooted in the geometric relationship dd = 0  of 
exterior calculus in spacetime: “the exterior derivative of an exterior derivative is zero.”  In 
general in this paper, we shall highlight the zero of dd = 0  to distinguish it from the (not 
highlighted) zero of the Jacobian identity 0DDG =  which is established by the combination of 
(1.12) and (2.4).  The highlighted zero in dd = 0  is a “subset” identity contained within (1.12), 
which we may now rewrite as: 
 

( )
( )

0 P DF DDG ddG d G G G dG G G G

d G G G dG G G G

= = = = + ∧ + ∧ + ∧ ∧

= + ∧ + ∧ + ∧ ∧0
. (2.5) 

 

Of course, in an abelian gauge theory such as Maxwell’s electrodynamics where , 0G Gµ ν  =   so 

that [ ]F Gµν µ ν= ∂  in (1.5) thus F dG= , the Magnetic monopole densities are themselves 

specified by  abelianP dF ddG= = = 0 .  This means that the Yang-Mills monopole density in (2.5), 

although it too is equal to zero, contains a number of apparently non-zero terms embedded 
within, as well as the term ddG= 0  which we associate with the vanishing monopoles of 
electrodynamics.  This will be very important to keep in mind as we develop this monopole, 
because this “abelian subset” embedding of ddG= 0  within (2.5) will be directly responsible for 
confining the gauge fields within the Yang-Mills monopole, and will lead us to consider whether 
there is some connection between Yang-Mills monopoles and baryons. 
 
 Next let us ascertain the commutator form for the monopole (2.5).  Via the exact same 
type of calculation we used to turn (1.5) a.k.a. (1.7) into (1.11), one may demonstrate that 

[ ],P DF dF i G F= = −  is equivalent to ( )P DF d G F= = + ∧ .  So, combining the former, 

[ ],P DF dF i G F= = − , with [ ],F DG dG i G G= = −  from (1.7) a.k.a. ( )F DG d G G= = + ∧  

from (1.11) , we may translate (2.5) into the commutator expression:   
 

[ ] [ ]( ) [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

, , , ,

, , , ,

, , , , 0

P DF DDG dF i G F d dG i G G i G dG i G G

ddG id G G i G dG G G G

id G G i G dG G G G

 = = = − = − − − 

 = − − −  

 = − − − = 0

. (2.6) 
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 Let us now expand (2.6) above into tensor components term-by-term, and then do some 
additional reductions.  For P and [ ],id G G−  we have: 

 
1
3!P P dx dx dx P dx dx dxσ µ ν σ µ ν

σµν σµν= ∧ ∧ = , (2.7) 

 

[ ] [ ]( )
( )

( ) ( )

1
3!

1
2!

, , , ,

,

id G G i G G G G G G dx dx dx

i G G dx dx dx i G G dx dx dx

i G G G G dx dx dx i G G iG G dx dx dx

idGG iGdG

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν σ µ ν
σ µ ν σ µ ν

σ µ ν σ µ ν
σ µ ν µ σ ν σ µ ν σ µ ν

   − = − ∂ + ∂ + ∂ ∧ ∧   

 = − ∂ ∧ ∧ = − ∂ ∧ ∧ 

= − ∂ + ∂ ∧ ∧ = − ∂ + ∂ ∧ ∧

= − +

. (2.8) 

 
The sign reversal in the third line of (2.8) reveals the identity [ ],d G G dGG GdG= − , in contrast 

to scalar product rule ( )d a b da b a db⋅ = ⋅ + ⋅ .  For [ ],i G dG−  in (2.6) we further have: 

 

[ ] ( )

( )( )
( )

( )

1
[ ] [ ] [ ]3!

1
[ ]2!

, , , ,

, ,

2

i G dG i G G G G G G dx dx dx

i G G dx dx dx i G G dx dx dx

i G G G G dx dx dx

i G G G G G G dx dx dx

iG G i G G dx

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν σ µ ν
σ µ ν σ µ ν

σ µ ν
σ µ ν µ ν σ

σ µ ν
σ µ ν ν µ σ µ ν σ

σ µ ν σ µ ν

     − = − ∂ + ∂ + ∂ ∧ ∧     

   = − ∂ ∧ ∧ = − ∂ ∧ ∧   

= − ∂ − ∂ ∧ ∧

= − ∂ − ∂ − ∂ ∧ ∧

= − ∂ + ∂

2

dx dx

iGdG idGG

σ µ ν∧ ∧

= − +

 (2.9) 

 
in which the GdG doubles by a similar sign reversal in the fifth line.  Finally, by the Jacobian 

identity [ ] [ ] [ ], , , , , , 0a b c b c a c a b     + + =      , for [ ], ,G G G    in (2.6), we find (cf. (2.4)) that: 

 

[ ] [ ]( )1
3!, , , , , , , , 0G G G G G G G G G G G G dx dx dxσ µ ν

σ µ ν µ ν σ ν σ µ         − = − + + ∧ ∧ =           , (2.10) 

 
In (2.6), we then use [ ],id G G idGG iGdG− = − +  and [ ], 2i G dG iGdG idGG− = − +  and 

[ ], , 0G G G − =   from (2.8) to (2.10) to restructure and consolidate the monopole density as 

much as possible while retaining n Gauss / Stokes integrable [ ],d G G  term, into: 

 
[ ] [ ]

[ ]

, ,

2

, 0

P id G G i G dG

idGG iGdG iGdG idGG

iGdG

id G G idGG

= − −
= − + − +
= −
= − + − =

0

0

0

0

. (2.11) 
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This in turn reveals the additional identities [ ],d G G dGG=  and 0GdG= .  The former identity 

[ ],d G G dGG=  will be very important in the development to follow, and will be shown to be the 

density for a baryon including the proton and neutron flavors of baryon. 
 

Now, of central interest in the discussion to follow, the monopole density in the final line 
above contains a Gauss/Stokes-integrable term [ ],d G G  (and the ddG=0  ) together with the 

non-integrable term dGG.  Applying Gauss’ / Stokes Theorem dX X=∫∫ ∫�  for any differential 

form X to the final line above, we may ascertain the classical surface flux associated with this 
non-abelian magnetic monopole, namely: 
 

[ ]( ) [ ]( )
[ ] [ ]

, ,

, , 0

P ddG id G G idGG id G G idGG

dG i G G i dGG i G G i dGG

= − + − = − + −

= − + − = − + − =

∫∫∫ ∫∫∫ ∫∫∫

∫∫ ∫∫ ∫∫∫ ∫∫ ∫∫∫

0

0� � �
. (2.12) 

 

By then writing (2.12) using the not-highlighted 0 of 0P =∫∫∫  rooted in the Jacobian identity 

(2.4) as: 
 

[ ]
[ ]

,

,

dG i G G i dGG

i G G i dGG

− + =

− + =

∫∫ ∫∫ ∫∫∫

∫∫ ∫∫∫0

� �

�
, (2.13) 

 
we clearly see the relationship between what is contained within the three-dimensional volume 

∫∫∫ and what net flows through the closed two-dimensional surface ∫∫� enclosing that volume.  

Now, we wish to interpret what is being taught by (2.13). 
 
3. Confinement of Gauge fields within, and the Composite Nature of, 
Yang-Mills Magnetic Monopoles 
 

 We start with the term dG=∫∫ 0�  which is embedded in (2.13).  In electrodynamics, 

Gauss’ law for magnetism and Faraday’s law are both contained within: 
 

P dF ddG F F dx dx dGµν
µ ν= = = = = =∫∫∫ ∫∫∫ ∫∫∫ ∫∫ ∫∫ ∫∫ 0� � � . (3.1) 

 
At rest, this tells us that while magnetic fields may flow across some surfaces, there is never a 
net flux of a magnetic field through any closed two dimensional surface.  In the form 
P dF ddG= = = 0 , this simply says there are no observed magnetic charges.  So how might we 

interpret the presence of dG=∫∫ 0�  as one of the terms among a number of non-vanishing terms 

in equations (2.12) and (2.13) for the Yang-Mills magnetic monopoles? 
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 To find out, let us return to the non-abelian, Yang-Mills field strength (1.5), namely 

[ ] ,F G i G Gµν µ ν µ ν = ∂ −   , and rewrite this using the differential forms equation: 

 

[ ] [ ]

1 1
2! 2! ,

, ,

F F dx dx G dx dx i G G dx dx

dG i G G i G G

µ ν µ ν µ ν
µν µ ν µ ν = ∧ = ∂ ∧ − ∧ 

= − = −

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫0

� � � �

� � �
. (3.2) 

 
We may then use (3.2) to rewrite (2.13) with a sign reversal as: 
 

[ ]
[ ]( )

( )
1
3!

1
[ ] [ ] [ ]3!

,

, , ,

0

F i G G i dGG

i G G G G G G dx dx dx

i G G G G G G dx dx dx

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

= − = −

   = − ∂ + ∂ + ∂ ∧ ∧   

= − ∂ + ∂ + ∂ ∧ ∧ ≠

∫∫ ∫∫ ∫∫∫

∫∫∫

∫∫∫

� �

. (3.3) 

 
So, while (3.1) tells us that there is no net magnetic field flux over of any closed surface in 
abelian electrodynamics, (3.3) tells us that in non-Abelian, Yang-Mills gauge theory, there is 

indeed a non-vanishing net flux across closed surfaces, 0F ≠∫∫� , of whatever the Yang-Mills 

analog is to an ordinary abelian magnetic field.   
 

Now, we have a puzzle: any time we see a term F∫∫� , we know that we are talking about 

a magnetic monopole, and that whatever is contained within the associated volume integral is a 
magnetic charge.  Indeed, (3.3) may be thought of as the very definition of a magnetic charge, 
which in (3.3) is not zero.  At the same time, we found in (2.4) a.k.a. (2.6) that 

0P DF DDG= = = , which is to say, that the magnetic charge density is zero, just as it is in 

electrodynamics.  So if 0P DF DDG= = =  but 0F ≠∫∫� , how do we reconcile the former 

equation which says the magnetic charge density is zero with the latter equation which says there 
is a non-zero magnetic charge? 

 
One way to think this through, is take the Yang-Mills electric charge field equation 

(1.12), * *J D F= , revert this (merely for pedagogic simplicity) to its abelian form * *J d F=  
which contains Gauss’ law for electricity, and then apply Gauss’ / Stokes’ Theorem to obtain 

( )* * *F J d F= =∫∫ ∫∫∫ ∫∫∫� .  Just as F∫∫�  in the rest frame represents a net flux of magnetic 

field through a closed surface, *F∫∫�  in the rest frame represents a net flux of electric field 

through a closed surface.  And this *F∫∫�  then becomes the very definition of the electric 

charge.  But here, electric charge density is defined by * J  inside *J∫∫∫ , while in (3.3) magnetic 

charge density is defined by idGG−  inside i dGG− ∫∫∫ .  That is, we have a magnetic charge 

density idGG−  which we need to think about in comparison to an electric charge density * J . 
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The answer to this puzzle is that the magnetic charge density in (3.3) is not the P of 
0P DF DDG= = = , it is the P idGG′ ≡ −  which, via (2.11) can be extended to 

[ ],P id G G idGG′ = − = − .  The magnetic charge as defined by the enclosure surface F∫∫�  is a 

three-form just like * J  and P, but it is not an elementary three-form source.  Rather, it is a three-
form constructed from idGG−  which includes some dynamical behavior of the gauge fields 
inside the volume integral.  That is, the magnetic charge [ ],P id G G idGG′ = − = −  is a composite 

three-form built out of gauge fields, rather than an elementary three form like the abelian electric 
charge source * J .  Indeed, we may take this a step further: 
 

In electrodynamics, the three-form * J  which in tensor language is related to the electric 

source current density vector Jα  by ( ).5
*J g Jα

σµν ασµνε= − , is a true electric source which then 

gives rise to gauge fields in abelian gauge theory via * * *J d F d dG= = , and per (1.12), via 
* * *J D F D DG= =  in Yang-Mills gauge theory.  On the other hand, the P idGG′ = −  in (3.3), 

written in tensor form as ( )[ ] [ ] [ ]P i G G G G G Gσµν σ µ ν µ ν σ ν σ µ′ = − ∂ + ∂ + ∂  and converted over to a one 

form via the related general identities ( ) .51
3!*P g Pα σµνα

σµνε−′ ′= −  and 

( ) .5[ ] 1
[ ]2* G g Gν α σµνα
σ µε−∂ = − ∂ ,  will result in a faux magnetic source: 

 

( ) ( ) ( )
( ) ( )

( )

.5 .51 1
[ ] [ ] [ ]3! 3!

.5 1 1 1 1
[ ] [ ] [ ]3 2 2 2

[ ] [ ] [ ]1
3

[ ]

*

* * *

*

P g P g i G G G G G G

g i G G G G G G

i G G G G G G

i G G

α σµνα σµνα
σµν σ µ ν µ ν σ ν σ µ

σµνα σµνα σµνα
σ µ ν µ ν σ ν σ µ

ν α σ α µ α
ν σ µ

σ α
σ

ε ε

ε ε ε

− −

−

′ ′= − = − − ∂ + ∂ + ∂

= − − ∂ + ∂ + ∂

= − ∂ + ∂ + ∂

= − ∂

. (3.4) 

 
which is constructed solely out of gauge fields G which themselves are sourced by 
* * *J D F D DG= = .  So, there is only one elementary source J, not two sources J and P.  From 
this one source J, gauge fields G are emitted from interaction vertices.  From these gauge fields 
G, a faux magnetic source P idGG′ = −  is assembled.  And finally, from this faux magnetic 

source, 0F ≠∫∫�  flows across closed surfaces as in (3.3).  The electric source Jα , whether in 

abelian or non-abelian gauge theory, has its own independent existence, and it is the source of 
any and all gauge fields.  But the faux magnetic source charge in (3.3) has no independent 
existence apart from the gauge fields G.  Rather, it is built out of the gauge fields.  So the Yang-
Mills monopoles are composite, not elementary, objects.  And, by the way, so too are baryons. 
 

 Having resolved the puzzle of how to reconcile 0P DF DDG= = =  with 0F ≠∫∫� , we 

next pose the following question:  what happens to the total flux F∫∫�  in (3.2) under the local 

gauge-like transformation [ ]'F F F Gµν µν µν ν µ→ = −∂ ?  In differential forms, this transformation 

is dGFFF −=′→ , which means, precisely because dG=∫∫ 0� , that: 
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( )F F F dG F′→ = − =∫∫ ∫∫ ∫∫ ∫∫� � � � , (3.5) 

 
So, the net surface flux in the monopole equation (3.3) is invariant under the transformation 

[ ]'F F F Gµν µν µν ν µ→ = −∂ , which means that the gauge field is not observable with respect to 

net flux across closed surfaces of the monopole.  The abelian expression dG=∫∫ 0� , expanded to 

show the Riemann tensor, may be written as F dG R G dx dx dxτ σ µ ν
νσµ τ= = =∫∫ ∫∫ ∫∫∫ 0� � , and 

explicitly shows how individual gauge fields Gτ  couple with spacetime geometry as represented 

by Rτ
νσµ .  This represents an absence of monopoles in electrodynamics, and yields the symmetry 

principle (3.5) for the behavior of magnetic monopoles in Yang-Mills theory generally. 
 
 But if the non-zero flux in the Yang-Mills monopole equation (3.3) is invariant under the 
gauge-like transformation [ ]'F F F Gµν µν µν ν µ→ = −∂  which means that the gauge fields Gµ  are 
not net observables over a closed monopole surface, this would seem to suggest that the Yang-
Mills monopole inherently confine their gauge fields.  This is another hint that the monopole 
equation (3.3) could be the classical field equation for a baryon, in integral form. 
 
 The final point is that because the faux magnetic source P idGG′ = −  is constructed out of 
gauge fields, and because the gauge fields are in turn sourced by * * *J D F D DG= = , and 
because electric sources may be represented in vector form in terms of Dirac fermion 
wavefunctions ψ   via J µ µψγ ψ= , it should be possible in principle, and would certainly be 
desirable in practice, to rewrite the faux magnetic source idGG−  in terms of the true source 

currents J µ  from which they arise, and then to rewrite the J µ µψγ ψ=  in terms of their fermion 

wavefunctions ψ .   The upshot of all this, is that while F∫∫�  in (3.3) is presently expressed in 

terms of gauge fields as ( )F G∫∫� , once we obtain the gauge fields ( )G J  in terms of sources 

and the sources ( )J ψ  in terms of fermions, we will end up with ( )( )( )F G J ψ∫∫� .  Then, if we 

happen to find more than one fermion (maybe even three fermions) within the enclosed F∫∫�  

“system” in its “ground” state, we would need to apply the Exclusion Principle of Fermi-Dirac-
Pauli statistics to maintain the ψ  in distinct quantum eigenstates, which would give us the 
opportunity, for example, to introduce a color degree of freedom to do so and thus make a 

connection to SU(3)C Chromodynamics, with ( )( )( ), ,R G BF G J ψ ψ ψ∫∫� .  So this means that the 

Yang-Mills monopoles are not only composite objects, but are composite objects which contain 
fermions and gauge fields, and that these fermions will need to obey some form of quantum 
exclusion which may include SU(3)C.  And, by the way, all of the same the same is true of 
baryons, and as to fermion exclusion, quarks. 
 
 It is for these reasons, that it may be fruitful to entertain the prospect that (3.3) is not only 
the classical field equation for a Yang-Mills magnetic monopole, but may be synonymous with 
the classical field equation for a baryon.  All of the development in sections 5 through 10 serves 
the singular purpose of proving that this is true.  But first, we need to discuss whether a classical 
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analysis along the lines of (3.3) can really teach us anything useful about baryons and 
confinement. 
 
4. Can a Classical Field Equation Really Teach us Anything Useful about 
Baryons and Confinement? 

 
Given that (3.3) is a classical field equation, we must pose the question whether such a 

classical equation can really have anything of interest to say about baryons and confinement, 
which have many features that arise only out of quantum field theory.  For example, it might be 
observed that a classical analysis which seeks to understand baryons and confinement in no way 
takes account of quantum field theory with operator-valued fields.  This, it might be argued, is 
despite the fact that there are many reasons to believe confinement and the existence of a mass 
gap are related to the running of the coupling constant, which is an inherently quantum effect. 
 

Certainly, (3.3) above is a completely classical field equation, not yet taking into account 
any aspects (or the need to prove existence) of a non-trivial relativistic quantum Yang–Mills 
theory on R4 [6].  And, of course, there are many reasons to believe that confinement is related to 
the running of the strong coupling constant, which is an inherently quantum effect, and which 
manifests in asymptotic freedom at “ultraviolet” energy and infrared slavery at low energy [10].  
However, just like electrodynamics, Yang-Mills gauge theory has a classical formulation and (is 
expected once quantum Yang-Mills existence is proven, to have) a quantum field formulation.  
This means that (3.3) may reveal inherently-confining attributes for the magnetic monopoles of 
Yang-Mills gauge theory which appear at the classical level and which are rooted in the 
relationship dd = 0  of Riemannian spacetime exterior geometry, as well as inherently-composite 

attributes expressed by ( )( )( )F G J ψ∫∫� .  That opens up the question how these same attributes 

translate through to quantum Yang-Mills theory.   
 

Specifically, if in fact (3.3) for F∫∫�  is an equation for baryon-like gauge field 

confinement properties of Yang-Mills magnetic monopoles based upon their abelian-subset 

behaviors rooted in the classical equation ddG = 0  and its integral form dG=∫∫ 0�  and the 

consequent symmetry (3.5), and if the composite faux magnetic charge P idGG′ = −  in (3.3) in 
some way represents a baryon charge, then the classical baryons that would be represented by 
(3.3) would not suddenly become “not baryons” in quantum field theory.  Rather, there would 
two sets of behaviors that need to be studied: a) how these monopoles behave in a classical 
formulation, which includes (3.3) and (3.5) above, and b) how these monopoles additionally 
behave in quantum field theory.  So if we can demonstrate that the classical behaviors appear to 
be confining and appear to involve a non-elementary, composite charge that includes some 
amalgam of fermions and gauge fields, one should expect that this will “bleed” through to yield 
quantum amplitudes and running couplings and color symmetries that buttress, not defy, these 
classical behaviors, just as abelian magnetic monopoles do not suddenly appear and ordinary 
magnetic fields do not suddenly net flow through closed surfaces, once one goes from classical 
to quantum electrodynamics. 
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  Further, one might take the perspective that the cause for confinement and baryon 
compositeness is the classical field equation (3.3) for a Yang-Mills monopole which has the 
symmetry (3.5), and that one of the effects of this is that in a quantum field treatment of these 
baryon monopoles, the strong coupling will weaken for ultraviolet and strengthen for infrared 
probes.  And, it can be argued that this is a more natural approach than simply trying to figure 
out how to “glue” together disparate quarks into baryons without knowing to begin with what 
sorts of covariant objects baryons actually are in spacetime.  Indeed, if the hints of baryons and 
confinement that arise in (3.3) and (3.5) are correct, then we would need to start thinking of 
baryons as third-rank antisymmetric tensors and related three-forms in spacetime governed by 
the classical equation (3.3) with the symmetry (3.5), and then see how that connects to 
everything else we know about baryons.  The “let’s glue together the quarks” approach, 
notwithstanding many opportunities to do so, has thus far failed to explain why QCD “must have 
‘quark confinement, that is, even though the theory is described in terms of elementary fields, 
such as the quark fields, that transform non-trivially under SU(3), the physical particle states—
such as the proton, neutron, and pion—are SU(3)-invariant,” see [6] at page 3.  This SU(3)-
invariance of physical particle states is a symmetry principle, and while not every classical 
symmetry carries through to quantum field theory, for example, the chiral anomaly (e.g., [11], 
section IV.7), there is no apparent a priori reason to believe that whatever classical symmetries 
are found for these monopoles (such as (3.5)) will only manifest in the classical but not the 
quantum field theory.  At the very least, the question for study becomes: do these symmetries 
carry over from classical to quantum field theory, and if not, why not, and in what manner are 
they altered?  Further, if the baryon charge really is P idGG′ = − , then as we turn 

( ) ( )( )( )F G F G J ψ→∫∫ ∫∫� � , so too would we turn ( ) ( )( )( )P G P G J ψ′ ′→ .  This may reveal 

that the inherently-composite nature of this P idGG′ = −  charge is in fact the long-sought “glue” 
to aggregate quarks and gluons together into a single charge system, ab initio. 
 

Additionally, approaching confinement starting from a classical treatment of baryons has 
validating precedent in the MIT Bag Model reviewed in, e.g., [12], section 18.  Irrespective of 
the specifics of any particular bag-type model of confinement, the MIT Bag Model very 
correctly makes one very important point: focus carefully on what flows and does not flow across 
any closed two-dimensional surface.  And it does so using the classical formulation of Gauss’ / 
Stokes’ theorem.  This is why the integral form of Maxwell’s equations in classical field theory 
may well be a very sensible starting point studying confinement, because from the Bag Model 
viewpoint, confinement is all about what passes and does not pass through closed surfaces 
containing the extended field configuration within the baryon volume. 

 
Further, by talking about the “classical level” of “non-abelian gauge theory” right on 

page 1 of [6], Jaffe and Witten themselves recognize that Yang-Mills theory has a classical 
level, and that a reasonable starting point for developing quantum Yang-Mills theory, is to first 
fully and properly develop and understand Yang-Mills gauge theory at this classical level. 
 

Finally, it is certainly unrealistic to expect that a classical-only treatment of baryons 
based on Yang-Mills magnetic monopoles will explain all of the observed phenomenology of 
baryons.  It cannot and will not.  Only a proper quantum field treatment may be expected to do 
so.  Yet, at the same time, there are some important physics insights to be gained even from a 
classical treatment of the Yang-Mills monopole equation (3.3).  And we know, if we can fully 
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develop a classical theory on its own terms, and then obtain its Lagrangian density ( )φL  and 

action ( )S φ  in terms of its fields φ , that we can then convert over to a quantum field theory via 

the path integration 4exp expZ D i d x D iSφ φ= =∫ ∫ ∫L .  While carrying out the path integration 

of a non-linear theory such as Yang-Mills gauge theory (and especially gravitational theory) is 
still an exceptionally challenging problem, that does not mean one ought not make the effort to 
find the correct road for doing so, which road is revealed in section 8 and used to carry out an 
analytically-exact path integration in section 11.  But this all this begins by finding and fleshing 
out, the right classical theory to quantize.  
 

So what is most important is for researchers in particle, baryon and nuclear theory to be 
aware of the possibility of modelling baryons as Yang-Mills magnetic monopoles to gain 
possible insight into confinement and related QCD symmetries, so that this possible connection 
can be further developed, vetted, and empirically-tested by anyone who finds it interesting or 
promising.  We now explore the next several steps in this development. 
 
5. Classical Field Equations for the Yang-Mills Electric Charge 
 
 Now let us develop the electric charge density *J in (1.12).  Once again, via the same 
type of calculation used to go from (1.5) a.k.a. (1.7) to (1.11), which was also used to go from 
(2.5) to (2.6), together with [ ],F DG dG i G G= = − , we write (1.12) for *J in commutator form: 

 

[ ] [ ]( ) [ ]( )
[ ] [ ] [ ]

* * * * ,* * , ,* ,

* * , ,* ,* ,

J D F D DG d F i G F d dG i G G i G dG i G G

d dG id G G i G dG G G G

 = = = − = − − − 

 = − − −  

. (5.1) 

  
This should be contrasted with the analog for P in the middle line of (2.6).  Above, however, we 

do not have all the zeroes that were in (2.6), namely, 0ddG= , 0P = , and [ ], , 0G G G  =  . 

 
 As in (2.7) to (2.10), we expand the differential forms of each term.  We first have: 
 

1
3!* * *J J dx dx dx J dx dx dxσ µ ν σ µ ν

σµν σµν= ∧ ∧ = , (5.2) 

 

( )
( )( )

( ) ( )

1
; ;[ ] ; ;[ ] ; ;[ ]3!

.5 ;[ ]1 1 1
; ;[ ] ;2! 2! 2!

.5 .5;[ ] ;1 1 1
; ;2! 2! 2!

* * * *

*

d dG G G G dx dx dx

G dx dx dx g G dx dx dx

g G dx dx dx g G dx dx dx

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν α β σ µ ν
σ µ ν σ αβµν

α β σ µ ν α β σ µ ν
αβµν σ αβµν σ

ε

ε ε

= ∂ ∂ + ∂ ∂ + ∂ ∂ ∧ ∧

= ∂ ∂ ∧ ∧ = ∂ − ∂ ∧ ∧

= − ∂ ∂ ∧ ∧ = − ∂ ∂ ∧ ∧

.  (5.3) 

 

Above, we have used the duality relationship ( ).5 ;[ ]1
;[ ] 2!* G g Gα β

µ ν αβµνε∂ = − ∂ .  We have also 

allowed for a curved spacetime by using the covariant derivatives, as well as the product rule 
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which simplifies to ( )( ) ( ).5 .5;[ ] ;[ ]
; ;g G g Gα β α β
σ σ∂ − ∂ = − ∂ ∂  because of the metricity ; 0gµν σ = .  In 

flat spacetime, ;σ σ∂ → ∂  and ( ).5
1g− = . 

 

Next, in contrast to (2.8), using ( ).51
2!* , ,G G g G Gα β

µ ν αβµνε    = −     and of course 

; 0gµν σ = , with the analogous sign reversal at the sixth line as in (2.8), we have: 

 

 

[ ]
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1
;2!

.5 .51 1 1
; ;2! 2! 2!

.5 .51 1
; ;2! 2!

.5 [1 1
;2! 2!

* , * ,

,

id G G i G G dx dx dx

i g G G dx dx dx i g G G dx dx dx

i g G G dx dx dx i g G G dx dx dx

i g G

σ µ ν
σ µ ν

α β σ µ ν α β σ µ ν
αβµν σ αβµν σ

α β σ µ ν α β σ µ ν
αβµν σ αβµν σ

α
αβµν σ

ε ε

ε ε

ε

 − = − ∂ ∧ ∧ 

 = − − ∂ ∧ ∧ = − − ∂ ∧ ∧ 

= − − ∂ ∧ ∧ − − ∂ ∧ ∧

= − − ∂( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )

.5] [ ]1 1
;2! 2!

1 1
; [ ] [ ; ]2! 2!

1 1
; [ ] [ ; ]2! 2!

; ;

* *

* *

* *

G dx dx dx i g G G dx dx dx

i G G dx dx dx i G G dx dx dx

i G G dx dx dx i G G dx dx dx

i G G dx dx dx i G G dx dx dx

β σ µ ν α β σ µ ν
αβµν σ

σ µ ν σ µ ν
σ µ ν µ σ ν

σ µ ν σ µ ν
σ µ ν σ µ ν

σ µ ν σ µ ν
σ µ ν σ µ ν

ε∧ ∧ − − ∂ ∧ ∧

= − ∂ ∧ ∧ − ∂ ∧ ∧

= − ∂ ∧ ∧ + ∂ ∧ ∧

= − ∂ ∧ ∧ + ∂ ∧ ∧

( )
( )

( )
( )

1
; [ ] ; [ ] ; [ ]3!

1
[ ; ] [ ; ] [ ; ]3!

1
;[ ] ;[ ] ;[ ]3!

1
;[ ] ;[ ] ;[ ]3!

;

* * *

* * *

* * *

* * *

*

i G G G G G G dx dx dx

i G G G G G G dx dx dx

i G G G G G G dx dx dx

i G G G G G G dx dx dx

i

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

= − ∂ + ∂ + ∂ ∧ ∧

+ ∂ + ∂ + ∂ ∧ ∧

= − ∂ + ∂ + ∂ ∧ ∧

+ ∂ + ∂ + ∂ ∧ ∧

= − ∂( );*

* *

G G iG G dx dx dx

i dGG iG dG

σ µ ν
σ µ ν σ µ ν+ ∂ ∧ ∧

= − +
,(5.4) 

 

Note that within the differential forms, and given ( ).51
2!*F g Fαβ

µν αβµνε= −  and ; 0gµν σ = , we are 

able to “transfer” the duality operation, i.e., that we are able to set ; [ ] ;[ ]* *G G G Gσ µ ν σ µ ν∂ → ∂ , etc. 

and [ ; ] ;[ ]* *G G G Gσ µ ν σ µ ν∂ → ∂ , etc.  This reveals [ ]* , * *d G G dGG G dG= −  as a duality 

product-rule identity, contrast [ ],d G G dGG GdG= −  from (2.8). 

 

 Similarly, in contrast to (2.9), using ( ).5 ;[ ]1
;[ ] 2!* G g Gα β

µ ν αβµνε∂ = − ∂ , with a sign reversal 

as previously in the sixth line, and transferring [ ; ] ;[ ]* *G G G Gσ µ ν σ µ ν∂ → ∂  in the eighth line as 

was done in (5.4) above without repeating the expansion to third rank tensor form, we obtain: 
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[ ] ( )
( )

( )
( )

1
;[ ] ;[ ] ;[ ]3!

.5 ;[ ]1 1 1
;[ ]2! 2! 2!

.5 ;1
2!

.51
2!

,* ,* ,* ,*

,* ,

,

i G dG i G G G G G G dx dx dx

i G G dx dx dx i g G G dx dx dx

i g G G dx dx dx

i g G

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν α β σ µ ν
σ µ ν αβµν σ

α β σ µ ν
αβµν σ

αβµν

ε

ε

ε

     − = − ∂ + ∂ + ∂ ∧ ∧     

  = − ∂ ∧ ∧ = − − ∂ ∧ ∧   

 = − − ∂ ∧ ∧ 

= − − ( )( )
( ) ( )

( ) ( )
( )

; ;

.5 ; ; ;1
2!

.5 ;[ ] [ ; ] ;[ ]1 1
2! 2!

1
;[ ] [ ; ] ;[ ]2!

1
;[ ]2!

* * *

2 * *

G G G dx dx dx

i g G G G G G G dx dx dx

i g G G G G G G dx dx dx

i G G G G G G dx dx dx

i G G

α β α β σ µ ν
σ σ

α β β α α β σ µ ν
αβµν σ σ σ

α β α β α β σ µ ν
αβµν σ σ σ

σ µ ν
σ µ ν σ µ ν σ µ ν

σ µ ν

ε

ε

∂ − ∂ ∧ ∧

= − − ∂ − ∂ − ∂ ∧ ∧

= − − ∂ + ∂ − ∂ ∧ ∧

= − ∂ + ∂ − ∂ ∧ ∧

= − ∂ −( )
( )

;[ ]

; ;2 * *

2 * *

G G dx dx dx

iG G i G G dx dx dx

iG dG i dGG

σ µ ν
σ µ ν

σ µ ν
σ µ ν σ µ ν

∂ ∧ ∧

= − ∂ + ∂ ∧ ∧

= − +

. (5.5) 

 

 Finally, in contrast to (2.10), using ( ).51
2!* , ,G G g G Gα β

µ ν αβµνε    = −    , 

 

[ ] [ ]( )
( )

( )

1
3!

.51 1 1
2! 2! 2!

.51 1
2! 3!

,* , ,* , ,* , ,* ,

,* , , ,

, , , ,

G G G G G G G G G G G G dx dx dx

G G G dx dx dx g G G G dx dx dx

g G G G G G G

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν α β σ µ ν
σ µ ν αβµν σ

α β α β
αβµν σ αβνσ µ

ε

ε ε

         − = − + + ∧ ∧          

     = − ∧ ∧ = − − ∧ ∧      

  = − − +  ( ), , 0G G G dx dx dxα β σ µ ν
αβσµ νε      + ∧ ∧ ≠      

.(5.6) 

 

Unlike (2.10), this does not map into the Jacobian identity [ ] [ ] [ ], , , , , , 0a b c b c a c a b     + + =      , 

and so is not zero. 
 
 So now we use [ ]* , * *id G G i dGG iG dG− = − +  and [ ],* 2 * *i G dG iG dG i dGG− = − +  

found in (5.4) and (5.5), in (5.1).  Analogously to (2.11) we obtain: 
 

[ ] [ ] [ ]
[ ]

[ ]
[ ] [ ]

[ ] [ ]
[ ]

* * * , ,* ,* ,

* * * 2 * * ,* ,

* * ,* ,

* * , * ,* ,

* ,* ,* ,

* 2 * * ,* ,

J d dG id G G i G dG G G G

d dG i dGG iG dG iG dG i dGG G G G

d dG iG dG G G G

d dG id G G i dGG G G G

d F i G dG G G G

d F iG dG i dGG G G G

 = − − −  

 = − + − + −  

 = − −  

 = + − −  

 = − −  

 = − + −  

. (5.7) 
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This corresponds to (2.11), however, here: a) * 0J ≠  in contrast to 0P = ; b) * 0d dG ≠  in 

contrast to 0ddG= ; c) [ ],* , 0G G G  ≠   in contrast to [ ], , 0G G G  =  , and d) the terms 

[ ] [ ], * ,id G G id G G→  and *idGG i dGG− → − .  Starting from on the top line, we also employ 

[ ]( )* * ,F dG i G G= −  which is the differential form for ( )[ ]* * ,F G i G Gµν µ ν µ ν = ∂ −    in the final 

two lines.  
 
 Now we wish to apply Gauss’ / Stokes’ theorem to (5.7), as we earlier did to (2.11).  
Using the last two lines of (5.7) with the integrable term *d F  separated on the left, we have: 
 

[ ] [ ]( )
[ ]( )

* *

* ,* ,* ,

* * 2 * ,* ,

F d F

J i G dG G G G

J i dGG iG dG G G G

=

 = + +  

 = − + +  

∫∫ ∫∫∫

∫∫∫

∫∫∫

�

. (5.8) 

 

The Abelian portion of this equation, * *F J=∫∫ ∫∫∫�  which we used for pedagogic simplicity in 

the analysis following (3.3), is clearly included when the gauge fields are set to zero.  Putting the 
Yang-Mills electric charge equation (5.8) together with the magnetic charge equation (3.3), we 
find that Maxwell’s Yang-Mills equations in integral form are: 
 

[ ]( )
[ ]

* * * 2 * ,* ,

,

F J i dGG iG dG G G G

F P i dGG i G G

 = − + +  

′= = − = −

∫∫ ∫∫∫ ∫∫∫ ∫∫∫

∫∫ ∫∫∫ ∫∫∫ ∫∫

�

� �
. (5.9) 

 

In this form, the parallels and differences are manifestly clear.  *F∫∫�  is the net electric 

field flux and F∫∫�  the net magnetic field flux over a closed surface.  * J  is the electric source 

charge density and it is non-vanishing, while the magnetic source density 0P =  vanishes by the 

Jacobian (2.4).  Similarly, while * 0G dG ≠  and [ ],* , 0G G G  ≠   in the electric field equation, 

their duality counterparts 0GdG=  and [ ], , 0G G G  =   are also part of the magnetic charge 

equation, but vanish by the respective identities found in (2.11) and (2.10).  We see how the only 
true, elementary source is * J  and that there are then a number of faux sources which include 

[ ],P idGG id G G′ = − = −  for the net magnetic field flux F∫∫� , and 

[ ]* * 2 * ,* ,J i dGG iG dG G G G′  ≡ − + +    which is a faux electric source which contributes to the 

net electric field flux beyond that contributed by “true” electric source J in the abelian portion 

* *F J=∫∫ ∫∫∫�  of (5.9). 

 
 Because the only elementary, real, not-faux source in the Yang-Mills equations (5.9) is 
the electric source * J , it will be desirable to solve the electric charge density equation (5.7) for 
the gauge field G in terms of * J .  Particularly, as laid out at the end of section 3, our eventual 
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goal is to find ( )( )( )F G J ψ∫∫� .  So a key step along the way is to obtain the gauge fields ( )G J  

in terms of sources.  Equation (5.7) has a number of alternative ways to express ( )*J G , but the 

most compact way is on the third line.  So we expand those differential forms to obtain: 
 

[ ]
( )
( )

[ ]( )

1
3!

1
[ ] [ ] [ ]3!

1
[ ] [ ] [ ]3!

1
3!

* *

* * ,* ,

* * *

* * *

,* , ,* , ,* ,

J J dx dx dx

d dG iG dG G G G

G G G dx dx dx

i G G G G G G dx dx dx

G G G G G G G G G dx dx dx

σ µ ν
σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

= ∧ ∧

 = − −  

= ∂ ∂ + ∂ ∂ + ∂ ∂ ∧ ∧

− ∂ + ∂ + ∂ ∧ ∧

        − + + ∧ ∧        

. (5.10) 

 
Stripping off the forms, we obtain the tensor equation: 
 

( )
( )

[ ]( )

[ ] [ ] [ ]

[ ] [ ] [ ]

* * * *

* * *

,* , ,* , ,* ,

J G G G

i G G G G G G

G G G G G G G G G

σµν σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

= ∂ ∂ + ∂ ∂ + ∂ ∂

− ∂ + ∂ + ∂

        − + +        

. (5.11) 

 

Then, we apply the duality operations ( ).5
*J g Jα

σµν ασµνε= − , ( ).5 [ ]1
[ ] 2!* G g Gα β
µ ν αβµνε∂ = − ∂  and 

( ).51
2!* , ,G G g G Gα β

µ ν αβµνε    = −    , and the metricity ; 0gµν σ =  as discussed after (5.3), to 

obtain (a good summary of the use of duality is contained in [9], pages 87-89): 
 

( )
( ) ( )
( ) ( )

( ) ( )

.5

.5 [ ] [ ] [ ]1
2!

.5 [ ] [ ] [ ]1
2!

.51
2! , , , , , ,

g J

g G G G

i g G G G G G G

g G G G G G G G G G

α
ασµν

α β α β α β
αβµν σ αβνσ µ αβσµ ν

α β α β α β
αβµν σ αβνσ µ αβσµ ν

α β α β α β
αβµν σ αβνσ µ αβσµ ν

ε

ε ε ε

ε ε ε

ε ε ε

−

= − ∂ ∂ + ∂ ∂ + ∂ ∂

− − ∂ + ∂ + ∂

          − − + +          

. (5.12) 

 

Factoring out ( ).5
g−  and multiplying through by κσµνε  next yields: 
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( )
( )

[ ] [ ] [ ]1
2!

[ ] [ ] [ ]1
2!

1
2!

3! 6

, , , ,

J J J

G G G

i G G G G G G

G G G G G G

κσµν α κ α κ
ασµν α

κσµν α β κσµν α β κσµν α β
αβµν σ αβνσ µ αβσµ ν

κσµν α β κσµν α β κσµν α β
αβµν σ αβνσ µ αβσµ ν

κσµν α β κσµν α β
αβµν σ αβνσ µ

ε ε δ

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε

= − = −

= ∂ ∂ + ∂ ∂ + ∂ ∂

− ∂ + ∂ + ∂

    − +    ( )
( )

( )
( )

[ ] [ ] [ ]

[ ] [ ] [ ]

, ,

, , , , , ,

G G G

G G G

i G G G G G G

G G G G G G G G G

κσµν α β
αβσµ ν

κσ α β κµ α β κν α β
αβ σ αβ µ αβ ν

κσ α β κµ α β κν α β
αβ σ αβ µ αβ ν

κσ α β κµ α β κν α β
αβ σ αβ µ αβ ν

ε ε

δ δ δ

δ δ δ

δ δ δ

    +     

= − ∂ ∂ + ∂ ∂ + ∂ ∂

+ ∂ + ∂ + ∂

          + + +          

. (5.13) 

 
Using κσ κ σ κ σ

αβ α β β αδ δ δ δ δ≡ −  and the like, with κ ν→  index renaming, this reduces to: 

 
[ ] [ ] , ,J G iG G G G Gν σ ν σ ν σ ν

σ σ σ  − = ∂ ∂ − ∂ −    . (5.14) 

 

Contrasting to the original [ ]* * * ,* ,J d dG iG dG G G G = − −   , we see that aside from the sign 

reversal, the * between two objects essentially results in an index contraction between those two 
objects when they are written as tensors.  If we then expand all the commutators and reorganize 
terms in a familiar way, we obtain: 
 

( ) ( )
( ) ( )

( )

[ ] [ ] , ,

2

2

J G iG G G G G

iG G G G iG G G G G G

g iG G G G iG G G G G G

g D D D D G

ν σ ν σ ν σ ν
σ σ σ

σ σ σ ν σ ν σ ν σ ν ν σ
σ σ σ σ

νσ τ τ τ σ ν σ ν σ ν ν σ
τ τ τ σ σ

νσ τ σ ν
τ σ

  − = ∂ ∂ − ∂ −   

= ∂ ∂ − ∂ − − ∂ ∂ − ∂ − +

= ∂ ∂ − ∂ − − ∂ ∂ − ∂ − +

≡ −

, (5.15) 

 
with a configuration space operator g D D D Dνσ τ σ ν

τ −  where in the final line we have defined the 

second rank tensor operator: 
 

2D D iG G G G Gσ ν σ ν σ ν σ ν ν σ≡ ∂ ∂ − ∂ − +  (5.16) 
  
which, upon contraction, does yield the scalar also appearing in(5.15), namely: 
 
D D iG G Gτ τ τ τ

τ τ τ τ= ∂ ∂ − ∂ − . (5.17) 

 

By way of contrast, in Abelian gauge theory ( )J g Gν νσ τ σ ν
τ σ− = ∂ ∂ − ∂ ∂ .  So (5.15) for ( )J Gν

σ , 

is now in a familiar form which we can use to approach taking the inverse ( )G Jν
σ .  This is the 

first step toward being able to obtain ( )( )( )F G J ψ∫∫� . 
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 Finally, let us find the continuity equation for conservation of the electric source density 
and current, based on (5.15).  Equation (5.15) will clearly be recognized as another way to 
express J D Fν σν

σ− =  which may be similarly derived from * *J D F=  in (1.12).  Particularly, 

we wish to show that 0D J D D Fν σν
ν ν σ− = = , by identity.  Similarly to (2.1), we may take the 

gauge-covariant derivative of Jν  via the commutation: 
 

( ) ( )( ) ( ),

,

D J D J J D iG J J iG

J J iG J J iJ G J i G J D J

ν ν ν ν ν
ν ν ν ν ν ν ν

ν ν ν ν ν ν ν ν
ν ν ν ν ν ν ν ν

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

  = − = ∂ − − ∂ − 

 = ∂ + ∂ − − ∂ + = ∂ − = 

. (5.18) 

 
Stripping off the ϕ , we see the correct derivative: 
 

, ,D J J i G J D Jν ν ν ν
ν ν ν ν   = ∂ − =     (5.19) 

 

which includes the commutator ,G Jν
ν   .  So, we start with D J D D Fν σν

ν ν σ− =  and apply 

,D J D Jν ν
ν ν  =   from (5.19), J D Fν σν

σ− = , ,D F D Fσ µν σ µν =    from (2.2), and  

[ ],iF D Dσν ν σ=  from (1.1) to show via simple index commutativity that the continuity equation, 

due finally to the scalar contraction F Fσν
σν  of like-objects in a commutator , 0F Fσν

σν  =  , is:  

 

[ ]1
2

1
2

, , , ,

, , ,

, 0

D J D J D D F D D F

D D F D F D D F D F D D

D D F F D D D D F D D F

i F F

ν ν σν σν
ν ν ν σ ν σ

σν σν σν σν
ν σ ν σ σ ν σ ν

σν σν σν σν
ν σ σ ν ν σ ν σ

σν
σν

      − = − = =      

= − − +

   = + = =   

 = = 

. (5.20) 

 
The continuity equation in differential forms, therefore, is * * 0D J DD F= = .  This equation for 
the conservation of the non-abelian charge density will play a very central role the development 
to follow. 
 
6. Abelian and non-Abelian Massive Gauge Boson Inverses for the Electric 
Charge Density, Using the “Coleman-Zee” Method 
 

 The next stage in our development to demonstrate that F i dGG= −∫∫ ∫∫∫�  in (5.9) is the 

integral-form classical equation for a baryon, is to invert the configuration space operator 

g D D D Dνσ τ σ ν
τ −  of (5.15) to obtain ( )G Jν

σ , so we can obtain ( )( )F G J∫∫� .  This inverse, 

which we denote by I µν , may be defined by G I Jν
µ µν≡ .  In general, I Iµν νµ≠  is not necessarily 

symmetric, so G I Jν
µ µν≡  is an inner product definition not necessarily the same as an outer 
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product definition G I Jν
µ νµ′≡ / .  Making use of G I Jν

µ µν≡  to left-multiply (5.15) by I µν−  allows 

us to write: 
 

( )I J I g D D D D G G Gν νσ τ σ ν σ
µν µν τ σ µ µ σδ= − − = = , (6.1) 

 
from which we may extract a more-directly defined inverse: 
 

( )I g D D D Dνσ τ σ ν σ
µν τ µδ− − = . (6.2) 

 
Now the task is to show that this inverse exists, to understand the degree to which any particular 
inverse which does exist is non-unique, to review the options for fixing the gauge of these 
inverses, and to select the inverse or inverses with suitable gauge choices or better yet, unique 

gauge requirements which best illustrate why F i dGG= −∫∫ ∫∫∫�  based on a faux magnetic 

charge P idGG′ = −  of (3.4) has all of the key symmetries of a baryon. 
 

Taking inverses in gauge theory is a tricky business, because one is often free to choose 
the gauge resulting in non-unique inverses, and because particularly for massless gauge bosons – 
which include the gluons of QCD – the inverse may not even exist without a careful selection and 
fixing of the gauge, see, e.g., [11] chapter III.4.  Additionally, because the gauge field is the field 
of integration used to turn a classical action S into a quantum field amplitude W, a symmetry that 
exists classically may not be a symmetry of the related quantum field theory, see, e.g., [11] 
chapter IV.7 (Chiral Anomaly).  Specifically, a classical symmetry exists if some transformation 
leaves the action ( )S ϕ  invariant.  A quantum symmetry exists (and inherits the classical 

symmetry) if the same transformation leaves the path integral ( )expZ D iSϕ ϕ= ∫  invariant.  But 

this may not always be the case.  Therefore, let us start by carefully parsing out the various issues 
that come into play when taking inverses of the form (6.2). 
 
 First, as to classical versus quantum fields, we consider the local non-abelian gauge 

transformation which is ,G G G i Gµ µ µ µ µθ θ′  → = + ∂ −    in tensors, [ ],G G G d i Gθ θ′→ = + −  

in differential commutator forms, and ( )G G G d G G d Gθ θ θ′→ = + + ∧ = + + ∧  in differential 

wedge forms.  These are all alternative but equivalent ways of saying the same thing.  All of the 
classical field equations developed thus far including (1.12), (2.11), (3.3), (5.1), (5.7) and (5.9) 
are symmetric under such a gauge transformation.  So too, the electric charge field equation 
(5.15) with the specific D Dσ ν  and D Dτ

τ  identified in (5.16) and (5.17) is symmetric under this 

non-abelian gauge transformation.  This should be no surprise: all of these equations were 
developed with the express purpose of preserving this gauge symmetry.  This means that the 

action ( ) ( ) 4S G G d x= ∫L  is similarly invariant.  But when we take a path integral 

( ) ( )exp expZ DG iS G iW J= ≡∫ C  to obtain the associated quantum field theory for the 

amplitude ( )W J , we are not necessarily assured that the measure DG  will inherit this same 

symmetry.  And this in turn means that the quantum field theory may not share all of the 
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symmetries of the classical field theory.  Typically, ensuring that the path integral also carries 

forward the gauge symmetry under [ ]( ),DG D G d i Gθ θ→ + −  is what gives rise to gauge-

fixing measures such as Faddeev-Popov [13] including anticommuting scalar “ghost” fields, see 
some concise development of this in [11], chapters III.4, and VII.1.  However, so long as we 
restrict ourselves to classical field theory, which we are doing at the moment, we can develop 
inverses without this particular worry.  We just need to be prepared to address this issue once we 
are ready to calculate the path integral, which is to be done only after the classical theory has 
been fully elaborated.  Again, as to why there is both validity and benefit to doing taking this 
approach of fully elaborating the classical theory in advance of the quantum theory, see the 
discussion of section 4. 
 
 Second, as to why we need to take inverses when going from classical to quantum field 
theory, this is because the mathematical exercise of calculating a path integral revolves around 

clever extrapolations of the Gaussian integral ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫  

into ( )( ) ( )( )exp expZ DG iS G C iW J= ≡∫ , with the correspondence ( ) 2~ / 2W J J A.  Because 

the abstracted coefficient A of 2Ax  gets inverted in 2 / 2J A, and because A ends up 
corresponding with the configuration space operator g D D D Dνσ τ σ ν

τ −  in (6.2) which then gets 

inverted via 2 / 2J A into Iνµ  which then becomes proportionately related to the quantum 

propagator assuming we can find a way as we will in sections 8 and 11 to deal with 
g D D D Dνσ τ σ ν

τ −  not being quadratic in Gµ , one must expect to have to obtain 

( ) 1
g D D D Dνσ τ σ ν

τ
−

−  to arrive at quantum field theory, in addition to having to deal with the 

invariance of the measure under [ ]( ),DG D G d i Gθ θ→ + − .  Thus, it is desirable to have a 

number of inverses already developed “on the shelf” when it comes time to use them to calculate 
a path integral.  But, as we see in (6.2), even before we start approaching path integration, we 
still need this inverse even to develop the classical theory, and specifically, in order to obtain 

( )( )F G J∫∫� .  

 
 Third, even in classical theory, as already mentioned, configuration space operators of the 
form gνσ τ σ ν

τ∂ ∂ − ∂ ∂  simply have no inverse!  Although often couched in mystery, this problem 

arises from the simple fact that for a massless gauge boson, a Lorentz vector Gµ  with four 

spacetime components is used to describe physical fields – for example the photon in 
electrodynamics and the gluons in chromodynamics – which only have two physical degrees of 
freedom.  That is, a mathematical object Gµ  with four degrees of freedom is used to represent a 

physical object which only has half as many degrees of freedom.  This is an inherent redundancy 
in how we describe gauge fields that causes inverses to be non-unique and brings about the need 
for gauge fixing.  Gauge fixing and related methods are then used to create a menu of gauge-
fixed solutions out of the non-uniqueness stemming from this redundancy.  This gauge non-
uniqueness is a separate and distinct issue from gauge symmetry.  For example, the field 

equation ( )J g Aν νσ τ σ ν
τ σ− = ∂ ∂ − ∂ ∂  for a photon field Aσ  sourced by a current density Jν  is 
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fully symmetric under an abelian gauge transformation A A Aσ σ σ σθ′→ = + ∂ .  But Aσ  is still 

redundant insofar as it has four spacetime degrees of freedom while a photon only has two 
transverse degrees of freedom.  Additionally, as mentioned, the operator gνσ τ σ ν

τ∂ ∂ − ∂ ∂  has no 

inverse, or, to be more precise, has an inverse which is of infinite magnitude and so is completely 
indeterminate. 
 
 Now, following Zee on page 30 of [11]: 
 

“In order to avoid complications at this stage associated with gauge invariance 
[we] will consider instead the field theory of a massive spin 1 meson, or vector 
meson. . . .  We can adopt a pragmatic attitude: Calculate a photon mass m and set 

0m =  at the end, and if the result does not blow up in our faces, we will presume 
that it is OK.” 

 
Zee states in a footnote to this passage that when he “took a field theory course as a student with 
Sidney Coleman this was how he treated QED to avoid discussing gauge invariance.”  So to 
simplify the development here, we shall take this same pragmatic approach as Coleman and Zee:  
We shall introduce a non-zero “Proca mass” for the gauge fields G, develop the classical 

monopole F i dGG= −∫∫ ∫∫∫�  of (5.9) to show how it has all of the classical symmetries that one 

would expect of a baryon, and then set 0m =  at the appropriate point in the development (which 
will come at (9.15) infra) and explore the massive / massless correspondences. 
 
 In this section, we shall develop the inverse of the massive boson configuration space 

operators ( )2g D D m D Dνσ τ σ ν
τ + −  for non-abelian gauge theory and ( )2g mνσ τ σ ν

τ∂ ∂ + − ∂ ∂  for 

abelian gauge theory, and then follow Coleman and Zee by setting the mass to zero to see what 
results.  In the next section we will take the more formal approach of developing the inverses 
g D D D Dνσ τ σ ν

τ −  and gνσ τ σ ν
τ∂ ∂ − ∂ ∂  for a massless particle directly, using the Faddeev-Popov 

method.  We will then contrast the both approaches and see where they meet, to give us some 
guidance about how to then use these inverses in the non-abelian magnetic monopole field 

equation F i dGG= −∫∫ ∫∫∫� .   

 
 So, following the Coleman-Zee approach, let us add a Proca mass m to (5.15), thus: 
 

( )( )2J g D D m D D Gν νσ τ σ ν
τ σ− = + − . (6.3) 

 

Let us then consider (6.3) in flat spacetime where gradient operators , 0µ ν ∂ ∂ =   commute.  Let 

us also momentarily revert D → ∂  to ordinary derivatives to make a pedagogical point, and so 

write (6.3) as its abelian subset ( )( )2J g m Gν νσ τ σ ν
τ σ− = ∂ ∂ + − ∂ ∂ .  The current density is 

conserved by the continuity equation 0Jν
ν∂ = , so if we take the gradient of each side and 

reduce, we find that 2 0m Gν
ν∂ = .  Because we take the mass to be non-zero, this means that 
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0Gν
ν∂ = , which is a fully-covariant equation known as the Lorenz gauge.  Here, 0Gν

ν∂ =  is not 

a gauge condition at all; it is a requirement needed to ensure continuity for a massive vector 
boson.  The number of degrees of freedom in the mathematical object Gν  is covariantly reduced 
from four to three by 0Gν

ν∂ = , and this matches precisely with the three polarization degrees of 

freedom – one longitudinal and two transverse – possessed by the physical gauge boson.  So 
now, most of the gauge redundancy is squeezed out from Gν .  Even here, however, there is still 
a residual redundancy that requires gauge fixing.  For, if we transform G Gν ν νθ→ + ∂ , then the 

Lorenz condition becomes ( ) 0Gν ν
ν θ∂ + ∂ = , or Gν ν

ν ν θ∂ = −∂ ∂ .  So to maintain 0Gν
ν∂ =  

under any such gauge transformation, we may this fix the gauge completely by the gauge 

condition 0ν
ν θ∂ ∂ = .  Thus, with everything taken together, ( )( )2J g m Gν νσ τ σ ν

τ σ− = ∂ ∂ + − ∂ ∂  is 

invariant under a gauge transformation G Gν ν νθ→ + ∂ , the four degrees of freedom in Gν  are 
covariantly-reduced down to three degrees of freedom by 0Gν

ν∂ =  which is required to match 

the three polarization degrees of freedom of the physical field, and the residual gauge freedom is 

fixed and thereby removed by 0ν
ν θ∂ ∂ = .  The field equation ( )( )2J g m Gν νσ τ σ ν

τ σ− = ∂ ∂ + − ∂ ∂  

remains invariant under the gauge transformation G Gν ν νθ→ + ∂  and this invariance does not 
depend in any way on 0ν

ν θ∂ ∂ =  because nowhere does the non-observable gauge (really, phase) 

angle θ  appear in the field equation.  
 
 In the non-abelian (6.3) it is a bit more complicated, because we have D from (5.15) to 
(5.17), not ∂ , and because the proper way to take the gauge-derivative of the current density is 

by , ,D J J i G J D Jν ν ν ν
ν ν ν ν   = ∂ − =     derived in (5.19).  But we already saw that the continuity 

equation 0D Jν
ν =  of (5.20) which we now combine with (5.15), by identity, is: 

 

( )D J D g D D D D Gν νσ τ σ ν
ν ν τ σ− = − = 0 . (6.4) 

 
So if we simply add a Proca mass to (6.4) and maintain continuity, we must have:  
 

( )( ) ( )2 2

2

0

0

D J D g D D m D D G D g D D D D G m D g G

m D G

ν νσ τ σ ν νσ τ σ ν νσ
ν ν τ σ ν τ σ ν σ

ν
ν

− = + − = − + =

= + =0
. (6.5) 

 

This includes ( ) ( )2 2 2 0D g m G D m G m D Gνσ ν ν
ν σ ν ν= = = , where the highlighted zero in (6.4) and 

(6.5) is the zero-by-identity of the continuity equation (5.20).  But the symmetries of the term 

D Gν
ν  in the above are driven by those of (5.19) which is ,D J J i G Jν ν ν

ν ν ν = ∂ −   .  

Consequently,  ,D G G i G Gν ν ν
ν ν ν = ∂ −    because of (5.19). Additionally, because of (6.5) and 

the assumed non-zero mass, , 0D G G i G Gν ν ν
ν ν ν = ∂ − =  .  As in the abelian case just discussed, 

for a massive gauge boson, and this is not a mere gauge condition.  It is required to ensure 
continuity.  As in abelian theory this reduces the gauge freedom of a four-component spacetime 
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object Gν  down to three to match the three massive boson polarizations.  Additionally, here the 

commutator , 0G Gν
ν  =   because of the scalar contraction G Gν

ν  of like objects.  This means in 

turn that 0D G Gν ν
ν ν= ∂ = .  And this means that 0Gν

ν∂ =  still applies even to the non-abelian 

theory and is not a gauge condition but is a requirement for a massive gauge boson. 
 

As to the residual gauge freedom, because ,G G G i G G Dν ν ν ν ν ν νθ θ θ′  → = + ∂ − = +   is 

the non-abelian gauge transformation, 0D G D G D D G Dν ν ν ν ν
ν ν ν ν νθ θ′ = + = ∂ + ∂ =  is the 

required covariant gauge condition for G ν′ .   Taken with 0D Gν
ν =  this means that for a non-

abelian theory, 0D Dν
ν θ =  replaces 0ν

ν θ∂ ∂ = as the residual gauge condition.  Taken with 

0Gν
ν∂ = , this means that , 0D i Gν ν ν

ν ν νθ θ θ ∂ = ∂ ∂ − ∂ =  , which means that 0D Dν
ν θ =  may 

be written out with ordinary derivatives as , 0i Gν ν
ν νθ θ ∂ ∂ − ∂ =  .  So while (6.3) is invariant 

under a non-abelian gauge transformation ,G G G i Gν ν ν ν νθ θ′  → = + ∂ −   , we are required to 

have 0D G Gν ν
ν ν= ∂ =  because the boson in (6.3) is presumed to be massive and subject to 

continuity, and the remaining gauge freedom is fixed by imposing 0D Dν
ν θ =  which as just seen 

is equivalent to the expression  , 0i Gν ν
ν νθ θ ∂ ∂ − ∂ =  .  Nonetheless, as in the abelian theory, 

this invariance does not depend in any way on 0D Dν
ν θ =  a.k.a. , 0i Gν ν

ν νθ θ ∂ ∂ − ∂ =   because 

nowhere does the non-observable gauge / phase angle θ  appear in the field equation (6.3). 
 
 Now, let us stop for a moment to take a close look at the gauge-covariant, second-rank, 
second-derivative operator D Dσ ν  in (5.16) and its gauge-covariant d'Alembertian D Dτ

τ=�  of 

(5.17).  Close study of D Dσ ν  will reveal that there is no apparent way to separate each of Dσ  
and Dν  to make D Dσ ν  a product of two separate expressions for Dσ , Dν .  Even the 

commutator of (5.16), which we can calculate to be [ ], 3 ,i D D G i G Gσ ν σ ν σ ν   = ∂ −     in flat 

spacetime, is different from ( )[ ], ,F i D D G i G Gµν µ ν µ ν µ νϕ ϕ ϕ   = = ∂ −     which is the field 

strength defined in (1.1), (1.5).  This is because in (5.15) D Dσ ν  is operating on Gσ  not ϕ  and 

because, as noted at the outset following (1.1), gauge-covariant derivatives, like covariant 
derivatives in Riemannian geometry, take a form that depends on the representation of the object 
they act upon.   
 

However, for D Dτ
τ=�  we may make use of the very recent finding after (6.5) that 

0Gν
ν∂ =  for a massive gauge boson even in non-abelian gauge theory, and specifically, may 

add this “zero” to (5.17) and thus write: 
 

( ) ( ) ( ) ( )D D i G iG G G iG iG iG iG iG

V

τ τ τ τ τ τ τ τ τ τ τ
τ τ τ τ τ τ τ τ τ

τ
τ

= ∂ ∂ − ∂ − ∂ − = ∂ ∂ − − ∂ − = ∂ − ∂ −

= ∂ ∂ +
, (6.6) 
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where in the final line we have defined the gauge field perturbation (see, e.g., [14] eq. [4.4]): 
 

( )
i k

V i G G G G k G G k G Gτ τ τ τ τ τ
τ τ τ τ τ τ

∂→

≡ − ∂ + ∂ − ⇒ − − − . (6.7) 

 

This use of 0Gν
ν∂ =  does allow a clean separation ( )( )D D iG iGτ τ τ

τ τ τ= ∂ − ∂ − , and it enables 

us to explicitly introduce and identify gauge field perturbations.  This will be very useful 
throughout the subsequent development.  And again, because we are considering a massive 
gauge boson, 0Gν

ν∂ =  is not just an optional gauge condition; it is required for continuity.  At 

the end of (6.7) we convert into momentum space by the useful substitution i k∂ → .  
 

With these preliminaries behind us, it is time to calculate the inverse of (5.15) for a 
massive gauge boson.  We start with the inverse I µν  of (6.2), for which we follow Coleman and 

Zee and add the Proca mass as follows: 
 

( )( )2I g D D m D Dνσ τ σ ν σ
µν τ µδ+ − = − . (6.8) 

 
It is well-known how to calculate inverses of the form (6.8), but we do need to be cognizant of 
two important points because the D are not the same as ordinary ∂  especially in flat spacetime.  

First, while , 0σ ν ∂ ∂ =   in flat spacetime, we cannot treat D Dσ ν  as commuting here, that is, 

, 0D Dσ ν  ≠  .  In fact, as noted prior to (6.6), [ ], 3 , 0i D D G i G Gσ ν σ ν σ ν   = ∂ − ≠     when the 

operand is Gσ .  So we need to be very careful throughout to maintain strict commutation 

ordering.  Second, we cannot just put expressions involving D Dσ ν  or D Dτ
τ  into a denominator.  

Rather, we have to treat carefully, as inverses and not mere denominators, inverse expressions 
which contain D Dσ ν  as well as the gauge-covariant d'Alembertian D Dτ

τ=� . 

 
 With that in mind, let us calculate I µν .  First, we specify I µν  using the general form: 

 
I Ag BD Dµν µν µ ν≡ + , (6.9) 

 
with A and B unknown and to-be-deduced.  Given that I Iµν νµ≠  (to see this, simply note that 

D D D Dµ ν ν µ≠ ), the above definition together with G I Jν
µ µν≡  leads to 

( )G Ag BD D J Ag J BD D J AJν ν ν
µ µν µ ν µν µ ν µ≡ + = + =  once the continuity relation 0D Jν

ν =  of 

(5.20) is applied.  So the inner-product definition G I Jν
µ µν≡  combined with the inverse 

definition (6.9) will eventually allow the important simplification of setting 0BD Dµ ν →  by 

continuity, which is analogous to what happens in abelian gauge theory when the continuity 
equation 0Jν

ν∂ =  is applied. 
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  So, the task now is to find the unknowns A and B.  If we place (6.9) into (6.8) we obtain: 
 

( ) ( )( )
( ) ( )

( ) ( )

2

2 2

2 2

Ag BD D g D D m D D

Ag g D D m Ag D D BD D g D D m BD D D D

A D D m AD D BD D D D m BD D D D

σ νσ τ σ ν
µ µν µ ν τ

νσ τ σ ν νσ τ σ ν
µν τ µν µ ν τ µ ν

σ τ σ σ τ σ ν
µ τ µ µ τ µ ν

δ

δ

− = + + −

= + − + + −

= + − + + −

. (6.10) 

 

Matching up the terms with σ µδ  we first obtain ( )21 A D D mτ
τ− = + , or inverting: 

 

( ) 12A D D mτ
τ

−
= − + . (6.11) 

 
We then use (6.11) in (6.10) and reduce, to next obtain: 
 

( ) ( )( )12 20 D D m D D B D D D D m D D D Dτ σ σ τ σ ν
τ µ µ τ µ ν

−
= + + + − , (6.12) 

 
or, rearranged: 
 

( ) ( )( ) 112 2B D D m D D D D D D m D D D Dτ σ α α σ τ α σ τ
τ τ τ

−−
= − + + − . (6.13) 

 
Finally, we use (6.11) and (6.13) in (6.9) to find that: 
 

( ) ( )( ) 112 2I D D m g D D D D D D m D D D D D Dτ σ α α σ τ α σ τ
µν τ µν τ τ µ ν

−−  = − + + + −
  

. (6.14) 

 
Above, each derivative pair is defined by 2D D iG G G G Gσ ν σ ν σ ν σ ν ν σ≡ ∂ ∂ − ∂ − +  in (5.16) and 

D D iG G Gτ τ τ τ
τ τ τ τ= = ∂ ∂ − ∂ −�  in (5.17) (remember too, that 0Gτ

τ∂ = which produces (6.6) and 

(6.7)).  We may then substitute (6.14) into the original definition G I Jν
µ µν≡  to conclude that: 

 

( ) ( )( )
( ) ( ) ( )( )
( ) ( )

112 2

11 12 2 2

1 12 2

G I J D D m g D D D D D D m D D D D D D J

D D m g J D D m D D D D D D m D D D D D D J

D D m J iG G G m J

ν τ σ α α σ τ α σ τ ν
µ µν τ µν τ τ µ ν

τ ν τ σ α α σ τ α σ τ ν
τ µν τ τ τ µ ν

τ τ τ τ
τ µ τ τ τ µ

−−

−− −

− −

 = = − + + + −
  

= − + − + + −

= − + = − ∂ ∂ − ∂ − +

.(6.15) 

 
In an essential step, we get to the final line by enforcing continuity 0D Jν

ν =  from (5.20), 

and then making use of the d'Alembertian D Dτ
τ=�  of (5.17).  We shall shortly add a term 

0i Gτ
τ− ∂ =  to the expression for which the inverse is being taken, so that we can take advantage 

of (6.6) and explicitly identify the perturbations V. 
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To make all of this appear a bit more familiar to the way such inverses are usually 
written, let us set D → ∂  in (6.14), and let us assume flat spacetime so all derivatives commute, 

, 0µ ν ∂ ∂ =  .  With these assumptions, the inverses can be treated as regular denominators.  With 

all this, we find embedded in (6.15), the very familiar abelian (A subscript) inverse AI Iµν µν→ : 

 

( )2
2 2 2

2 2 2 2

i k i

A

k k k kg
g g gm m m mI

m m k k m k k m i

σ α
µ ν

µ ν µ ν µ νµν α σ τ α σ τ
εµν µν µντ τ

µν τ τ τ τ
τ τ τ τ ε

∂→ +

∂ ∂ ∂ ∂ ∂ ∂+ + − −∂ ∂ ∂ ∂ + − ∂ ∂ ∂ ∂
= − = − ⇒ ⇒

∂ ∂ + ∂ ∂ + − − +
.(6.16) 

  
With the first arrow, we convert to momentum space via i kµ µ∂ → .  With the second arrow, we 

then add the iε+  prescription.  Using the final term above with A AG I Jν
µ µν= , we may write: 

 

02

2 2 2

1k J

A A

k k
g gmG I J J J J

k k m i k k m i k k m i

ν
ν

µ ν
µν

µνν ν ν
µ µν µτ τ τ

τ τ τε ε ε

=−
= = = =

− + − + − +
, (6.17) 

  
where 0k J i Jν ν

ν ν= ∂ = , which is just another version of the continuity equation, is used for the 

reduction after the third equal sign.  If we set 0m =  in (6.16) we then obtain the clearly 
indeterminate result: 
 

0
A

k k
g g

I
k k i k k i

µ ν
µν

µν
µν τ τ

τ τε ε

− − ∞
= = = −∞

+ +
. (6.18) 

 
But in contrast, doing the same in (6.17) simply yields the finite: 
 

1
AG J

k k iµ µτ
τ ε

=
+

. (6.19) 

 
The infinite result in (6.18) is tamed in (6.19) because of the continuity imposed in (6.17).  If we 
then put the boson on mass shell, 0k kτ

τ = , we finally have: 

 
1

AG J
iµ µε

= . (6.20) 

 
This only stays finite because of the iε+  prescription.  Equation (6.18) explicitly illustrates why 
gνσ τ σ ν

τ∂ ∂ − ∂ ∂  has no inverse, or more precisely, why the abelian inverse for a massless gauge 

boson in flat spacetime is indeterminately-infinite.  Equation (6.20) explicitly illustrates why this 
inverse is also indeterminately-infinite for on-shell bosons, unless one uses the iε+  prescription. 
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 Now let us do the same in the non-abelian inverse (6.14) to see whether the same 
infinities are encountered.  Setting 0m =  in (6.14) we simply obtain: 
 

( ) ( )1 1
I D D g D D D D D D D D D D D Dτ σ α α σ τ α τ σ

µν τ µν τ τ µ ν
− − = − + −
  

. (6.21) 

 

The term ,D D D D D D D D D D D Dα σ τ α τ σ α σ τ
τ τ τ − =    must be evaluated using the D Dσ ν  and 

D Dτ
τ  of (5.16) and (5.17), that is, as a second order quadratic rather than a fourth order linear 

term.  That is because these derivatives were obtained prior to inversion by operating on Gσ  and 

because the explicit form of a gauge-covariant derivative depends upon its operand.  Thus, from 
(5.16) and (5.17): 
 

( )( ) ( ) ( )
( )( )
( )( )

2

2 2

D D D D D D D D D D D D D D D D

iG G G G G iG G G

iG G G G G iG G G G G

α σ τ α τ σ α σ τ α τ σ
τ τ τ τ

α σ α σ α σ σ α τ τ τ
τ τ τ

α τ α τ α τ τ α σ σ σ σ
τ τ τ τ

− = −

= ∂ ∂ − ∂ − + ∂ ∂ − ∂ −

− ∂ ∂ − ∂ − + ∂ ∂ − ∂ − +

. (6.22) 

 

If it was possible to commute , 0D Dσ τ  =  , then this term would become zero and (6.21) would 

contain ( ) 1
1, 0D D D Dα σ τ

τ

− −  = = ∞   and become indeterminate when the mass is zero for the 

same reason as (6.18).  But the defining feature of non-abelian gauge theory is that the gauge 

fields do not commute, i.e., that , 0G Gσ τ  =  .  So the term (6.22) is not zero and thus (6.21) 

does not become infinite even when the mass is set to zero.  It is the non-commuting nature of 
non-Abelian gauge theory that bears direct responsibility for maintaining a finite inverse (6.21) 
for the configuration space operator g D D D Dνσ τ σ ν

τ −  in (6.1) even when the gauge boson has 

no mass.  As we see in (6.15), however, none of this matters at all once we apply 0D Jν
ν =  

continuity, because that zeroes out the term in (6.22) entirely.  Indeed, setting 0m =  in the final 
line of the non-abelian relation (6.15) for ( )G J  simply yields  

 

( ) ( )1 1
G D D J iG G G Jτ τ τ τ

µ τ µ τ τ τ µ
− −

= − = − ∂ ∂ − ∂ − . (6.23) 

 
 Now let us examine what happens for on-shell bosons in non-abelian gauge theory.  The 

relativistic energy relationship is 2 0p p mσ
σ − = .  Via ( ) { }1 1

2 2 ,στ σ τ τ σ σ τη γ γ γ γ γ γ= + =  this 

becomes ( ) ( )0 0p m u i mψ− = ⇔ ∂ − =/  when operating on a free, non-interacting Dirac spinor / 

wavefunction.  But for interaction via a gauge field Gτ , 2 0p p mσ
σ − =  becomes 2 0mσ

σπ π − =  

with p Gτ τ τπ ≡ +  defining the kinetic momentum τπ  in relation to the canonical momentum pτ  

and the gauge field Gτ .  This means that ( ) ( ) 0m u p G m uπ − = + / − =/ / , or, with p i→ ∂  and 

u ψ→ , that ( ) 0i G m ψ∂/ + / − = .  This is just Dirac’s equation for an interacting fermion.  The 
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key point of all this – with pτ  and kσ  respectively used to denote fermion and boson momentum 

vectors – is that a free on-shell fermion is described by 2 0p p mσ
σ − =  and a free on-shell gauge 

boson by 2 0k k mσ
σ − = .  But for an interacting on-shell particle with p Gτ τ τπ ≡ +  for fermions 

and k Gτ τ τπ ≡ +  for bosons, the exact form of the on-shell equation depends on whether Gτ  is 
an abelian or a non-abelian gauge field.  Let us see why: 
 
 Suppose that Gτ  is a U(1) photon / electromagnetic potential Aτ .  Here the on-shell 
relationship, referring also to the perturbation (6.7) and noting that k k Vσ σ

σ σπ π = −  because 

0k Gτ
τ = , is: 

 

( )( )2 2 2

2

0 m k A k A m k k k A A k A A m

V k k m

σ σ σ σ σ σ σ
σ σ σ σ σ σ σ

σ
σ

π π= − = + + − = + + + −

= − + −
. (6.24) 

 
This perturbation V k A A k A Aτ τ τ

τ τ τ− = + +  is a 1x1 scalar number which can be added to the 

number 2k k mσ
σ − , so that (6.24) is a sensible equation.  But suppose now that i iG Gτ τλ=  is an 

NxN object formed using the generators iλ  of the simple gauge group SU(N).  To be explicit, 
showing Yang-Mills indexes , 1...A B N=  for the fundamental SU(N) representation, suppose 

now that i i
AB ABG Gτ τλ= .  Then, if carelessly generalized, (6.24) would become: 

 

( )( ) ( )
( ) ( )

2 2 2

2 2

0 AB AB AB

AB AB

m k G k G m k k k G G k G G m

V m k k V k k m

σ σ σ σ σ σ σ
σ σ σ σ σ σ σ

σ σ
σ σ

π π

δ

= − = + + − = + + + −

= − − − = − + −
. (6.25) 

  
But this expression is not quite right.   The 2k k mσ

σ −  is still a scalar number, and because ABV  is 

now taken to be an NxN object for SU(N), the 2k k mσ
σ −  will occupy the diagonal positions in 

the overall expression (6.25), hence the explicit showing of ( )2
AB m k kσ

σδ − .  At the same time, 

( )AB AB AB AB
V k G G k G Gσ σ σ

σ σ σ− = + +  will now be an NxN Hermitian matrix with off-diagonal 

elements.  The perturbation ABV  is a matrix, while 2k k mσ
σ −  is a scalar number that we also 

know is part of an inverse abelian propagator.  So the only way to make sense out of (6.25) is to 
use this as an eigenvalue equation in which 2m k kσ

σ−  represents the scalar eigenvalues of the 

perturbation ABV− .   

 
Now, one way to write (6.25) as an eigenvalue equation, is to have it operate on an N-

component column vector ϕ , and to rewrite the non-abelian on-shell condition as  

( )2 0AB ABV m k kσ
σδ ϕ − − =  .  But because expressions such as (6.25) will show up in the 

context of equations such as (6.15), we want to be able to express the on-shell condition 
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independently of any ϕ .  We can do so by taking the determinant detA A=  of (6.25), in the 

form of the eigenvalue equation: 
  

( ) ( )2 2 20 AB ABm V k k m V k k mσ σ σ
σ σ σπ π δ= − = − − − = − + − . (6.26) 

 
This is what specifies an on-shell gauge boson in non-abelian gauge theory: on shell, the scalar 
number 2k k mσ

σ −  gives the eigenvalue solutions of the perturbation ABV . 

 
 In view of this, if we therefore write (6.15) with iε+  and k Gτ τ τπ ≡ +  as 
 

( ) ( )
( )

( ) ( )
( )

1 12 2

12

0 1 12 2

12

i k

k G

G D D m i J iG G G m i J

k k G k G G m i J

k k k G G k G G m i J m i J

V k k m i J

τ
τ

τ τ τ τ
µ τ µ τ τ τ µ

τ τ τ
τ τ τ µ

τ τ τ τ τ
τ τ τ τ µ τ µ

τ
τ µ

ε ε

ε

ε π π ε

ε

− −

∂→ −

= − −

−

= − + − = − ∂ ∂ − ∂ − + −

⇒ + + − +

⇒ + + + − + = − +

= − + − +

, (6.27) 

 
we see by writing (6.17) in the form of an inverse: 
 

( ) 12
AG k k m i Jτ

µ τ µε
−

= − + , (6.28) 

 

that the sole difference between the abelian and non-abelian solutions for ( )G Jµ µ  is that the 

canonical scalar k kτ
τ  of abelian gauge theory is replaced by the kinetic scalar τ

τπ π  in non-

abelian gauge theory, or, alternatively and equivalently, that a perturbation ABV V− = −  is added 

to the abelian (6.28) to arrive at the non-abelian (6.27), which then turns the usual inverse 
propagator 2k k m iτ

τ ε− +  into 2
ABV k k m iτ

τ ε− + − +  for which on-shell particles are described 

by ( )2 0AB ABV k k mσ
σδ− − =  in (6.26).  

 
If the “careless” 2 0mσ

σπ π − =  in (6.25) were to describe the on-shell condition for an 

interacting particle in non-abelian gauge theory – which it does not – then for an on-shell 

particle, (6.27) in the form ( ) 12G m i Jτ
µ τ µπ π ε

−
= − +  would reduce to ( ) 1

G i Jµ µε −= +  which is 

exactly the same as the abelian (6.20).  So in either abelian or non-abelian gauge theory, we 
would require the iε+  prescription to avoid the poles for an on-shell particle.  However, 

2 0mσ
σπ π − =  is not the on-shell condition for non-abelian gauge theory.  Rather, on-shell 

bosons are specified by the eigenvalue equation 2 0mσ
σπ π − =  of (6.26).  So even with 

2 0mσ
σπ π − = , the expression ( ) 12G m i Jτ

µ τ µπ π ε
−

= − +  will generally remain finite in non-
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abelian gauge theory even if we use ( ) 12G m Jτ
µ τ µπ π

−
= −  absent iε+ .  Because on shell 

particles are described by 2 0mσ
σπ π − =  and not 2 0mσ

σπ π − =  in non-abelian gauge theory, 

the non-abelian theory can remain finite on shell even absent iε+ . 
 
 Before studying massless gauge bosons using the more formal approach of Faddeev-

Popov, it is important to see that the continuity relation 0Jν
ν∂ =  which tames ( )G Jµ µ  in the 

classical massless boson inverse (6.19) notwithstanding the infinite inverse (6.18), plays a 
similar role in taming the quantum field amplitude obtained from the QED path integral.  

Specifically, the action corresponding to the field equation ( )( )2J g m Gν νσ τ σ ν
τ σ− = ∂ ∂ + − ∂ ∂  

which is the abelian version of (6.3), for which the inverse was found in (6.16), is: 
 

( ) ( )( )4 4 21
2S G d x d x G g m G G Jνσ τ ν σ σ

ν τ σ σ
 = = ∂ ∂ + − ∂ ∂ −
 ∫ ∫L . (6.29) 

 

 When the Gaussian integral ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫  is employed as the 

template to use (6.29) in ( )( ) ( )( )exp expZ DG iS G C iW J= ≡∫ , the inverse in 2 / 2J A is based 

on the abelian inverse AI µν  in (6.16), and we obtain (see, e.g., [11], pages 30-31): 

 

( )
( )

( ) ( )
( )

( ) ( )
4 4

4 4

1 1
* *

2 22 2
A

k k
gd k d kmW J J k J k J k I J k

k k m i

µ ν
µν

µ ν µ ν
µντ

τ επ π

− +
= − =

− +∫ ∫  . (6.30) 

 
This too looks like it will become singular for 0m = , just like (6.18).  But there too, as in (6.17), 
the continuity relationship 0k J i Jν ν

ν ν= ∂ =  rescues the path integral from an indeterminate fate, 

and facilitates the reduction: 
 

( )
( )

( ) ( )
( )

( ) ( )
4 40

4 4

1 1 1 1
* *

2 22 2

md k d k
W J J k J k J k J k

k k m i k k i
µ µ

µ µτ τ
τ τε επ π

=
= + ⇒+

− + +∫ ∫ . (6.31) 

 
This also tells us that the electromagnetic force between like-charges is repulsive.   
 

But the key feature of interest in both (6.17) which is for a classical field and (6.31) 
which is for a quantum field, is that even though the mathematical abelian inverse (6.16) 
becomes infinite if 0m = , when this inverse is placed into the context of a physical equation  
such as A AG I Jν

µ µν=  in (6.17) or ... * AJ I Jµ ν
µν  in (6.30), the seemingly-infinite result becomes 

finite and well-behaved.  This is because the physical context – in this case the continuity 
relation 0k J i Jν ν

ν ν= ∂ =  – causes the otherwise singular term / / 0k k m k kµ ν µ ν→ = ∞  to be 

zeroed out before it ever gets to wreak any havoc.  This contextual finiteness is very important, 
because even though the mathematical object – the inverse – becomes singular, the physical 
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result remains finite.   In the discussion to now be developed, where we use the more formal 
approach of Faddeev-Popov to develop the massive gauge bosons, this will lead to what we shall 
call “contextual gauge fixing.”  In Faddeev-Popov, where a gauge number ξ  enables an 
unlimited array of non-unique mathematical inverses, the continuity relation forces the physical 
results into a very definite and unique choice of gauge.  When we use these same inverses in 

( )( )F G J∫∫�  to show why F i dGG= −∫∫ ∫∫∫�  looks very much like a baryon, this type of 

“contextual gauge fixing” coupled with Fermi-Dirac-Pauli Exclusion will not only result in 
unique solutions for ( )G J , but will give mass to the fermions of J µ µψγ ψ=  and turn them into 

quarks, while rendering the massive gauge bosons massless just like gluons. 
 
7. Abelian and non-Abelian Massless Gauge Boson Inverses for the 
Electric Charge Density, Using the Faddeev-Popov Method 
 
 In the last section we took the “pragmatic” Coleman-Zee approach of obtaining the 
classical field equation inverse for a massive gauge boson and then setting the mass to zero to 
see what happens under a variety of circumstances.  Now, we take the more formal, direct 
approach of using the Faddeev-Popov method to calculate the inverse for a massless gauge boson 
ab initio, without the intermediate stop for a massive boson. 
 

If we take the “non-pragmatic” route and start out with a massless gauge boson for which 
we apply Faddeev-Popov, and to open simplified discussion revert (5.15) to its abelian limit 
D → ∂ , then along the way the effective field equation becomes (see [11], after (III.4(8))): 
 

( )( )1 1/J g Gν νσ τ σ ν
τ σξ− = ∂ ∂ − − ∂ ∂ , (7.1) 

 
where ξ  is a gauge number.  While for the moment we treat the introduction of ξ  simply as a 

mathematical manipulation of the classical field equation ( )J g Gν νσ τ σ ν
τ σ− = ∂ ∂ − ∂ ∂  of (5.15) to 

which (7.1) reduces for ξ = ∞ , we keep in mind that ξ  actually arises when we start with a path 

integral ( )( )expZ DG iS G= ∫  and turn this into ( ) ( ) ( )( )24exp / 2Z DG i S G i d x Gξ = − ∂
 ∫ ∫  

through a change of the integration variable which maintains the invariance of the Z under the 
abelian gauge transformation G G G dθ′→ = + .  So by introducing ξ  in this way, and knowing 
that this carries over to non-abelian gauge theory but for the further introduction of ghost fields 

†,c c with a path integral ( ) ( ) ( ) ( )( )2† 4 †exp 1/ 2 ,Z DGDcDc i S G d x G S c cξ = − ∂ +
 ∫ ∫  

containing a ghost action ( )†,S c c , we have a “hook” by which this can eventually be used to set 

up a quantum path integration for non-abelian theory.  But for now, as discussed at length in 
section 4, we continue to develop the classical theory. 
 

Once again using an inner-product definition A AG I Jν
µ µν≡  for the abelian inverse, in flat 

spacetime we may multiply through by AI µν−  and write (7.1) as (contrast (6.1)): 

 



Jay R. Yablon 

38 
 

( )( )1 1/A AI J I g G G Gν νσ τ σ ν σ
µν µν τ σ µ µ σξ δ= − ∂ ∂ − − ∂ ∂ = =  (7.2) 

 
from which we extract (contrast (6.2)): 
 

( )( )1 1/AI gνσ τ σ ν σ
µν τ µξ δ∂ ∂ − − ∂ ∂ = − . (7.3) 

 
Then using AI Ag Bµν µν µ ν≡ + ∂ ∂  based on (6.9), this becomes (contrast (6.10)): 

 

( ) ( )( )
( ) ( )

( ) ( )

1 1/

1 1/ 1 1/

1 1/ 1 1/

Ag B g

Ag g Ag B g B

A A B B

σ νσ τ σ ν
µ µν µ ν τ

νσ τ σ ν νσ τ σ ν
µν τ µν µ ν τ µ ν

σ τ σ σ τ σ ν
µ τ µ µ τ µ ν

δ ξ

ξ ξ

δ ξ ξ

− = + ∂ ∂ ∂ ∂ − − ∂ ∂

= ∂ ∂ − − ∂ ∂ + ∂ ∂ ∂ ∂ − ∂ ∂ − ∂ ∂

= ∂ ∂ − − ∂ ∂ + ∂ ∂ ∂ ∂ − − ∂ ∂ ∂ ∂

. (7.4) 

 
From this we match up the σ µδ  terms to find (contrast (6.11)): 

 
1/A τ

τ= − ∂ ∂ . (7.5) 

 
so that (cf. (6.12)): 
 

( ) ( )( )1 1/
0 1 1/B

σ
µ σ τ σ τ

µ τ µ ττ
τ

ξ
ξ

− ∂ ∂
= + ∂ ∂ ∂ ∂ − − ∂ ∂ ∂ ∂

∂ ∂
, (7.6) 

 
or, commuting and cancelling derivatives freely (cf. (6.13)): 
 

( ) ( ) ( )1 1/ 1 11 1/ 1
1 1/ 1/

B

σ
µ

σ τ σ τ α α
µ τ µ τ α α

τ τ τ
τ τ τ

ξξ ξξ ξ
∂ ∂  −− − ∂ ∂ ∂ ∂ − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = − = − =

∂ ∂ ∂ ∂ ∂ ∂
. (7.7) 

 
Thus, using (7.5) and (7.7) in AI Ag Bµν µν µ ν≡ + ∂ ∂  we obtain (cf. (6.14) and (6.16)): 

 

( ) ( ) ( )1 1 1
i k i

A

k k k k
g g g

k k k k
I

k k k k i

µ ν µ ν µ ν
µν µν µνα α αε

α α α
µν τ τ τ

τ τ τ

ξ ξ ξ

ε
∂→ +

∂ ∂
− + − − + − − −

∂ ∂= ⇒ − ⇒
∂ ∂ +

. (7.8) 

  
We then use this in A AG I Jν

µ µν≡  to write: 

 

( )1

A A

k k
g

k k
G I J J

k k i

µ ν
µν α

ν να
µ µν τ

τ

ξ

ε

− −
≡ =

+
. (7.9) 

 



Jay R. Yablon 

39 
 

 Now let us follow two different routes to reduce (7.9).  First, let us apply the continuity 
relation 0k J i Jν ν

ν ν= ∂ =  as we did in (6.17).  This causes (7.9) to become: 

 

( ) ( )0
1

1 0 1k J

A

k k
g

g gk k
G J J J J

k k i k k i k k i k k i

ν
ν

µ ν
µν α

µν µνν ν να
µ µτ τ τ τ

τ τ τ τ

ξ ξ
ε ε ε ε

=
− −

− −
= ⇒ = =

+ + + +
. (7.10) 

 
Alternatively, let us embark upon the different path of selecting the Feynman gauge 1ξ =  in 
(7.9).  Now we have: 
 

( )
1

1 0
1

A

k k k k
g g

gk k k k
G J J J J

k k i k k i k k i k k i

µ ν µ ν
µν µνα αξ

µνν ν να α
µ µτ τ τ τ

τ τ τ τ

ξ

ε ε ε ε

=
− − −

= ⇒ = =
+ + + +

, (7.11) 

  
which is the exact same result as in (7.10).  And both of these are exactly the same as the result 
in (6.19).  These are three routes to the exact same result.  In (7.10), the expression ( )1 0ξ−  

which emerges from requiring continuity via 0k J i Jν ν
ν ν= ∂ =  has forced this term to be zeroed 

out.  Just as in (6.17) (and analogously in the non-abelian (6.15)), there is no choice other than to 
zero out the term containing the gauge number ξ .  But if we were unaware of continuity, we 

could get to the same effective inverse ( )/AI g k k iτ
µν µν τ ε= +  in general, by the different route 

of selecting the Feynman gauge 1ξ = .  Importantly, this means that after we find the inverse and 

then use it in A AG I Jν
µ µν≡ , we are forced into an equation for AG µ  which could be 

independently arrived at by selecting the Feynman gauge 1ξ =  for the standalone inverse.   
 

The point here is that for a massless gauge boson, there is a complete freedom to select 
any gauge number ξ−∞ ≤ ≤ ∞  for the inverse AI µν , which means that this inverse is infinitely 

non-unique when regarded as a mathematical entity.  This is because of the redundancy whereby 
Gµ  contains four degrees of freedom despite the associated massless physical field having only 

two degrees of freedom.  And here, unlike for a massless boson, we do not even have 0D Gσ
σ =  

mandated as a covariant condition which at least takes out one degree of freedom.  So the 
mathematical inverse is highly nonunique  Nevertheless, once we use this inverse in a physical 
equation such as A AG I Jν

µ µν≡  in (7.9) to (7.11), the continuity equation forces us to fix the 

gauge of the inverse into 1ξ = , or more precisely, forces a result that can equivalently be 
achieved by selecting 1ξ =  for the standalone inverse before it is ever inserted into 

A AG I Jν
µ µν≡ .  This is a specific example of the “contextual gauge fixing” mentioned at the end 

of section 6, wherein a gauge which is completely non-unique and thus an associated inverse 
which is also non-unique as a mathematical matter, is forced to be unique when placed into a 
physical context, in this case, the context of a conserved current density enforced by continuity.  
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In this way, we may think of the Feynman gauge as the “continuity gauge,” because it uniquely 
fixes the inverse in the exact same manner as does the continuity equation 0k J i Jν ν

ν ν= ∂ = . 

 
 With (7.1) to (7.11) as a backdrop, we return to the field equation (5.15) with D Dσ ν  and 
D Dτ

τ  defined as in (5.16) and (5.17) when the operand is Gσ , and introduce the gauge number 

ξ  exactly as we did in (7.1).  Thus, we write: 
 

( )( )1 1/J g D D D D Gν νσ τ σ ν
τ σξ− = − − . (7.12) 

 
As with (7.1), we treat the introduction of ξ  simply as a mathematical manipulation of (5.15) to 

which (7.12) will revert for ξ = ∞ , which allows us to solve this classical equation (7.12) for Gσ  

as a function of Jν .  Since ( ) ( ) ( ) ( )( )2† 4 †exp 1/ 2 ,Z DGDcDc i S G d x G S c cξ = − ∂ +
 ∫ ∫  is the 

path integral for non-abelian gauge theory, it should be clear that the inverse obtained from 
(7.12) will be a useful item to have “on the shelf” when it comes time to try to calculate the non-
ghost portion of this path integral.  But for now, we are still working classically, so our imminent 
goal is to solve the classical equation (7.12) for Gσ  as a function of Jν . 

 
As we have done previously, we use G I Jν

µ µν≡  to define I µν , and then multiply each 

side of (7.12) by I µν−  to write: 

 

( )( )1 1/I J I g D D D D G G Gν νσ τ σ ν σ
µν µν τ σ µ µ σξ δ= − − − = = . (7.13) 

 
From this we extract:  
 

( )( )1 1/I g D D D Dνσ τ σ ν σ
µν τ µξ δ− − = − . (7.14) 

 
Then we combine the above with (6.9) to write (cf. (6.10) and (7.4)): 
 

( ) ( )( )
( ) ( )

( ) ( )

1 1/

1 1/ 1 1/

1 1/ 1 1/

Ag BD D g D D D D

Ag g D D Ag D D BD D g D D BD D D D

A D D A D D BD D D D BD D D D

σ νσ τ σ ν
µ µν µ ν τ

νσ τ σ ν νσ τ σ ν
µν τ µν µ ν τ µ ν

σ τ σ σ τ σ ν
µ τ µ µ τ µ ν

δ ξ

ξ ξ

δ ξ ξ

− = + − −

= − − + − −

= − − + − −

. (7.15) 

 
Here, the reductions used twice earlier (cf. (6.11) to (6.13) and (7.5) to (7.7)) yield: 
 

( ) 1
A D Dτ

τ
−

= − , (7.16) 

 

( )( ) ( )1
0 1 1/ 1 1/D D D D BD D D D B D D D Dτ σ σ τ σ τ

τ µ µ τ µ τξ ξ
−

= − + − − , (7.17) 
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( )( ) ( )( )1 1
1 1/ 1 1/B D D D D D D D D D D D Dτ σ α α σ β α β σ

τ β βξ ξ
− −

= − − − − , (7.18) 

 
thus leading via I Ag BD Dµν µν µ ν≡ +  from (6.9), to: 

 

( ) ( ) ( )( )1 1
1 1/ 1 1/I D D g D D D D D D D D D D D Dτ α β β α σ β σ α

µν τ µν σ σ µ νξ ξ
− − = − + − − −
  

. (7.19) 

 
 Reducing (7.19) is a bit tricky because of the inverse.  But if we momentarily put the 
latter inverse into a “denominator” and use a ∨  marker to hold the commutation position of the 

inverse, all just to aid in visualization, we may reduce this to: 
 

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )( )

1

1

11

1 1/

1/

1

1

D D D D
I D D g

D D D D D D D D D D D D

D D D D
D D g

D D D D D D D D D D D D

D D g D D D D D D D D D D D D D D D D

α β
µ ντ

µν τ µν β α σ β σ α β σ α
σ σ σ

α β
µ ντ

τ µν β α σ β σ α β σ α
σ σ σ

τ α β β α σ β σ α β σ α
τ µν σ σ σ µ ν

ξ
ξ

ξ
ξ

ξ ξ

− ∨

− ∨

−−

 −
= − + − +  

 −
 = − +

− +  

 = − + − − +
  

,(7.20) 

 
where in the middle line we multiply each of the “numerator” and “denominator” by ξ , then in 
the final line revert to the inverse formulation. 
 
 In this form, we see that the redundancy of Gµ  with four degrees of freedom to describe 

a massless field that has two degrees of freedom permits an infinite non-uniqueness ξ−∞ ≤ ≤ ∞   
in the choice of the gauge number, just as it does in abelian gauge theory, see after (7.11).  But 
now, as before, let us insert this inverse (7.20) into G I Jν

µ µν=  to obtain: 

 

( ) ( ) ( )( ) 11
1G D D g D D D D D D D D D D D D D D D D Jτ α β β α σ β σ α β σ α ν

µ τ µν σ σ σ µ νξ ξ
−−  = − + − − +

  
.(7.21) 

 
As in (7.10) and (7.11) we now take two routes to reduce (7.21).  For the first route, we 

apply the non-abelian continuity relationship 0D Jν
ν =  deduced in (5.20) to obtain: 

 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( )

11

0 11

1

1

1 0
D J

G D D g D D D D D D D D D D D D D D D D J

D D g J D D D D D D D D D D D D D D D

D D J

ν
ν

τ α β β α σ β σ α β σ α ν
µ τ µν σ σ σ µ ν

τ ν α β β α σ β σ α β σ α
τ µν σ σ σ µ

τ
τ µ

ξ ξ

ξ ξ

−−

= −−

−

 = − + − − +
  

 ⇒ − + − − +  

= −

.(7.22) 

 
For the second route, we simply select the Feynman gauge 1ξ =  in (7.21).  Now we obtain: 
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( ) ( ) ( )( )
( ) ( ) ( )( )
( )

11

1 11

1

1

0

G D D g D D D D D D D D D D D D D D D D J

D D g D D D D D D D D D D D D D D D D J

D D J

τ α β β α σ β σ α β σ α ν
µ τ µν σ σ σ µ ν

ξ
τ α β β α σ β σ α β σ α ν

τ µν σ σ σ µ ν

τ
τ µ

ξ ξ

ξ

−−

= −−

−

 = − + − − +
  

 ⇒− + − +
  

= −

.(7.23) 

 
These two results (7.22) and (7.23) are exactly the same.  So just as in the abelian (7.10) and 
(7.11), the Feynman gauge acts as a continuity gauge, because when used in the standalone 
inverse of (7.20), it leads us to the exact same result as the non-abelian continuity relationship 

0D Jν
ν = .  Additionally, if we now return to (6.15) in which we have also employed continuity, 

and follow the Coleman-Zee approach of setting the gauge field mass 0m = , we also find just as 
in (7.22) and (7.23) that: 
 

( ) ( )1 1
G D D J iG G G Jτ τ τ τ

µ τ µ τ τ τ µ
− −

= − = − ∂ ∂ − ∂ −  (7.24) 

  
which we have already seen in (6.23), with D D iG G Gτ τ τ τ

τ τ τ τ= ∂ ∂ − ∂ −  as found in (5.17), see 

also (6.6) and (6.7) which make use of 0Gν
ν∂ =  for a massive gauge boson and so are able to 

also provide a connection to the perturbation V. 
 
 So we see that in contextual setting of the continuity relationship 0D Jν

ν = , the unique 

solution to the massless non-abelian field equation ( )J g D D D D Gν νσ τ σ ν
τ σ− = −  of (5.15) is 

always going to be ( ) 1
G D D Jτ

µ τ µ
−

= − .  Whether we arrive at (6.23) / (7.24) by starting with a 

massive gauge field, obtaining the inverse, applying continuity, and then setting 0m =  via 
Coleman-Zee; whether we start with a massless gauge field, use Faddeev-Popov to find the 
inverse, and then apply continuity; or whether we start with a massless gauge field, use Faddeev-
Popov to find the inverse, and then choose the Feynman/continuity gauge 1ξ = ; we will always 
end up with the same unique solution (7.22) to (7.24). 
 
 The point is that even for non-abelian gauge theory, while the mathematical inverse for a 
massless gauge field gives us the freedom to select any gauge number ξ−∞ ≤ ≤ ∞ , the physical 

continuity condition 0D Jν
ν =  forces us to put the inverse into the Feynman gauge.  This 

contextual gauge fixing removes the arbitrariness of the mathematical inverse, and forces us into 
the specific gauge 1ξ =  the moment we use the inverse in G I Jν

µ µν=  and then apply 0D Jν
ν = . 

 
 Before concluding this section, let us compare the non-abelian results (7.22) to (7.24) all 
of which are equivalent to one another, with the abelian results (7.10) and (7.11) both of which 
are also equivalent to one another.  The chief difference at this point is that we have not yet 
introduced the iε+  prescription into the non-abelian inverses.  Comparing (7.22) to (7.24) with 
(7.10) and (7.11), we see that the way to introduce iε+  is to amend (7.24) as such: 
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( ) ( ) ( )1 1 1i k

G D D i J iG G G i J k k i G k G G Jτ τ τ τ τ τ τ
µ τ µ τ τ τ µ τ τ τ µε ε ε

∂→− − −
= − − = − ∂ ∂ − ∂ − − ⇒ + + + .(7.25) 

 
Above, we have also gone over into momentum space via i k∂ → .  This is just the second line of 
(6.27) with 0m = .  In the 0k Gτ

τ =  gauge, which for a massless boson is a choice and not a 

requirement, this becomes: 
 

( ) ( ) ( )1 1 1
G k k k G G k G G i J i J V k k i Jτ τ τ τ τ τ

µ τ τ τ τ µ τ µ τ µε π π ε ε
− − −

= + + + + = + = − + + . (7.26) 

 
In contrast, if we write (7.10) / (7.11) in the form of an inverse relation, these become: 
 

( ) 1

AG k k i Jτ
µ τ µε

−
= + , (7.27) 

 

which is just (6.28) with 0m = .  Of course, the abelian ( ) 1
k k iτ

τ ε
−

+  can be written as an 

ordinary denominator, while the non-abelian ( ) 1
k k i G k G Gτ τ τ

τ τ τε
−

+ + +  cannot because the 

G G k G Gτ τ τ
τ τ τπ = +  term in general will have a matrix form which must be inverted rather than 

placed in a denominator. 
 
 Insofar as on-shell bosons are concerned, as noted in (6.28) and the discussion following, 
an on-shell boson in non-abelian gauge theory will be described by the eigenvalue equation 
(6.26), which for 0m =  and using (6.7) and k k Vσ σ

σ σπ π = −  in the 0k Gτ
τ =  gauge becomes: 

 

( )0 AB ABV k k V k k k k k G G k G Gσ σ σ σ τ τ τ
σ σ σ σ τ τ τπ π δ= = − − = − + = + + + . (7.28) 

 
Note again that while 0i G k Gτ τ

τ τ∂ = =  is a required relation for a massive gauge boson as found 

in (6.5) and the ensuing discussion, it is an optional gauge condition for a massless gauge boson.  

So the relation ( ) ( )1 1
G k k G k G G J k k V Jτ τ τ τ

µ τ τ τ µ τ µ
− −

= + + = −  without mass, whenever it is 

used, assumes the gauge condition 0k Gτ
τ = .  With this gauge condition this can also be written 

in terms of the kinetic momentum as ( ) ( )1 1
G J k k V Jτ τ

µ τ µ τ µπ π
− −

= = −  and it will not become 

singular even on-shell because 0σ
σπ π =  above, and not 0σ

σπ π = , is the on-shell condition for 

a massless gauge boson in non-abelian theory in the chosen, not required, 0k Gτ
τ =  gauge.  This 

does introduce a degree of non-uniqueness into the inverse relationship for a massless gauge 
boson even with continuity.  This is because the freedom to vary k Gτ

τ  to non-zero states, unlike 

the residual gauge condition 0D Dν
ν θ =  a.k.a. , 0i Gν ν

ν νθ θ ∂ ∂ − ∂ =   discussed after (6.5), does 

affect the form of the equations whenever one wishes to write them with the perturbation V or 
the kinetic scalar σ

σπ π .  As such, we will wish to find ways to avoid situations in which 
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0i G k Gτ τ
τ τ∂ = =  is an optional gauge condition, in favor of always having it be a required 

relationship, which will lead us down the Coleman-Zee path of choosing massive solutions 
wherever they can physically justified. 
 
8. The Recursive Nature of Non-Abelian Gauge Theory, and what it may 
Teach about Quantizing Yang-Mills Gauge Theory   
 

Now we look for the first time at a very important recursive feature of non-abelian gauge 

theory.  If we write the massive boson solution as ( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + +  from 

the second line of (6.27) and recognize that the perturbation V k G G k G Gτ τ τ
τ τ τ= − − −  in (6.7) 

may also be written as V G k G Gτ τ
τ τ= − −  because 0k Gτ

τ =  is a required condition for a massive 

gauge boson, see (6.5) et seq., then a preferred way to write and use (6.27) will be the following: 
 

( ) ( )1 12 2G k k m i G k G G J k k m i V Jτ τ τ τ
µ τ τ τ µ τ µε ε

− −
= − + + + = − + − . (8.1) 

  
Again, it bears emphasis, this uses the fact that 0k Gτ

τ =  is required, but only for a massive, not 

massless, gauge boson.  Now, although (8.1) appears on the surface to solve for ( )G Jµ µ , this is 

not a closed solution.  Rather, it is really a recursive solution for ( ),G G Jτ τ τ  which can be 

recursed into itself ad infinitum.  Let us see exactly how this is done. 
 
 To do recursion, one generally needs two inputs: first, a recursive kernel; second, a 
terminal condition.  A quintessential example is the recursive definition of the factorial function:  
The recursive kernel says that ( )! 1 !n n n= × − .  The terminal condition says that 0! 1= .  We shall 

pursue a similar approach to understand Gµ  in (8.1). 

 
 To keep track of things, let us develop some notations.  We shall generally use the 

double-nested symbol ( )( )  to denote a recursion.  If we recurse Gµ  into itself n times, we shall 

denote this as ( )( )
n

Gµ .  If after n recursions we leave the perturbation V in the equation, then 

we shall write this as ( )( )
n

G Vµ .  If, however, after n recursive iterations we set 0V = , then we 

shall write this as ( )( ) ( )( )0 0
n n

G G Vµ µ≡ = .  In this notation, this means that we write (8.1) as

( )( ) ( ) 12

0
G V k k m i V Jτ

µ τ µε
−

= − + − .  So, at the zeroth order of recursion, we simply set 

0V G k G Gτ τ
τ τ− = + =  in (8.1) which removes all of the terms containing Gτ  and reduces (8.1) to 

 

( )( ) ( ) 12

0
0G k k m i Jτ

µ τ µε
−

= − + . (8.2) 

 
This is simply the abelian solution (6.28).   
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 But now, let us perform the first order of recursion.  Here, we substitute (8.1) back into 
itself one time and then set 0V G k G Gτ τ

τ τ= − − = .  This exercise yields: 

 

( )( ) ( )
( )

( ) ( )

( )( ) ( )
( ) ( )

12

1

112 2

1 12 2

2

0 12

1

1 12 2

0
V

G V k k m i G k G G J

k k m i k k m i G k G G J k
J

k k m i G k G G J k k m i G k G G J

k k m i

G k k m i J k

k k m i J k k m i J

τ τ τ
µ τ τ τ µ

τ τ τ τ τ
τ τ τ τ τ

µ
τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

τ
τ

τ τ
µ τ τ

τ τ τ
τ τ τ

ε

ε ε

ε ε

ε

ε

ε ε

−

−−

− −

= −

− −

= − + + +

 − + + − + + +
 =
  + − + + + − + + + 

 − +

⇒ = + − +

+ − + − +

1

Jµ

−





 
 



, (8.3) 

   

In leading order, this solution of course still contains (8.2) which is ( ) 12k k m i Jτ
τ µε

−
− +  .  But 

inside the overall inverse we now also have a new J kτ
τ  ( 1J ) and a new J Jτ

τ  ( 2J ) term.  This is 

now an expression strictly for ( )G Jµ µ  not ( ),G G Jτ τ τ , because we have cut off the recursion at 

the first iteration by setting the perturbation 0V G k G Gτ τ
τ τ= − − =  in the final line. 

 
 Now, let us go to the second order of recursion.  Here, we start with the middle line of 
(8.3), do a second substitution of (8.1) to arrive at the second order recursion, and then cut things 
off by setting the perturbation 0V = .  Now we obtain: 
 

( )( ) ( )
( ) ( )

( )
( ) ( )

112 2

1 12 2 2

2

12 2

12 2

k k m i k k m i G k G G J k
G V J

k k m i G k G G J k k m i G k G G J

k k m i

k k m i k k m i G k G G J k

k k m i G k G G J k k m i G k G G

τ τ τ τ τ
τ τ τ τ τ

µ µ
τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

τ
τ

τ τ τ τ τ
τ τ τ τ τ

τ τ τ τ τ τ
τ τ τ τ τ τ τ

ε ε

ε ε

ε

ε ε

ε ε

−−

− −

−

− −

 − + + − + + +
 =
  + − + + + − + + + 

− +

− + + − + + +
+

+ − + + + − + + +

= ( )
( ) ( )

( )
( )

1

1

112 2

1 12 2

12 2

12 2

J k
J

k k m i k k m i G k G G J k
J

k k m i G k G G J k k m i G k G G J

k k m i k k m i G k G G J k

k k m i G k G G J k k m i G k G

τ
τ

τ

τ τ τ τ τ
τ τ τ τ τ

τ
τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

τ τ τ τ τ
τ τ τ τ τ

τ τ τ τ τ
τ τ τ τ τ τ

ε ε

ε ε

ε ε

ε ε

−

−−

− −

−

−

 
 
  
 

 − + + − + + +
 +
  + − + + + − + + + 

− + + − + + +
×

+ − + + + − + + +( )

1

1

1

J

J
G J

µ

τ

τ τ
τ

−

−

−

 
 
 
 
 
 
 
 
 
 
 
 
  
  
    
  

,(8.4) 
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which, upon setting 0V G k G Gτ τ
τ τ= − − =  reduces to: 

 

( )( )
( )

( )

( )

2

1

2
22 2

1

2 2
22 2

1

2
22 2

0

k k m i

J k J J
k k m i J k

k k m i k k m i

G J k J J
k k m i J

k k m i k k m i

J k J J
k k m i J

k k m i k k m i

τ
τ

τ τ
τ ττ τ

τ ττ τ
τ τ

τ τ
µ τ τ τ

τ ττ τ
τ τ

τ τ
τ ττ τ

τ τ τ
τ τ

ε

ε
ε ε

ε
ε ε

ε
ε ε

−

−

−

 − +
 
  
  + − + + +
  − + − + 

 =
 + − + + +
 − + − + 

  
  × − + + +  − + − +  

1

Jµ

−













, (8.5) 

 
It will be appreciated this second recursive iteration contain terms in J, 2J , 3J  and 4J .  A third 
iteration would be expected to produce terms up to 6J , and in general, n iterations should 

produce terms over the entire gamut of 1 2... nJ J .  As with (8.3), ( )( )
2

0Gµ  is an expression 

strictly for ( )G Jµ µ  (really, ( ), , ,G J k mµ µ µ ε ), not ( ),G G Jτ τ τ  because we have cut off the 

recursion at the second iteration by setting the perturbation 0V = .  But, having done two 
iterations rather than one, we have some new terms that we did not have at the first iteration.    
So in general the technique is to iterate as many times as one wishes, and then set 0V =  to end 
the recursion.  Each iteration will add new terms of yet higher order in J, and the result will be an 

expression for ( )G Jµ µ  with terms of order 1 2... nJ J .  And, of course, mathematically, 

theoretically, to obtain an exact, closed expression for ( )G Jµ µ  not ( ),G G Jτ τ τ , one would 

iterate an infinite number of times and then set 0V = .  But, of course, the real method we now 
need to pursue is not to iterate to infinity, but to figure out the pattern. 
 
 To discern the overall pattern, we do one more recursion to the n=3 level by substituting 

(8.1) into the each and every Gµ  in (8.4).  The expression for ( )( )
3

G Vµ  takes up over a page, 

and is not shown here.  But upon setting 0V =  to arrive at ( )( )
3

0Gµ , this reduces to the still 

very large expression: 
 



Jay R. Yablon 

47 
 

( )( )

( )
( ) ( )
( )

( ) ( )
( )

2

112 2

2

1 12 2

112 2

1 12 2

12 2

3
0

k k m i

k k m i k k m i J k
k k m i J k

k k m i J k k m i J

k k m i k k m i J k
J

k k m i J k k m i J

k k m i k k m i J k

k

G

τ
τ

τ τ τ
τ τ ττ τ

τ τ
τ τ τ

τ τ τ

τ τ τ
τ τ τ

τ
τ τ τ

τ τ τ

τ τ τ
τ τ τ

µ

ε

ε ε
ε

ε ε

ε ε

ε ε

ε ε

−−

− −

−−

− −

−

− +

 − + + − +
 − + +
  + − + − + 

 − + + − +
 + +
 
 + − + − + 

− + + − +
×

+

=

( ) ( )

( )
( ) ( )
( )

1

1

1 12 2

112 2

2

1 12 2

12 2

2

J k

J
k m i J k k m i J

k k m i k k m i J k
k k m i J k

k k m i J k k m i J

k k m i k k m i J k

k k m i

τ
τ

τ

τ τ τ
τ τ τ

τ τ τ
τ τ ττ τ

τ τ
τ τ τ

τ τ τ

τ τ τ
τ τ τ

τ
τ

ε ε

ε ε
ε

ε ε

ε ε

−

−

− −

−−

− −

−

 
 
 
 
 
 
 
 
 
 
  
  
  
 − + − +   

 − + + − +
 − + +
  + − + + − + 

− + + − +
+ +

+ − +( ) ( )
( )

( ) ( )

( )
( )

1

1

1 12

112 2

1 12 2

12 2

2

12 2

J J
J k k m i J

k k m i k k m i J k
J

k k m i J k k m i J

k k m i k k m i J k
k k m i

k k m i J k k m

τ τ
τ τ

τ τ

τ τ τ
τ τ τ τ

τ τ τ
τ τ τ

τ τ τ
τ τ ττ

τ
τ τ

τ τ τ

ε ε

ε ε

ε ε

ε ε
ε

ε

−

−

− −

−−

− −

−

−

 
 
 
 
 
  
  
  
 − +  

 
  − + + − +  ×  
 + − + − +   

− + + − +
− + +

+ − + − +

×

( )
( )

( ) ( )
( )

( ) ( )

11

1

112 2

1 12 2

112 2

1 12 2

J k
i J

k k m i k k m i J k
J J

k k m i J k k m i J

k k m i k k m i J k
J

k k m i J k k m i J

τ
τ

τ

τ τ τ
τ τ τ τ

τ
τ τ τ

τ τ τ

τ τ τ
τ τ τ τ

τ τ τ
τ τ τ

ε

ε ε

ε ε

ε ε

ε ε

−−

−

−−

− −

−−

− −



  
  
      
  − + + − +  +  
 + − + − +  

 
  − + + − +  ×  
 + − + − +   

1

Jµ

−


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


. (8.6) 

  
Even this is rather formidable, but now we have enough information to establish a definite 
pattern that can be generalized to any order of recursion.   
 

Recognizing that the abelian boson propagator π  may be denoted 1 2k k m iτ
τπ ε− ≡ − +  up 

to a factor of i, we rewrite the abelian (8.2) simply as: 
 

( )( )
0

0G Jµ µπ= . (8.7) 
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We also use this to write (8.3) as: 
 

( )( ) ( ) 11

1
0G J k J J Jτ τ

µ τ τ µπ π π π
−−= + + , (8.8) 

 
and to write (8.5) as: 
 

( )( ) ( )
( ) ( )

111 1

1 12 1 1
0

J k J J J k
G J

J k J J J J k J J J

τ τ τ
τ τ τ

µ µ
τ τ τ τ τ

τ τ τ τ τ

π π π π π

π π π π π π π π

−−− −

− −− −

 + + +
 =
  + + + + + 

, (8.9) 

 

 Now we see that ( ) 11 J k J Jτ τ
τ τπ π π π

−− + +  from (8.8) appears three times in (8.9).  

Given this, let us next define 1 1 J k J Jτ τ
τ τπ π π π− −Π ≡ + + .  This allows us to rewrite (8.8) as: 

 

( )( )
1

0G Jµ µ= Π , (8.10) 

 
and (8.9) as: 
 

( )( ) ( ) 11

2
0G J k J J Jτ τ

µ τ τ µπ
−−= + Π + Π Π , (8.11) 

 
Now we see that (8.11) looks just like (8.8), except that each π  which is in a term with J has 
advanced to a Π .  So now let’s go to that rather large (8.6) to nail down the pattern.  Using 

1 2k k m iτ
τπ ε− ≡ − +  we first reduce (8.6) to: 

 

( )( )

( )
( ) ( )
( )

( ) ( )
( )

111 1

1

1 11 1

111 1

1 13 1 1

11 1

0

J k J J J k
J k

J k J J J J k J J J

J k J J J k
G J

J k J J J J k J J J

J k J J J k

τ τ τ
τ τ τ τ

τ
τ τ τ τ τ

τ τ τ τ τ

τ τ τ
τ τ τ

µ τ
τ τ τ τ τ

τ τ τ τ τ

τ τ
τ τ τ

π π π π π
π

π π π π π π π π

π π π π π

π π π π π π π π

π π π π π

−−− −

−
− −− −

−−− −

− −− −

−− −

 + + +
 +
  + + + + + 

 + + +
 = +
  + + + + + 

+ + +
×

( ) ( )

1

1

1 11 1

J

J
J k J J J k J k J J J

µ

τ
τ

τ τ τ τ τ
τ τ τ τ τπ π π π π π π π

−

−

− −− −

 
 
 
 
 
 
 
 
 
 
  
  
   + + + + +   

.(8.12) 

 

Now, using ( )1 1 J k J Jτ τ
τ τπ π π π− −Π ≡ + + , we may further reduce (8.12) to: 
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( )( ) ( )
( ) ( )

111 1

1 13 1 1
0

J k J J J k
G J

J k J J J J k J J J

τ τ τ
τ τ τ

µ µ
τ τ τ τ τ

τ τ τ τ τ

π π

π π

−−− −

− −− −

 + + Π + Π Π
 =
  + + Π + Π Π + Π + Π Π 

. (8.13) 

 

 But now, we see that ( ) 11 J k J Jτ τ
τ τπ

−− + Π + Π Π  from (8.11) appears three times in 

(8.13).  So now, we define yet another 
1 1 J k J Jτ τ

τ τπ
− −Π ≡ + Π + Π Π  and use this to rewrite 

(8.11) as: 
 

( )( )
2

0G Jµ µ= Π  (8.14) 

 
and (8.13) as: 
 

( )( ) ( ) 1
1

3
0G J k J J J Jτ τ

µ τ τ µ µπ
−−= + Π + Π Π ≡ Π . (8.15) 

 

This now has the form of (8.11) but with Π → Π .  Seeing the pattern, we further define 
1

1 J k J Jτ τ
τ τπ

−
−Π = + Π + Π Π .  It is now inductively-clear that this is the pattern which will 

continue for higher recursive order.  Now, let us systematize this pattern. 
 
 Pulling together the various results from (8.7), (8.10), (8.14), (8.15) and the various 
notational definitions made along the way, we have: 
 

( )( ) ( )
( )( ) ( )
( )( ) ( )
( )( ) ( )

12

0

1 1

1

11

2

1
1

3

0

0

0

0

G J k k m i J

G J J k J J J

G J J k J J J

G J J k J J J

τ
µ µ τ µ

τ τ
µ µ τ τ µ

τ τ
µ µ τ τ µ

τ τ
µ µ τ τ µ

π ε

π π π π

π

π

−

− −

−−

−−

= = − +

= Π = + +

= Π = + Π + Π Π

= Π = + Π + Π Π

. (8.16) 

 
Of course, for notational economy we do not want to have to keep adding bars or primes or any 
other qualifier to each of the “propagators.”  So let us denote each “propagator” with a subscript 

that simply declares its recursive order, thus, 0π π≡ , 1πΠ ≡ , 2πΠ ≡ , 3πΠ ≡ , etcetera.  Then, 

we can inductively compact (8.16) into a fully recursive solution just like the recursive kernel 
( )! 1 !n n n= × −  and the terminal condition 0! 1=  for factorial.  Specifically, starting with 

( )( )
3

0Gµ  and working down, the recursive kernel and the terminal condition are induced to be: 

 

( )( ) ( )
( )( ) ( )

1 1
0 1 1 1

12
00

0

0                        

n n n nn
G J J k J J J

G J k k m i J

τ τ
µ µ τ τ µ

τ
µ µ τ µ

π π π π π

π ε

− −
− − −

−

 = = + +


= = − +

. (8.17) 
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If we wish to separate the propagators from the gauge fields in (8.17), the recursive kernel and 
the abelian terminal condition may be written also as: 
 

( )
( )

1 1
0 1 1 1

12
0                        

n n n nJ k J J

k k m i

τ τ
τ τ

τ
τ

π π π π π

π ε

− −
− − −

−

 = + +


= − +

. (8.18) 

 
 So with all of this in mind, let us now return to (8.1) which is an expression for ( ),G G J .  

But at any recursive order, we now know how to turn this into ( )G J  without any gauge field 

residual:  Just zero out the perturbation.  Of course, nature will not stop at some arbitrary order 
and then zero out perturbations.  She will recurse ad infinitum and the physics we observe should 
be for an infinite-order recursion.  So in the natural world, we expect that the observed non-linear 
solution for ( )G J  will be the one which recurses to infinity, thus contains terms up to infinite 

order in J and in k (really, 2×∞  in J), and then sets the perturbation V to zero.  That is, we 

expect that nature’s physical solution (8.1) will be ( )( )0G Gµ µ ∞
≡ , or in detail: 

 

( ) ( )
( ) ( )

( )( ) ( )

1 12 2

1 12 2

1 1
0 1 1 10

G k k m i G k G G J k k m i V J

D D m i J m i iG G G J

G J J k J J J

τ τ τ τ
µ τ τ τ µ τ µ

τ τ τ τ
τ µ τ τ τ µ

τ τ
µ µ τ τ µ

ε ε

ε ε

π π π π π

− −

− −

− −
∞ ∞− ∞− ∞−∞

= − + + + = − + −

= − + − = − ∂ ∂ + − − ∂ −

≡ = = + +

, (8.19) 

 
Above, for future use in doing an analytical path integral in section 11, we have also included the 

earlier solution (6.27) to the field equation ( )( )2J g D D m D D Gν νσ τ σ ν
τ σ− = + −  of (5.15) with a 

Proca massive boson and  2D D iG G G G Gσ ν σ ν σ ν σ ν ν σ≡ ∂ ∂ − ∂ − +  from (5.16) and 
D D iG G Gτ τ τ τ

τ τ τ τ= ∂ ∂ − ∂ −  from (5.17).  We especially wish to take note of the correspondence 

( ) 12D D m iτ
τπ ε

−

∞ ↔ − + − .  And we also note the embedded correspondences 1G k J kτ τ
τ τπ ∞−↔  

and 1 1G G J Jτ τ
τ τπ π∞− ∞−↔ , which both contain the elemental correspondence 

1G J Jτ τ τπ π∞− ∞↔ ≅ . 

 
Very importantly, written as: 

 

( )( ) ( )
( )

1 1
0 1 1 1

12
0

0

                                                             

G G J J k J J J

k k m i

τ τ
µ µ µ τ τ µ

τ
τ

π π π π π

π ε

− −
∞ ∞− ∞− ∞−∞

−

 = = = + +


= − +

, (8.20) 

 
we have an expression for ( ), , ,G J k mε  rather than ( ), , , ,G G J k mε , with all gauge fields 

removed.  What is left of the gauge field is its momentum vector k, interacting with the current 
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density in the terms J kτ
τ  and contracted with itself in the linear terms k kτ

τ , as well as its mass 

m and its ε  which as an imaginary mass-type term, is related to lifetime, see, e.g., [14] page 150. 
 
 Why is this all so very important?  First, it points out that although (8.1) appears on the 

surface to solve for ( )G Jµ µ , this is not a closed solution.  Rather, it is really a recursive solution 

for ( ) ( )( ) ( )( )( ), , , , , , ...G G J G G G J J G G G G J J Jτ τ τ τ τ τ τ τ τ τ τ τ τ τ τ= =  which can be iteratively 

recursed ad infinitum, but at any order can be cut off and turned into ( )G Jµ µ  not ( ),G G Jτ τ τ  by 

setting 0V = , i.e., by ceasing any further perturbations.   This makes the non-linear nature of 
Yang-Mills theory very apparent from a different view than [ ]

k k ijk i jF G f G Gµν µ ν µ ν= ∂ +  of (1.9) 

or F dG G G= + ∧  of (1.11) which are the usual expressions used to highlight the non-linear 
nature of Yang-Mills theory. 
 
 Secondly, and of very deep importance, this recursion may well point the way toward 
being able to analytically and exactly quantize Yang-Mills theory.  Specifically, we now return 
to Jaffe and Witten who on page 7 of [6], state: 
 

“Since the inception of quantum field theory, two central methods have 
emerged to show the existence of quantum fields on non-compact configuration 
space (such as Minkowski space). These known methods are (i) Find an exact 
solution in closed form; (ii) Solve a sequence of approximate problems, and 
establish convergence of these solutions to the desired limit.” 

 
The foregoing suggests a third method which is really a hybrid of (i) and (ii):  find an exact 

recursive kernel in closed form (which is ( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + + ) and then 

expand that kernel in successive iterations to see how the recursion behaves in the limit of 
infinite recursive nesting.  That is exactly what we have done in (8.17), (8.18) and (8.20). 
 

 Specifically, regarding ( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + +  as the zeroth order 

solution for ( ),G G Jτ τ τ , with each iteration of ( ),G G Jτ τ τ  from the nth to the (n+1)th recursive 

order we are effectively replacing all gauge fields Gτ  at the nth order with current densities Jτ  up 

to the 2(n+1)th order, and at the same time injecting a new set of gauge fields Gτ  at the (n+1)th 

order.  But at any time we can stop introducing new gauge fields by simply setting the 
perturbation to zero.  So at each order, whenever we decide to do so, we may effectively strip out 
the gauge fields and replace them with current densities.  This  means that in the limit n → ∞  we 
may effectively replace all gauge fields with current densities by stopping perturbation at n = ∞ . 
 

 Very similarly, when we take a path integral ( ) ( )exp expZ DG iS G iW J= =∫ C , 

because G is the integration variable, we effectively strip off the G and obtain a quantum 
amplitude ( )W J  expressed in terms of  the current density J.  So the infinite recursion has the 

same effect as a path integral in terms of trading G for J.  But as pointed out at the start of 
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section 6, the mathematical exercise of analytically calculating a path integral revolves around 

clever extrapolations of the Gaussian integral ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫  

into ( ) ( )exp expZ DG iS G iW J= =∫ C .  The calculation impediment we run into is that 

( )21
2expdx Ax Jx− −∫  is integrable because it is quadratic, but becomes quite intractable once 

this integral involves a polynomial of 3x  and higher order, which is exactly what happens in 
Yang-Mills theory and indeed, any non-linear interaction theory.  Why is this intractable?  
Because nobody knows how to calculate such integrals exactly and analytically! 
 

The usual and best workaround is to employ what Zee [11] in Appendix A refers to as the 
“central identity of quantum field theory”: 
 

( )( ) ( )( ) ( )11 1
2 2exp exp / expD K V J V J J K Jφ φ φ φ φ δ δ −− ⋅ ⋅ − + ⋅ = − ⋅ ⋅∫ C . (8.25) 

This method uses the functional variation /G Jµ
µ δ δ→  to remove all terms which are 

polynomial (greater than second order) in the gauge field Gµ , and replace them with terms 

/ J µδ δ  that contain only the current density.  This allows ( )( )exp /V Jδ δ  to be removed from 

inside the integral, so that the only terms left inside the integral are quadratic in Gµ .  Then, the 

integral is performed to obtain ( )11
2exp J K J−⋅ ⋅ , and the operation of ( )( )exp /V Jδ δ−  on 

( )11
2exp J K J−⋅ ⋅  is thereafter used to extract order-by-order terms in the quantum amplitude to 

reveal various Green’s and Wick’s coefficients in this amplitude. 
 
 The very important point is that an infinitely-iterative application of the recursive kernel 

( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + + of (8.1) serves a purpose totally analogous to 

/G Jµ
µ δ δ→ .  But ( )1 1

0 1 1 1G J k J J Jτ τ
µ τ τ µπ π π π− −

∞− ∞− ∞−→ + +  from (8.20) is now the 

replacement we use in lieu of /G Jµ
µ δ δ→ .  In the limit of infinite recursion, this will allow us 

in section 11 to do an analytically-exact calculation of the path integral by turning Gµ  into Jµ  

on an order-by-order basis such that in the limit of infinite nesting, all of the gauge fields have 
been replaced by current densities which then pose no problem to carrying out a Gaussian 

integration which is simply of quadratic form ( )21
2expdx Ax Jx− −∫  in the gauge fields. 

  

 Now, let us return to the Yang-Mills monopoles 0F i dGG= − ≠∫∫ ∫∫∫�  of (3.3) and (5.9), 

and particularly the identity [ ],P d G G dGG′ = =  of (2.11) upon which this is based.  It will be 

our goal to use one or more of the inverses ( )G J  that we have developed in sections 6 through 8 

to replace each G in this monopole with its source current J, then to replace each J with fermions 
via J µ µψγ ψ= , then to apply exclusion to the fermions, and then to show that this faux 
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magnetic charge [ ],P d G G dGG′ = =  – at least in the classical theory – has the exact same 

chromodynamic  symmetries as a baryon. 
 
9. Populating the Composite Yang-Mills Magnetic Monopoles with 
Chromodynamically-Colored Fermions 
 
 Let us start the present discussion with the identity [ ],d G G dGG=  uncovered in (2.11), 

which we combine with (3.3) and then expand into tensor component expressions (see also (2.8) 
and (2.9)) while also including the faux magnetic charge [ ],P idGG id G G′ = − = − , as such: 

 

[ ] [ ]

( )
[ ]( )

1 1
2! 3!

1
[ ] [ ] [ ]3!

1
3!

1
2!

, ,

, , ,

,

F P i dGG i d G G i G G

F dx dx P dx dx dx

i G G G G G G dx dx dx

i G G G G G G dx dx dx

i G G dx dx

µ ν σ µ ν
µν σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

µ ν
µ ν

′= = − = − = −

′= ∧ = ∧ ∧

= − ∂ + ∂ + ∂ ∧ ∧

   = − ∂ + ∂ + ∂ ∧ ∧   

 = − ∧ 

∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫

∫∫ ∫∫∫

∫∫∫

∫∫∫

∫∫

� �

�

� 0≠

. (9.1) 

 
Let us now further develop (9.1) using the inverses reviewed in sections 6 and 7.   
 
 For a massless gauge boson in non-abelian gauge theory, we found that the relationship 

( ) 1
G D D Jτ

µ τ µ
−

= −  is the unique solution to the field equation  ( )J g D D D D Gν νσ τ σ ν
τ σ− = −  of 

(5.15) with D Dσ ν  and D Dτ
τ  given by (5.16) and (5.17), in the circumstance where the current 

density is conserved according to 0D Jν
ν =  as found in (5.20), because this continuity 

contextually fixes the gauge to the Feynman / continuity gauge 1ξ = , see (7.22) and (7.23).  We 
further found in (7.24) that by setting the mass 0m =  in (6.15) for a massive gauge boson, we 

arrive at exactly the same solution ( ) 1
G D D Jτ

µ τ µ

−
= − .  And, we found that in (7.25), in order to 

include the iε+  prescription in the non-Abelian theory, we need simply migrate 
D D D D iτ τ

τ τ ε⇒ − .  So as shown in (6.27), the non-abelian solution for a massive gauge boson 

is ( ) 1
G m i Jτ

µ τ µπ π ε
−

= − + , while as shown in (6.28), the corresponding abelian solution for a 

massive gauge boson is ( ) 1

AG k k m i Jτ
µ τ µε

−
= − + .  So again, we are reminded that the non-

abelian solution is identical in form to the abelian relation for a massive gauge boson, but for the 
replacement of the canonical k kτ

τ  with the kinetic τ
τπ π  momentum scalar, which replacement 

can be made in the massive theory because 0Gτ
τ∂ =  is a requirement, and which replacement 

may be made in the massless theory if one chooses 0Gτ
τ∂ =  although one does not have to.  So 

the massive solution is more unique in this way than the massless solution. 
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 Now we wish to replace each Gµ  in (9.1) with its unique continuity solution, i.e., with 

the gauge contextually fixed to 1ξ =  because of requiring continuity, either 0Jσ
σ∂ =  for 

abelian theory, or  0D Jσ
σ =  for non-abelian theory, and to have the result be as uniquely-

determined as possible.  Based on the development in sections 6 and 7, we have four choices of 

solution: a) the massive non-abelian solution ( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  of (6.27); b) the 

massive abelian solution ( ) 12G k k m i Jτ
µ τ µε

−
= − +  of (6.28) which is simply solution (a) with 

0V = ; c) the massless non-abelian solution ( ) 1
G V k k i Jτ

µ τ µε
−

= − + +  of (7.26) in the 0k Gτ
τ =  

gauge which is simply solution (a) with 0m = ; and d) the massless abelian solution 

( ) 1
G k k i Jτ

µ τ µε
−

= +  of (7.27) which is simply solution (b) with 0m =  or solution (c) with 

0V = .  Because one can follow Coleman-Zee as shown in sections 6 and 7 to include a massive 
boson solution 0m ≠  and then arrive at the massless solution simply by setting 0m = , and 
because the massless solution is uniquely forced to the 1ξ =  gauge to preserve continuity and 
thus we arrive at the exact same point whether we start with a massive or a massless solution, it 
makes more sense to first include the mass 0m ≠ .  This is a more general approach, and as we 
have seen, this mass can always be zeroed out later at the appropriate time, whereby the 
requirement for continuity will contextually fix the gauge into the Feynman / continuity gauge 

1ξ = . 
 
 But there is also another more specific reason for starting with 0m ≠  beyond its 
generality, and that has specifically to do with the uniqueness of the massive solutions.  Even 
though the continuity relationships 0D Jσ

σ =  and 0Jσ
σ∂ =  do zero out the terms containing the 

gauge number ξ  from the massless bosons and contextually fix the gauge to 1ξ = , see (7.22) 

and (7.23), the condition 0k Gτ
τ =  is required for a massive boson but is simply a covariant 

choice of gauge condition for a massless gauge boson.  So if we start with massive solution (a) 

which is ( ) 12G V k k m i Jτ
µ τ µε

−
= − + − + , we know that the gauge condition 0k Gτ

τ =  must be in 

place because that is a requirement to ensure continuity for the massive solution, and that the 
perturbation V appears in simple form in this solution precisely because 0k Gτ

τ = , see (6.6) and 

(6.7), and (6.24).  On the other hand, if we start with massless solution (c) which is 

( ) 1
G V k k i Jτ

µ τ µε
−

= − + + , we know even though the gauge number is contextually fixed to 

1ξ =  by continuity, again, (7.22) and (7.23), that 0k Gτ
τ =  is merely a choice of gauge, and that 

the manner in which the perturbation V appears in ( ) 1
G V k k i Jτ

µ τ µε
−

= − + +  is itself dependent 

upon this choice of 0k Gτ
τ =  gauge.  If we choose 0k Gτ

τ ≠ , then ( ) 1
G V k k i Jτ

µ τ µε
−

= − + +  

will have to include this 0k Gτ
τ ≠ , and so its very form will change.   So solution (a) is uniquely 

determined in all respects up to the covariant gauge condition 0D Dν
ν θ =  a.k.a. 

, 0i Gν ν
ν νθ θ ∂ ∂ − ∂ =   developed after (6.5), while solution (c) is contextually fixed to the 1ξ =  
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gauge by continuity but D G Gν ν
ν ν= ∂  remains a free scalar object which is not required to be 

zero and so renders the massless solutions weaker, i.e., less-unique than the massive solutions.  

Again, this solution will only be ( ) 1
G V k k i Jτ

µ τ µε
−

= − + +  if we choose 0k Gτ
τ =  and will 

change in form in the event we choose a 0k Gτ
τ ≠  whereby we will explicitly have to include a 

k Gτ
τ  term. 

 
 So to preserve generality and maximize uniqueness, we shall now use solution (a), 

namely ( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  of (6.27) to replace each occurrence of Gµ  with 

( ) 12V k k m i Jτ
τ µε

−
− + − +  in (9.1).  This has a required gauge relation 0k Gτ

τ = , and a selected 

gauge condition 0D Dν
ν θ =  which does not change the form of the solution in the event one 

chooses 0D Dν
ν θ ≠ , see (6.5) and thereafter.  As noted, this becomes solution (b) if we set V=0, 

this becomes solution (c) if we set m=0 and choose 0k Gν
ν =  as a gauge condition, and it 

becomes solution (d) if we set V=0 and m=0 and again choose 0k Gν
ν = .  Thus, inserting 

( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  into (9.1) we obtain: 

 

[ ] [ ]

( )( ) ( )
( )( )( )
( )( )( )

1 1
2! 3!

1 12 2
[ ]

1 12 21
[ ]3!

1 12 2
[ ]

, ,F P i dGG i d G G i G G

F dx dx P dx dx dx

V k k m i J V k k m i J

i V k k m i J V k k m i J

V k k m i J V k k m i J

µ ν σ µ ν
µν σµν

τ τ
σ τ µ τ ν

τ τ
µ τ ν τ σ

τ τ
ν τ σ τ µ

ε ε

ε ε

ε ε

− −

− −

− −

′= = − = − = −

′= ∧ = ∧ ∧

∂ − + − + − + − +

= − +∂ − + − + − + − +

+∂ − + − + − + − +

∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫

∫∫ ∫∫∫

� �

�

( ) ( )
( ) ( )
( ) ( )

1 12 2

1 12 21
3!

1 12 2

,

,

,

dx dx dx

V k k m i J V k k m i J

i V k k m i J V k k m i J dx dx dx

V k k m i J V k k m i J

i

σ µ ν

τ τ
σ τ µ τ ν

τ τ σ µ ν
µ τ ν τ σ

τ τ
ν τ σ τ µ

ε ε

ε ε

ε ε

− −

− −

− −

 
 
 
  ∧ ∧
 
 
 
 

  ∂ − + − + − + − +   
 

  = − +∂ − + − + − + − + ∧ ∧
   

  +∂ − + − + − + − +    

= −

∫∫∫

∫∫∫

( ) ( )1 12 21
2! , 0V k k m i J V k k m i J dx dxτ τ µ ν

τ µ τ νε ε
− − − + − + − + − + ∧ ≠

  ∫∫�

.(9.2) 

 

This is the complete expression for the net-flux F∫∫�  of the non-abelian magnetic field over a 

closed two-dimensional surface, and as we just learned in section 8, it is highly nonlinear, and 
indeed, contains an infinite recursion of ( ),G G Jτ τ τ  which is ultimately made into ( )G Jτ τ  by 



Jay R. Yablon 

56 
 

recursing to infinity then setting 0V =  as shown in (8.20).  Indeed, we could also have 
employed G Jµ µπ ∞=  in from (8.20) in (9.1) to alternatively and equivalently obtain: 

 

( )( ) ( )( ) ( )( ) [ ] ( )( ) [ ] ( )( )
( )( ) ( )( )

( )
[ ]( )

1 1
2! 3!

1
[ ] [ ] [ ]3!

1
3!

0 0 0 , 0 , 0

0 0

, , ,

F P i dGG i d G G i G G

F dx dx P dx dx dx

i J J J J J J dx dx dx

i J J J J J J

µ ν σ µ ν
µν σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

π π π π π π

π π π π π π

∞ ∞ ∞ ∞ ∞

∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

′= = − = − = −

′= ∧ = ∧ ∧

= − ∂ + ∂ + ∂ ∧ ∧

   = − ∂ + ∂ + ∂   

∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫

∫∫ ∫∫∫

∫∫∫

∫

� �

�

1
2! , 0

dx dx dx

i J J dx dx

σ µ ν

µ ν
µ νπ π∞ ∞

∧ ∧

 = − ∧ ≠ 

∫∫

∫∫�

.(9.3) 

 
We will eventually return at the end of section 10 to discuss (9.3) above in more detail.  But at 
the moment, (9.2) is in a form that better facilitates understanding the connection between P′  
and a baryon density, because we can set 0V =  at any order n of recursion we choose and 

thereby obtain ( )( )0
n

F∫∫� . 

 
 Before trying to tackle the highly-nonlinear (9.2), see the section 8 discussion of 
recursion that is inherent in the above because (9.2) contains the perturbation 

V k G G k G Gτ τ τ
τ τ τ− = + +  of (6.7) throughout, let us now do what is commonly done in many 

other situations in particle physics: consider the zero-perturbation limit by setting V=0 

throughout (9.2) right away.  That is, we obtain and explore ( )( )
0

0F∫∫� .  This will of course 

remove the non-linear physics occurring in (9.2), but it will readily reveal why these faux 
magnetic monopoles have the symmetries that one expects to see in a baryon.  Moreover, 

surprisingly enough, when we use ( )( )
0

0F∫∫�  to calculate the energies associated with the flux 

equation [ ],P i G G′ = −∫∫∫ ∫∫�  after some development of the baryon into protons and neutrons, 

we find a surprising, very tight concurrence with the binding energies that are experimentally-
observed in nuclear physics, which suggests that the nuclear binding energies are in fact 
expressive of the behaviors of (9.2) in this zero-perturbation limit, i.e., in the linear / abelian 
approximation (see [15] sections 6 through 12 and all of [16]).   
 

Once we set V=0 in each of the ( ) 12V k k m iτ
τ ε

−
− + − +  in (9.2), these each become the 

ordinary denominator ( )21/ k k m iτ
τ ε− + , because as developed in (6.26), it is 

( )AB AB AB AB
V k G G k G Gσ σ σ

σ σ σ− = + +  which is responsible for our having to write (9.2) with 

inverses rather than denominators.  Thus, setting V=0 and rearranging somewhat, (9.2) for 

( )( )
0

0F∫∫�  and ( )( )
0

0P′  becomes: 
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( )( ) ( )( ) ( )( ) [ ] ( )( ) [ ] ( )( )
( )( ) ( )( )

( ) ( ) ( )

0 0 0 0 0

1 1
2! 3!0 0

[ ] [ ] [ ]1
3! 2 2 22 2 2

1
3!

0 0 0 , 0 , 0

0 0

,

F P i dGG i d G G i G G

F dx dx P dx dx dx

J J J J J J
i dx dx dx

k k m i k k m i k k m i

J J
i

k k

µ ν σ µ ν
µν σµν

σ µ ν µ ν σ ν σ µ σ µ ν

τ τ τ
τ τ τ

σ µ ν

τ
τ

ε ε ε

′= = − = − = −

′= ∧ = ∧ ∧

 ∂ ∂ ∂ = − + + ∧ ∧
 − + − + − + 

 ∂  = −

∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫

∫∫ ∫∫∫

∫∫∫

� �

�

( )
[ ]

( ) ( )

( )

2 2 22 2 2

1
2! 22

,,

,
0

J JJ J
dx dx dx

m i k k m i k k m i

J J
i dx dx

k k m i

ν σ µµ ν σ σ µ ν

τ τ
τ τ

µ ν µ ν

τ
τ

ε ε ε

ε

  ∂∂   + + ∧ ∧
 − + − + − + 

  = − ∧ ≠
− +

∫∫∫

∫∫�

. (9.4) 

 

Although the complete non-linear physics of 0F ≠∫∫�  is described by (9.2) and alternatively 

(9.3), the simplified (9.4) enables us to reveal certain key symmetries for 0F ≠∫∫�  which will 

support the view that the faux magnetic monopole density P′  is in fact a baryon density, which 
symmetries carry over fully to the more-complete, highly-perturbed (9.2), (9.3).  We shall refer 
to (9.4) as the “ground state” monopole equation, because the perturbations are zeroed out 
immediately before any levels of recursion are carried out. 
 

 Of particular interest, let us now focus on the [ ] ( )( )
0

, 0i d G G= − ∫∫∫  term in (9.4), which 

we restructure into: 
 

( )( ) ( )
( )( ) ( )( ) [ ] ( )( )

( )
[ ]

( ) ( )

1
2!0

1
3!0 0 0

1
3! 2 2 22 2 2

0 0

0 0 , 0

, ,,

F F dx dx

P P dx dx dx i d G G

J J J JJ J
i dx dx dx

k k m i k k m i k k m i

µ ν
µν

σ µ ν
σµν

σ µ ν ν σ µµ ν σ σ µ ν

τ τ τ
τ τ τε ε ε

= ∧

′ ′= = ∧ ∧ = −

    ∂ ∂∂    = − + + ∧ ∧
 − + − + − + 

∫∫ ∫∫

∫∫∫ ∫∫∫ ∫∫∫

∫∫∫

� �

. (9.5) 

  
From this we extract the faux magnetic monopole density raised to contravariant indexes: 
 

( )( )
( ) ( ) ( )2 2 20 2 2 2

, , ,
0

J J J J J J
P i

k k m i k k m i k k m i

σ µ ν µ ν σ ν σ µ
σµν

τ τ τ
τ τ τε ε ε

      ∂ ∂ ∂      ′ = − + +
 − + − + − + 

. (9.6) 

 
 Now we take the crucial step of developing the current sources densities J µ  in terms of 
the underlying fermion wavefunctions ψ  which arise in Dirac theory.  Specifically, in abelian 

gauge theory, Dirac’s equation says that ( ) 0i mµ
µγ ψ∂ − = .  For the adjoint spinor † 0ψ ψ γ=  the 
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field equation is 0i mµ
µψγ ψ∂ + = .  Adding yields ( ) 0µ

µ ψγ ψ∂ =  as is well known.  And 

because the conserved current is expressed by 0J µ
µ∂ = , we identify the current density with 

J µ µψγ ψ= , where each Dirac wavefunction ψ  in a U(1) theory is of course a four-component 
column vector.   
 
 In non-abelian gauge theory, for the compact simple gauge group SU(N) (or for the 
product group SU(N)xU(1) with a U(1) factor that is required for magnetic monopoles to be 
topological stability as will be reviewed in section 10), the generalized wavefunction AΨ = Ψ , 

1...A N=  is an Nx4 column vector of 4-component Dirac wavefunctions  ψ .  This non-abelian 
wavefunction Ψ  may then subsist in any one of N distinct eigenstates.  For example, for the 
SU(3)C group of chromodynamic strong interactions, the three (3) eigenstates are generally 
denoted (R)ed, (G)reen, (B)lue, and these distinct eigenstates are used to enable a baryon 
containing three quarks to satisfy the Fermi-Dirac-Pauli Exclusion Principle.  Explicitly defined, 
using the SU(N) group generators i i

ABλ λ= , 21... 1i N= − , the current density generalizes to 
i i i i

CAB AB CD DJ Jµ µ µ µλ λ λ γ γ= = Ψ Ψ ≡ Ψ Ψ , with Yang-Mills adjoint i and fundamental A,B,C,D 

indexes explicitly shown for illustration, and where as already stated AΨ = Ψ  is an N-

component column vector of N fermion eigenstates.  As has been reviewed at length earlier 
staring at (5.20), this current density satisfies the continuity relationship 0D Jν

ν = .  For 

SU(N)xU(1), we may for simplicity use i
ABλ  with 20... 1i N= − , where we denote the U(1) 

generator as 0
ABλ  with the “0” index.  If we suppress the A,B,C,D indexes, then 

i i i iJ Jµ µ µ µλ λ λ γ γ= = Ψ Ψ ≡ Ψ Ψ . 
 
 So now, into (9.6), we first substitute i iJ Jµ µλ= , then i iJ µ µλ γ= Ψ Ψ , and then use 

( ) ( ), ,i j i jµ ν µ νλ λ λ γ λ γ γ γ   Ψ Ψ Ψ Ψ = Ψ Ψ Ψ Ψ     (just a variant of , ,i j i jA B A Bµ ν µ νλ λ   =     ) 

in (9.6) to “populate” the faux Yang-Mills magnetic monopole with fermions.  The result is: 
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( )( ) ( )
( )

( )
( )

( )
( )

( )( )( )
( )

( )( )( )
( )

( )( )( )

2 2 20 2 2 2

22

22

, , ,
0

,

,

,

i j i j i j i j i j i j

i j i j

i j i j

i j i j

J J J J J J
P i

k k m i k k m i k k m i

k k m i

i
k k m i

σ µ ν µ ν σ ν σ µ
σµν

τ τ τ
τ τ τ

σ µ ν

τ
τ

µ ν ν

τ
τ

ν σ µ

λ λ λ λ λ λ

ε ε ε

λ λ λ γ λ γ

ε

λ λ λ γ λ γ

ε

λ λ λ γ λ γ

      ∂ ∂ ∂      ′ = − + +
 − + − + − + 

 ∂ Ψ Ψ Ψ Ψ 

− +

 ∂ Ψ Ψ Ψ Ψ = − +
− +

 ∂ Ψ Ψ Ψ Ψ +
( )

( ) ( ) ( )

22

2 2 22 2 2

, , ,

k k m i

i
k k m i k k m i k k m i

τ
τ

σ µ ν µ ν σ ν σ µ

τ τ τ
τ τ τ

ε

γ γ γ γ γ γ

ε ε ε

 
 
 
 
 
 
 
 
 
 
 
 − +
 

      ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ      = − + +
 − + − + − + 

. (9.7) 

 
We could just as readily have just inserted J µ µγ= Ψ Ψ  into (9.6) to arrive directly at the bottom 
line of (9.7), but it is helpful to see the intermediate calculations which explicitly contain the 

group generators.  Given that F P′=∫∫ ∫∫∫� , and referring back to the discussion at the end of 

section 3, we now see for the first time the manner in which ( )( )( )F G J ψ∫∫� , that is, the 

manner in which the composite faux magnetic monopole F∫∫�  arising from the faux magnetic 

source [ ],P idGG id G G′ = − = −  does indeed contain fermion wavefunctions Ψ .  Now, we shall 

show how these fermion wavefunction in fact possess all of the key symmetries required to 
qualify them as colored quarks, and how P σµν′  possesses all of the key symmetries of a baryon. 
 

 The first thing we observe is that ( )( )
0

0P σµν′  contains three additive terms.  And, as 

discussed moments ago, for SU(N) or for SU(N)xU(1), each AΨ = Ψ  is an N-component 

column vector of 4-component Dirac wavefunctions ψ  which may subsist in any one of N 

distinct eigenstates.  So if we regard ( )( )
0

0P σµν′  as a composite system of more than one 

fermion, then each fermion in this system must be placed into a distinct eigenstate in order to 
satisfy the Fermion Exclusion Principle.  The three additive terms in (9.7) advise us that there are 

a total of three such fermion eigenstates which constitute ( )( )
0

0P σµν′ , and so we label these 

eigenstates among the three additive terms as 1 2 3, ,Ψ Ψ Ψ .  With this we now rewrite (9.7), 

including a restructuring [ ],µ ν µ νγ γ γ γ Ψ Ψ Ψ Ψ = Ψ ΨΨ Ψ   of the commutators in the bottom line 

below, as: 
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( )( )

( ) ( ) ( )
( )
( )

( )
( )

( )
( )

0

1 1 1 1 2 2 2 2 3 3 3 3

2 2 22 2 2

[ ] [ ] [ ]
1 1 1 1 2 2 2 2 3 3 3 3

2 2 22 2 2

0

, , ,

P

i
k k m i k k m i k k m i

i
k k m i k k m i k k m i

σµν

σ µ ν µ ν σ ν σ µ

τ τ τ
τ τ τ

σ µ ν µ ν σ ν σ µ

τ τ τ
τ τ τ

γ γ γ γ γ γ

ε ε ε

γ γ γ γ γ γ

ε ε ε

′

      ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ      = − + +
 − + − + − + 

 ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ
= − + +
 − + − + − +






. (9.8) 

  
Because we must be able to place the fermions into one of three distinct eigenstates in 

order to satisfy Exclusion for the composite ground state faux monopole ( )( )
0

0P σµν′ , we must 

now chose a dimension-3 gauge group in order to enforce this exclusion.  There are two apparent 
choices.  First is the simple group SU(3).  Second is the product group SU(3)×U(1).  But as we 
shall see in the next section, there really is not a choice and we actually must choose 
SU(3)×U(1).  But to start simply, let us assume the simpler choice of SU(3) until contradicted, 
and then see why we are later compelled by contradiction to amend this choice to SU(3)×U(1).  
Choosing SU(3), we first label eigenstates.  Because the labels are arbitrary, we use the names of 
some colors, say, (R)ed, (G)reen, (B)lue.  Thus, using the SU(3) generators iλ  normalized to 

( )2
1
2Tr iλ =  we define: 

 

8 3 8 3 8 31 1 1 1 1
1 2 32 23 2 3 2 3

0 0

; 0 0 ; ; ; ; 0

0 0

R

G

B

ψ
λ λ λ λ ψ λ λ

ψ

     
     Ψ ≡ = = = Ψ ≡ = − = = Ψ ≡ = − = − =     
     
     

.(9.9) 

 

Now, all of a sudden, in a very consequential step, we see how these ( )( )
0

0P σµν′  ground 

state magnetic monopole densities contain three fermions in one of three eigenstates R, G, B, and 
how SU(3) (or really, SU(3)×U(1) as we shall see in the next section) emerges as a required 

gauge group in order to force exclusion upon the fermions that comprise ( )( )
0

0P σµν′ .  In other 

words, we have never had to postulate SU(3) per se in order to force exclusion on the quarks 
within experimentally-observed baryons.  Rather, we have been forced to introduce SU(3) (or at 
least a dimension-3 gauge group) in order to ensure proper Exclusion for the fermions of the 

theoretically-motivated P σµν′  which first emerged back in (3.3) when we found that 0F ≠∫∫�  in 

a non-abelian gauge theory, and when we found that the underlying magnetic charge density was 
the composite [ ],P idGG id G G′ = − = −  which is faux-assembled from the gauge fields G.  At the 

same time, because we are required to select a dimension-3 gauge group which for now is SU(3), 
and because we have labelled the eigenstates with the names of colors,  there are now eight 
gauge bosons iG µ  in i iG Gµ µλ=   associated with (9.8), and each of these will be bi-colored, just 

as are the gluons of chromodynamic theory.  This means that we may be able to obviate the need 
for a separate postulation of classical or quantum chromodynamics, such that chromodynamics 
no longer a fundamental theory, but rather is a corollary, secondary theory that emerges in the 
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process of enforcing fermion Exclusion upon the fermions contained in the non-abelian faux 
magnetic monopole density (9.8).  
 

 Now we focus on the terms of the form ΨΨ  which appear in the bottom line of (9.8).  
These terms have a column vector to the left of a row vector, and using (9.9), these may be 
explicitly written in 3x3 matrix form as: 
 

1 1 2 2 3 3

0 0 00 0 0 0 0

0 0 0 ; 0 0 ; 0 0 0

0 0 0 0 0 0 0 0

R R

G G

B B

ψ ψ
ψ ψ

ψ ψ

     
     

Ψ Ψ = Ψ Ψ = Ψ Ψ =     
     

    

. (9.10) 

 
We may then use this to rewrite (9.8) in explicit 3x3 matrix form: 
 

( )( )

( )
( )

( )
( )

( )
( )

[ ]
1 1

22

[ ]
2 2

20 2

[ ]
3 3

22

0 0

0 0 0

0 0

R R

G G

B B

k k m i

P i
k k m i

k k m i

σ µ ν

τ
τ

µ ν σ
σµν

τ
τ

ν σ µ

τ
τ

γ ψ ψ γ

ε

γ ψ ψ γ

ε

γ ψ ψ γ

ε

 ∂ Ψ Ψ
 
 − +
 
 ∂ Ψ Ψ ′ = −  − + 
 

∂ Ψ Ψ 
 
 − + 

.(9.11) 

 
 Next, we focus in on R R R Ru uψ ψ = , G G G Gu uψ ψ =  and B B B Bu uψ ψ =  which involve 

ordinary, four-component Dirac wavefunctions ψ  and spinors u, and we focus especially on the 

uu which contain a column spinor to the left of a row spinor.  Often, the Dirac spin sum 

relationship is normalized to 2N m= Ε +  and so is written as  ( )spinsuu p mΣ = +/ .  But if we 

wish to be more general and defer a decision on normalization, we may employ in (9.11) the spin 
sum prior to normalization, which is (see, e.g., [14] exercise 5.9): 
 

( )
2

spins

N
uu p m

E m
= +/+∑ . (9.12) 

 

So, if we now take the sum over all spins ( )( )spins 0
0P σµν′Σ  of the faux monopole (9.11), and if 

we apply (9.12) in the form ( ) ( )2
spins /C C C C C Cu u N p m E mΣ = + +/  to each color , ,C R G B=  of 

fermion, we may use (9.12) to rewrite (9.11), for the moment without iε+  , as: 
 



Jay R. Yablon 

62 
 

( )( )
( )( )

( )
( )( )

( )
( )( )

( )

spins 0

[ ]2
1 1

22

[ ]2
2 2

22

[ ]2
3 3

22

0

0 0

0 0

0 0

R R

R R

G G

G G

B B

B B

P

p mN

E m k k m

p mN
i

E m k k m

p mN

E m k k m

σµν

σ µ ν

τ
τ

µ ν σ

τ
τ

ν σ µ

τ
τ

γ γ

γ γ

γ γ

′ =

 ∂ Ψ + Ψ/ 
 + −
 
 ∂ Ψ + Ψ/ −  + − 
 

∂ Ψ + Ψ/ 
 + − 

∑

.(9.13) 

 

 Next we next turn our attention to the expressions ( ) ( )2/C Cp m k k mτ
τ+ −/  which appear 

in each diagonal entry above.  We simultaneously take note of the fact that the fermion 

propagator ( ) 1
i p m

−−/  sans iε+  is related by a constant factor i to: 

 

( )( ) ( ) 1

2

p m p m
p m

p p m p m p mτ
τ

−+ +/ /= = −/− + −/ /
. (9.14) 

 

So we are motivated to see if there is a basis upon which we may set the ( ) ( )2/C Cp m k k mτ
τ+ −/  

terms in (9.13) to ( ) 1
p m

−−/  and thereby introduce the propagator for each of these fermions 

directly into (9.13).  For this, we return to the discussion of sections 6 and 7 during which we 

developed inverse solutions to the electric charge equation ( )J g D D D D Gν νσ τ σ ν
τ σ− = −  in both 

massive and massless form, and where we also reviewed the degrees of freedom of various 
solutions and related questions of uniqueness. 
 

 Each term in equation (9.13) contains ( )221/ k k mτ
τ − , that is ( )21/ k k mτ

τ −  times itself.  

As noted in the mass shell discussion prior to (6.24), we are using pτ  and kσ  respectively to 

denote fermion and boson momentum vectors.  And, of course, each ( )21/ k k mτ
τ −  entered 

(9.13) back at (9.2) when we inserted the massive boson inverse solution 

( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  of (6.27) into (9.1).  As reviewed in sections 6 and 7, this 

solution, in view of the continuity requirement 0D Jν
ν =  of (5.20) and the consequently-

mandated covariant gauge 0D Gν
ν =  of (6.5) is unique up to the gauge condition 0D Dν

ν θ =  

a.k.a. , 0i Gν ν
ν νθ θ ∂ ∂ − ∂ =  .  And this solution is unchanged in form under a non-abelian 

gauge transformation because nowhere does the unphysical parameter θ  appear in any of the 

covariant physics equations.  So in trying to match up ( ) ( )2/C Cp m k k mτ
τ+ −/  which appears in 

(9.13) with ( ) ( )2/p m p p mτ
τ+ −/  in the fermion propagator-related (9.14), we see that the 

numerators match up perfectly but there is a mismatch in the denominators.  Particularly, each 
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2k k mτ
τ −  in (9.13) is the propagator denominator for a massive gauge boson which has three 

degrees of freedom, while 2p p mτ
τ −  in (9.14) is the propagator denominator for a massive 

fermion which has four degrees of freedom.  So, how do we match these up, and what impact, if 

any, might this have on the uniqueness of the solution ( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  upon 

which (9.13) is based? 
 

 Because each of the boson propagator denominators ( )21/ k k mτ
τ −  in (9.13) represents a 

massive boson with three degrees of freedom, the term ( )221/ k k mτ
τ −  which is a product of two 

boson propagator denominators thus represents six degrees of freedom.  So we now take each 

( ) ( )2 21/ k k m k k mτ τ
τ τ− −  and shift one degree of freedom from the first ( )21/ k k mτ

τ −  into the 

second ( )21/ k k mτ
τ − .  That is, keeping in mind that pτ  and kσ  respectively denote fermion and 

boson momentum vectors and that the former has four degrees of freedom (particle / antiparticle 
in each of spin up and spin down states) and the latter when massive has three degrees of 

freedom (two transverse polarizations, one longitudinal), we rewrite ( )221/ k k mτ
τ −  as: 

 

( ) ( ) ( ) ( )2 2 2 22

1 1 1

k k m k k m k k p p mk k m
τ τ τ ττ

τ τ τ ττ

= =
− − −−

. (9.15) 

 
What we have effectively done is to take the 6=3+3 degrees of freedom represented in the first 
term, and redistribute them into 6=2+4 degrees of freedom represented in the final term.  In the 
final term, therefore, we have turned one originally-massive gauge boson propagator 

denominator ( )21/ k k mτ
τ −  into a massless gauge boson propagator denominator 1/ k kτ

τ .  But at 

the same time, we have turned the other originally-massive gauge boson propagator denominator 

( )21/ k k mτ
τ −  into a massive fermion propagator denominator ( )21/ p p mτ

τ − .  This is very 

analogous to the Goldstone mechanism used to give mass to massless gauge bosons by shifting a 
degree of freedom from a scalar field into a boson field.  Here, we are simply shifting a degree of 
freedom from a boson field into a fermion field. 
 
 Now we saw of course in sections 6 and 7 that the solution for a massless gauge boson 
was less-unique than that for a massive boson, precisely because the massless gauge boson has 
one less degree of freedom.  But we also saw how context matters, and how the context of a 
conserved current 0D Jν

ν =  contextually fixed the massless boson into the Feynman / continuity 

gauge 1ξ = .  The only contextual loss of uniqueness in the massless solution, therefore, was that 

0D Gν
ν =  was no longer a mandatory constraint but instead was relegated to a mere choice of 

gauge, which meant that 0Gν
ν∂ =  was also demoted from a requirement of continuity to an 

optional gauge condition.  And all of the non-uniqueness of the massless solution, even before 
the application of continuity 0D Jν

ν =  fixed the gauge number to 1ξ = , emanated from 

removing a degree of freedom when going from a massive to a massless gauge boson.  But in 
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(9.15) we are not removing any degrees of freedom as we did in going from section 6 to section 
7.  We are merely shifting them around in the overall context of (9.13) according to the recipe of 
(9.15).  So after we apply (9.15) to (9.13), we will not in any way alter the uniqueness of (9.13).  
It will remain just as uniquely-specified after (9.15), as before (9.15).  Effectively, we 
contextually dodge the additional non-uniqueness that emerges in going from the massive 
solutions of section 6 to the massless solutions of section 7, by moving rather than removing a 
degree of freedom, in the context of (9.13). 
 
 So let us now do exactly what we just said.  We now use (9.15) in (9.13) to shift around 
the six degrees of freedom in each diagonal element from a 3+3 to a 2+4 configuration, and at 
the same time we label the pτ  and the m in relation to the color of the fermion in each term.  

Thus, without any loss of uniqueness, simply by shifting a degree of freedom, (9.13) becomes: 
 

( )( )
( )( )

( )
( )( )

( )
( )( )

( )

spins 0

[ ]2
1 1

2

[ ]2
2 2

2

[ ]2
3 3

2

0

0 0

0 0

0 0

R R

R R R R R

G G

G G G G G

B B

B B B B B

P

p mN

E m k k p p m

p mN
i

E m k k p p m

p mN

E m k k p p m

σµν

σ µ ν

τ τ
τ τ

µ ν σ

τ τ
τ τ

ν σ µ

τ τ
τ τ

γ γ

γ γ

γ γ

′ =

 ∂ Ψ + Ψ/ 
 + −
 
 ∂ Ψ + Ψ/ −
 + −
 
 ∂ Ψ + Ψ/
 
 + −
 

∑

.(9.16) 

 
Importantly, in the process of shifting degrees of freedom, the remaining boson 

propagator denominator in each term has become 1/ k kτ
τ  which is the propagator for a massless 

gauge boson.  So now, the eight bi-colored gauge bosons of the required SU(3)C group have 
become massless, at the same time the fermions have acquired mass since they have four degrees 
of freedom following application of (9.15).  Because the eight bi-colored gluons of QCD are also 
massless, this means that the gauge bosons associated with (9.16) have now have three very 
important symmetries that match up with the gluons of QCD: 1) there are eight of them, 2) they 
are bi-colored, and 3) they are massless.  Yet, because of using a Goldstone-like method for what 
is a variant of the contextual gauge shifting discussed in section 7, no uniqueness has been lost. 
 
 Now we return to the normalization which we deferred back at (9.12).  Often, as noted, 
the chosen normalization is 2N m= Ε + .  Let us instead, however, for each term in (9.16), 
choose to include the k kτ

τ  massless boson term in the normalization.  That is, for each term in 

(9.16) let us now normalize to: 
 

( )2
C CN E m k kττ≡ + . (9.17) 

 
So, applying the normalization (9.17), and propagator expression (9.14) for each fermion color 

, ,C R G B= , we reduce (9.16) to: 
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( )( )
( )( )

( )( )
( )( )

spins 0

1[ ]
1 1

1[ ]
2 2

1[ ]
3 3

0

0 0

0 0

0 0

R R

G G

B B

P

p m

i p m

p m

σµν

σ µ ν

µ ν σ

ν σ µ

γ γ

γ γ

γ γ

−

−

−

′ =

 ∂ Ψ − Ψ/ 
 

− ∂ Ψ − Ψ/ 
 
 ∂ Ψ − Ψ/ 

∑

.(9.18) 

 

 Next we look closely at one of the terms above, say, the term ( ) 1[ ]
1 1R Rp mµ νγ γ−Ψ − Ψ/  on 

the upper left.  Making explicit use of (9.9), this term, is: 
 

( ) ( ) ( ) ( )1 1 1[ ] [ ] [ ]
1 1 0 0 0

0

R

R R R R R R R R Rp m p m p mµ ν µ ν µ ν

ψ
γ γ ψ γ γ ψ γ γ ψ− − −

 
 Ψ − Ψ = − = −/ / / 
 
 

. (9.19) 

A similar result obtains for the other two terms, which now allows us to rewrite (9.18) as: 
 

( )( )
( )( )

( )( )
( )( )

spins 0

1[ ]

1[ ]

1[ ]

0

0 0

0 0

0 0

R R R R

G G G G

B B B B

P

p m

i p m

p m

σµν

σ µ ν

µ ν σ

ν σ µ

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

−

−

−

′ =

 ∂ −/ 
 

− ∂ −/ 
 
 ∂ −/ 

∑

.(9.20) 

 

Any time we wish to calculate with the propagator terms ( ) 1
i p m

−−/  and also include iε+ , we set 

these to ( ) ( ) ( )1 2/i p m i p m p p m iσ
σ ε−− = + − +/ / .   

 
Finally, in another important step that will lead us to topological stability, we take the 

trace of the above.  This yields the fully-developed, spin-summed trace of the faux monopole 

density [ ],P idGG id G G′ = − = −  in the zero-recursion, zero-perturbation limit ( )( )
0

0 , namely: 

 

( )( )
( )( ) ( )( ) ( )( )( )

spins 0

1 1 1[ ] [ ] [ ]

Tr 0

R R R R G G G G B B B B

P

i p m p m p m

σµν

σ µ ν µ ν σ ν σ µψ γ γ ψ ψ γ γ ψ ψ γ γ ψ− − −

′

= − ∂ − + ∂ − + ∂ −/ / /

∑
.(9.21) 

 
We shall now show how this has the identical symmetries as a baryon, how this leads directly to 
meson mediators of interactions between monopoles, how this requires us to choose SU(3)×U(1) 
rather than SU(3) as our dimension-3 gauge group, how this leads to topological stability, and 
how the above becomes flavored into protons and neutrons.  
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10. Why the Composite Faux Magnetic Monopoles of Yang-Mills Gauge 
Theory have all of the Required Chromodynamic Symmetries of Baryons, and 
how these are Flavored into being Topologically-Stable Protons and Neutrons 
 

 In the trace form of (9.21), we see clearly that ( )( )spins 0
Tr 0P σµν′Σ  is a third rank 

antisymmetric tensor in spacetime which will reverse sign under the interchange of any two 
adjacent indexes.   From here, we simplify by just writing spinsΣ → Σ .  Let us denote this 

fundamental antisymmetry, which is an inherent feature of any magnetic monopole in spacetime, 
using the wedge-product notation σ µ ν∧ ∧ .  If we now associate each color wavefunction with 

the spacetime index in the related σ∂  operator in (9.21), i.e., R~σ , G~µ  and B~ν , and 

keeping in mind that ( )( )
0

Tr 0P σµν′Σ  is antisymmetric in all spacetime indexes, we may use 

[ ] [ ] [ ]~ , , ,R G B R G B G B R B R Gσ µ ν∧ ∧ ∧ ∧ = + +  to express this antisymmetry.  But this is 

the exact colorless wavefunction that is expected of a baryon.  Indeed, the antisymmetric 
character of the spacetime indexes in a magnetic monopole should have been a good tipoff that 
magnetic monopoles would naturally make good baryons.  So, we now may assert that the non-

abelian composite faux monopole density ( )( )
0

Tr 0P σµν′Σ  in the ground state (9.21) has the exact 

same antisymmetric colorless chromodynamic symmetry as does a baryon! 
 
 Now, let us lower the indexes in (9.21) and write this as the differential form relation: 
 

( )( ) ( )( )
( )( )

( )( )
( )( )

( )
( )
( )

1
3!0 0

1

[ ]

11
[ ]3!

1

[ ]

1

[ ]

11
[ ]3!

1

[ ]

Tr 0 =Tr 0

R R R R

G G G G

B B B B

R R R R

G G G G

B B B B

P P dx dx dx

p m

i p m dx dx dx

p m

p m

i p m

p m

σ µ ν
σµν

σ µ ν

σ µ ν
µ ν σ

ν σ µ

µ ν

σ µ ν

µ ν

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

−

−

−

−

−

−

′ ′Σ Σ ∧ ∧

 ∂ −/ 
 

= − +∂ − ∧ ∧/ 
 
 +∂ −/ 

 −/ 
 = − ∂ + −/ 
+ −/ 

dx dx dxσ µ ν∧ ∧



. (10.1) 

 
In the bottom expression, a σ∂  with the same σ  index has been factored out of the entire 

expression.  So now we can apply Gauss’ / Stokes theorem to (10.1), and can use the forms in the 
top line of (9.1) to help us out. 
 

Specifically, by expanding some of the forms in the top line of (9.1), we may write: 
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[ ] [ ]( )
[ ]

1 1
2! 3!

1
3!

1
2!

, , , ,

, ,

F P F dx dx P dx dx dx

i d G G i G G G G G G dx dx dx

i G G i G G dx dx

µ ν σ µ ν
µν σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

µ ν
µ ν

′ ′= = ∧ = ∧ ∧

   = − = − ∂ + ∂ + ∂ ∧ ∧   

 = − = − ∧ 

∫∫ ∫∫∫ ∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫ ∫∫

� �

� �

. (10.2) 

 
Therefore, taking the zero perturbation limit 0V = , summing all spins, taking the trace, and then 
injecting in the final expression from (10.1), we may write this as: 
 

 

( )( ) ( )( ) ( )( ) ( )( )
[ ] ( )( ) [ ]( ) ( )( )

[ ] ( )( ) ( )( )

1 1
2! 3!0 0 0 0

1
3!0 0

1
2!0 0

1
[3!

Tr 0 Tr 0 Tr 0 Tr 0

Tr , 0 Tr , , , 0

Tr , 0 Tr , 0

R

F F dx dx P P dx dx dx

i d G G i G G G G G G dx dx dx

i G G i G G dx dx

i p

µ ν σ µ ν
µν σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

µ ν
µ ν

σ µψ γ

′ ′Σ = Σ ∧ = Σ = Σ ∧ ∧

   = − Σ = − Σ ∂ + ∂ + ∂ ∧ ∧   

 = − Σ = − Σ ∧ 

= − ∂ /

∫∫ ∫∫ ∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫ ∫∫

� �

� �

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1

] [ ] [ ]

1 1 11
[ ] [ ] [ ]2!

R R R G G G G B B B B

R R R R G G G G B B B B

m p m p m dx dx dx

i p m p m p m dx dx

σ µ ν
ν µ ν µ ν

µ ν
µ ν µ ν µ ν

γ ψ ψ γ γ ψ ψ γ γ ψ

ψ γ γ ψ ψ γ γ ψ ψ γ γ ψ

− − −

− − −

− + − + − ∧ ∧/ /

= − − + − + − ∧/ / /

∫∫∫

∫∫�

.(10.3) 

 
From this we extract several integrands with an overall multiplication by i: 
 

( )( ) ( )( )
( ) ( ) ( )
eff 0 0

1 1 1

[ ] [ ] [ ]

Tr 0 Tr , 0

R R R R G G G G B B B B

iF G G

p m p m p m

µν µ ν

µ ν µ ν µ νψ γ γ ψ ψ γ γ ψ ψ γ γ ψ− − −

 Σ ≡ Σ  

= − + − + −/ / /
. (10.4) 

 

This includes defining an “effective” ( )( )eff 0
Tr 0iF µνΣ .  This is because while (1.5) tells us that 

[ ] ,F G i G Gµν µ ν µ ν = ∂ −    so that [ ]Tr , Tr TrG G iF i Gµ ν µν µ ν Σ = Σ − Σ ∂  , as found in (3.5) the total 

net flux F∫∫�  is invariant under the transformation [ ]'F F F Gµν µν µν ν µ→ = −∂ .  This means that 

the gauge field is not observable with respect to net flux across closed surfaces of the monopole 

precisely because of the abelian subset expression dG=∫∫ 0�  which is responsible for there 

being no net flux of magnetic fields at all across a closed surface in abelian gauge theory.  So 

while ( )( ) [ ] ( )( )
0 0

Tr 0 Tr , 0F i d G GΣ = − Σ∫∫ ∫∫∫�  in the integral formation of (10.3) by virtue of 

the symmetry principle (3.5), when the integrands are separately extracted as in (10.4), the actual 

relationship is [ ] ,F G i G Gµν µ ν µ ν = ∂ −   .  But the effective relationship in terms of what actually 

becomes net observable flux across closed surfaces, is eff ,F i G Gµν µ ν = −   .  That is the basis for 

the definition of effF µν  in (10.4).  

 

By inspection, ( )( )
0

Tr , 0G Gµ ν Σ    in (10.4) has the color wavefunction BBGGRR ++  

of a meson.  But look at the context in which this meson wavefunction has appeared in (10.3):  

Using selected terms from (10.3), especially ( )( )
0

Tr 0FΣ∫∫� , we see that: 
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( )( ) [ ] ( )( ) ( )( )
( ) ( ) ( )( )

1
2!0 0 0

1 1 11
[ ] [ ] [ ]2!

Tr 0 Tr , 0 Tr , 0

R R R R G G G G B B B B

F i G G i G G dx dx

i p m p m p m dx dx

µ ν
µ ν

µ ν
µ ν µ ν µ νψ γ γ ψ ψ γ γ ψ ψ γ γ ψ− − −

 Σ = − Σ = − Σ ∧ 

= − − + − + − ∧/ / /

∫∫ ∫∫ ∫∫

∫∫

� � �

�
.(10.5) 

 
So we see that the Yang-Mills magnetic fields which net-flow across closed surfaces of the 
composite, faux magnetic monopole density [ ],P idGG id G G′ = − = −  of non-abelian gauge 

theory in the form of ( )( )
0

Tr 0FΣ∫∫� , have the BBGGRR ++  color symmetry of mesons! 

 
 This is a very important finding.  Back at (3.3) we identified a puzzle:  We found that in 
non-abelian Yang-Mills gauge theory there is a non-zero net flow of magnetic fields across 

closed surfaces, 0F ≠∫∫� , yet at the same time the magnetic charge density completely vanished 

0P DF DDG= = =  just like in abelian gauge theory.  To reconcile this, we determined that the 
magnetic charge density in non-abelian gauge theory is not the elementary 0P DF DDG= = = , 
but rather is a composite faux magnetic charge density [ ],P id G G idGG′ = − = −  constructed 

from gauge fields, and particularly, that the net flux of magnetic field is given by 

[ ], 0F i G G= − ≠∫∫ ∫∫� �  in (3.3).   

 
Ever since then, we have known that non-abelian gauge theory gives rise to a non-zero 

0F ≠∫∫� , but beyond a few vague hints pointing in the possible direction of baryons and 

confinement, it has not been known what the physics of this 0F ≠∫∫�  might be.  Now, we see in 

(10.5) that ( ) [ ]( )Tr 0 Tr , 0 ~F i G G RR GG BBΣ = − Σ + +∫∫ ∫∫� � .  In other words, the composite 

faux magnetic fields which net flow across closed surfaces in non-abelian gauge theory are 

simply colorless mesons with the symmetric RR GG BB+ +  wavefunction.  Colorless 

RR GG BB+ +  mesons – which, once flavored, include such things as the pions that mediate 

nuclear interactions – are simply the 0F ≠∫∫�  faux magnetic monopole fields of Yang-Mills 

gauge theory.  That means that these effTr Tr ,iF G Gµν µ ν Σ = Σ    objects in (10.4) – which are the 

only objects which flow in and out of the monopoles – must be the mediators of interactions 
between the monopoles.  So if those monopoles are baryons as suggested by their 

[ ] [ ] [ ], , ,R G B G B R B R G+ +  wavefunctions, and if these baryons can be turned into protons and 

neutrons as well shall show how to do momentarily, then these effTr Tr ,iF G Gµν µ ν Σ = Σ    fields 

are also the mediators of the nuclear interaction.  And this also means that we should look to 

effTr Tr ,iF G Gµν µ ν Σ = Σ   when studying anything that might pass in and out of a proton or 

neutron through a closed ∫∫� surface including energies released during nuclear fusion and 

fission which of course are intimately related to nuclear binding energies. 
 

Related to this, to ensure Exclusion for the fermions in (9.8), we were forced to introduce 
a dimension-3 gauge group which we assumed to be SU(3)C.  As pointed out after (9.16), after 
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shifting the degrees of freedom using a Goldstone-like mechanism, this yielded eight associated 
gauge fields, which are bi-colored and massless, just like the strong interaction gluons.   As had 
been earlier shown at (3.5), the abelian properties of the differential geometry via 0dd =  which 
is responsible in electrodynamics for the absence of magnetic monopoles entirely, prevents 
individual gauge fields – now these eight bi-colored massless gauge fields – from net flowing 
across any closed surface of the faux magnetic monopole P′  because of 

dG R G dx dx dxτ σ µ ν
νσµ τ= =∫∫ ∫∫∫ 0� .  So in this way, these eight bi-colored massless gauge fields 

appeared to be confined.  What we now see more explicitly and deeply in (10.5) is that the only 
thing which does net flow across these closed surfaces, are mesons which possess a color 

wavefunction BBGGRR ++ .  And finally we saw at the start of this section that the faux 
magnetic monopoles themselves possess the totally-antisymmetric color wavefunction of a 
baryon, namely, [ ] [ ] [ ], , ,R G B G B R B R G+ + .  While one may think of this as color 

“confinement,” what it really says is that is that the non-abelian faux magnetic monopoles P′  
and the mesons [ ],G G  which net flow across closed surfaces of these monopoles, respectively, 

are antisymmetrically and symmetrically color neutral, and that nothing is permitted to net-flow 

across a closed monopole surface unless it has a BBGGRR ++  neutral color configuration.  So 
individual gauge fields, because they are bi-colored and not color neutral, are confined. 
 

With all of this, we see multiple symmetries which are highly reminiscent of hadron 
physics:  We are forced to introduce three fermion eigenstates which can be arbitrarily named as 
three “colors” just like the quark fields which transform non-trivially under SU(3) in the 
chromodynamic theory of strong interactions.  What is arbitrary are the names; what is not 
arbitrary is that we require three such names.  This simultaneously produces eight bi-colored 
gauge fields, also transforming non-trivially under SU(3), just as is the case for the strong 
interaction gluons, and so derives the chromodynamic requirement for a theory with three colors 
of fermion and eight bi-colors of gluon, and shows why baryons contain three quarks.  These 
gluons after using the Goldstone-like mechanism in (9.16) must become massless just like the 
strong interaction gluons.  The faux magnetic monopoles (9.21) have the antisymmetric, color-
neutral symmetry of a baryon, and so are SU(3)-invariant.  No gauge fields are allowed to net 
flow across any closed surface of this monopole, which means that the gauge fields are 
“confined” within the closed monopole surface, just like individual gluons.  Yet there is a net 
flux of a non-abelian magnetic field across the closed monopole surfaces, as we found all the 
way back in section 3.  Now, we see that these net-flowing magnetic fields have the symmetric, 
color-neutral symmetry of a meson, which means that they too are SU(3)-invariant, and that 
interactions between the faux monopoles will take place via colorless meson exchange, exactly 
as occurs in strong hadronic interactions between baryons.   

 
Or, as Jaffe and Witten make clear at page 3 of [6], “quark confinement” is evidenced 

when: 
 

“even though the theory is described in terms of elementary fields, such as the 
quark fields, that transform non-trivially under SU(3), the physical particle 
states—such as the proton, neutron, and pion—are SU(3)-invariant.” 
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This is exactly what transpires if one regards the composite faux magnetic monopole of (9.21) as 
a zero-perturbation, ground state baryon density!  Given all of these symmetries, from here we 

shall regard the monopole ( )( )
0

Tr 0P′Σ  as a ground state baryon.  And this means that (9.3), and 

specifically ( )( )Tr 0P
∞

′Σ , which contains ( )1 1
0 1 1 1J k J Jτ τ

τ τπ π π π π− −
∞ ∞− ∞− ∞−= + +  which can be 

expanded using (8.18) to reveal an exceptionally-non-linear system with perturbations up to 
infinite order in current density J and gauge field momentum k, is the physical baryon with all of 
its non-linear quark and gluon field behaviors. 
 
 Proceeding forward, we now expand the differential forms relationship for the faux 
magnetic charge density [ ] ( ),P id G G idGG′ = − = −  uncovered after (3.3) into tensor form, 

expand i iG Gµ µλ= , and then, having extracted the group generators, finally apply the SU(3) 

group relation  ,i j ijk kifλ λ λ  =  .  This yields: 

 

[ ]( )
( ) ( ) ( )( )

( ) ( ) ( )( )

, , ,

, , ,

, ,

i j i j i j i j

ijk k i j i j i j

P i G G G G G G

i G G G G G G

f G G G G G G

σµν σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

λ λ

λ

′    = − ∂ + ∂ + ∂   

 = − ∂ + ∂ + ∂ 

= ∂ + ∂ + ∂

. (10.6) 

 
Let us now assume as we have since after (9.9) that our gauge group is the simple subgroup 
SU(3) with the eight traceless generators kλ , 1...8k =  often referred to as the Gell-Mann 
matrices.  If we now take the trace of the above, given that the eight kλ  of the subgroup SU(3) 
are all traceless, Tr 0kλ = , (10.6) tells us that Tr 0Pσµν′ = . 

 
 But (9.21) has a non-zero trace, and so it is worthwhile understanding how it is that even 
when we assume an SU(3) subgroup with Tr 0kλ = , we can still end up with a non-zero trace 
equation (9.21).  The key is to closely examine (9.7), which is why we chose to display the 
intermediate terms even though we could have gone directly from (9.6) to the bottom line (9.7) 

using J µ µγ= Ψ Ψ  without showing generators or internal symmetry indexes.  The key is that 

(9.6) contains commutators ,J Jµ ν   , and so contains a very specific type of second-order 

expression for the currents Jν .  Although the generators are traceless, when any generator is 

squared and then traced, the result in the customary normalization is the non-zero ( )2
1
2Tr iλ = .  

In the intermediate terms (9.7), we see multiple sums i iλ λ  of a generator with itself.  When all 
of the anti-symmetries in these intermediate terms are accounted for, the result is the bottom line 
of (9.7) which, by the time it is worked into (9.21), reflects in a deeper way of the general result 

that ( )2
1
2Tr iλ =  is not zero. 

 
Nonetheless, (10.6) appears to contradict this non-zero trace result obtained in (9.21) 

wherein ( )Tr 0 0P σµν′Σ ≠ .  This is another puzzle.  But think about this more closely:  In (9.9) 
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we were compelled to introduce a dimension-3 gauge group to enforce exclusion for each of the 
fermion wavefunctions in (9.8).  But all we really knew is that we needed three mutually-
exclusive eigenstates and therefore required a dimension-3 gauge group.  Although we could 
have just as readily chosen SU(3)×U(1), we assumed that the gauge group could be SU(3) unless 
and until contradicted.  But now this assumption is contradicted.  Specifically, based on the 
development up to (9.8), the choice of a gauge group appeared to be non-unique.  Any 
dimension-3 group would do.  But by the time we reached (9.21), it became clear that we had a 
Tr 0Pσµν′ ≠ , i.e., that Pσµν′  must have a non-vanishing trace.  If one tries to write (9.21) in the 

same way as (10.6) to extract out an overall ijk kf λ , it cannot be done, other than by backtracking 
to (9.7).  The development from (9.7) (where this still could be done) to (9.21) removed the 
ability to do so, and in particular, that started to happen once we used (9.12) in (9.13) and 
summed spins to remove two wavefunctions using the fermion spin sum. 

 
Now, (10.6) informs us that if the gauge group is SU(3) then the trace will vanish.  So 

now, what appeared at (9.9) to be a non-unique choice of SU(3) or SU(3)×U(1) is forced by 
(9.21) in view of (10.6) to be a unique choice of SU(3)×U(1), with 0λ  used to denote the new 
U(1) generator, which now also adds one more degree of freedom to the (9.21) system.  Of 
course, we will now need to determine what this additional U(1) generator represents, and as we 
shall see, it represents the baryon number 1/ 3B =  for each of the three colored fermions 
appearing in (9.21) and may be used to more formally turn the faux magnetic monopole density 
(10.6) into a baryon density.  As we shall also see, while the gauge group SU(3) by itself is 
simply the usual color group SU(3)C of strong interaction chromodynamic theory, once this 
group gets crossed with U(1) it becomes a “modified” color group which mixes color and flavor 
because the introduction of baryon number also facilitates the introduction of the flavor-
distinguishing electric charge generator Q.  But before we discuss this, there is a more general 
point that must be made, and this has to do with topological stability. 
 
 Cheng and Li point out at 472-473 of [17] that “topological considerations lead to the 
general result that stable monopole solutions occur for any gauge theories in which a simple 
gauge group G is broken down to a smaller group H = h × U(1) containing an explicit U(1) 
factor.”  Further, “the stable grand unified monopole . . . is expected to have both the ‘ordinary’ 
and the colour magnetic charges.”  So, while SU(3) alone is incapable of supporting a 
topologically-stable colored magnetic monopole, the group SU(3)×U(1) – when understood to be 
the residual group following symmetry breaking of a larger simple grand unified gauge group 

SU(3)×U(1)G ⊃  – will support topologically stable configurations.  This is an essential 
requirement if the faux monopole (10.6) can ever be regarded as a physically-stable entity like a 
baryon, and especially a distinctively-stable proton, and a neutron which is comparatively stable 
when free, and very stable when part of many lighter atomic nuclei. 
 
 Weinberg makes a similar point to Cheng and Li in his definitive treatise [18] at 442: 
  

“The Georgi-Glashow model was ruled out as a theory of weak and 
electromagnetic interactions by the discovery of neutral currents, but magnetic 
monopoles are expected to occur in other theories, where a simply connected 
gauge group G is spontaneously broken not to U(1), but to some subgroup 
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H’×U(1), where H’  is simply connected. . . .  There are no monopoles produced in 
the spontaneous breaking of the gauge group SU(2)×U(1) of the standard 
electroweak theory, which is not simply connected. . . .  But we do find 
monopoles when the simply connected gauge group G of theories of unified 
strong and electroweak interactions, such as SU(4)×SU(4) or SU(5) or Spin(10), is 
spontaneously broken to the gauge group SU(3)×SU(2)×U(1) of the standard 
model. . . .” 

 
Consequently, not only does (9.8) force us to uniquely select a dimension-3 gauge group 

to enforce Exclusion on the faux magnetic monopole density of (9.8), but the non-vanishing trace 
of (9.21) forces us into the specific, unique selection of SU(3)×U(1) over SU(3).  This then 
ensures that these faux monopoles will be topologically stable so long as we arrive at this 
product group following the spontaneous symmetry breaking of a larger simple gauge group 

( 4) SU(3)×U(1)G SU N= ≥ ⊃ , as yet undetermined.  Topologically speaking, referring again to 
Weinberg’s [18] at 442, the homotopy groups associated with this symmetry breaking would be: 
 

( ) ( ) ( ) ( ) ( )2 1 1 1 1/ (3) (1) (3) (1) (3) (1) (1)G SU U SU U SU U U Zπ π π π π× = × = × = = . (10.7) 

 
So there are really two questions raised by the non-vanishing trace in (9.21).  First, as already 
stated, what is the physical meaning of the new U(1) generator?  Second, what is the larger group 

( 4) SU(3)×U(1)G SU N= ≥ ⊃  from which we arrive at SU(3)×U(1) following symmetry 
breaking so as to achieve topological stability?  There is also a third question, not yet apparent, 
but linked to the first question, which is this: what is the meaning of the (3)SU  group which is 
multiplied by the new U(1) gauge group as part of (3) (1)SU U× , and how does this relate to the 
usual color group SU(3)C? 
 
 For the new U(1) group which provides topological stability, the generator 0λ  must be a 

constant multiple of the 3x3 identity (unit) matrix 3 3I × .  If we normalize this to ( )20 1
2Tr λ =  just 

like all the other generators, then we must have 0 1
3 36

Iλ ×= .  Taken together with the two 

remaining diagonalized generators of SU(3) normalized to ( )2
1
2Tr iλ = , we have: 

 

0 8 3

1 0 0 2 0 0 0 0 0
1 1 1

0 1 0 ; 0 1 0 ; 0 1 0
26 2 3

0 0 1 0 0 1 0 0 1

λ λ λ
     
     = = − =     
     − −     

. (10.8) 

 
But that is only the mathematics: now we need a physical interpretation for 0λ .  Because 

each of the three fermion eigenstates in (9.9) will have identical 0λ  eigenvalues, because the 
monopole in (9.21) exhibits many of symmetries of a baryon and the fermions exhibit many of 
the symmetries of quarks, it would appear fruitful to assign the U(1) generator to baryon number 
B according to: 
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1
3

01 1 1
3 33 36

1
3

0 0

2 0 0

0 0

B Iλ ×

 
 ≡ = =  
 
 

. (10.9) 

 
This is our first explicit introduction of flavor into the color eigenstates that were introduced at 
(9.9).  Following (10.9), the monopole (9.21) will now have 1B =  and each of the R, G, B 
fermions will now have 1

3B = , which brings these even a step closer to being identifiable with 

baryons and quarks.  
 
Next, if these monopoles (9.21) are to be baryons and the fermions are to be quarks, let us 

see if there is some way to identify the electric charge Q of these baryons, and specifically to 
produce a proton with 1Q = +   which has a duu configuration of quark flavors, and a neutron 

with 0Q =  which has a udd configuration of quark flavors, wherein the up (u) quark has 2
3Q = +  

and the down (d) quark has 1
3Q = − . 

 
For the proton, we may form the combination: 

 
1 2 1
3 3 3

8 1 1 2
3 3 3

1 1 2
3 3 3

0 0 0 0 0 0
2

0 0 0 0 0 0
3

0 0 0 0 0 0
PQ B λ

−     
     ≡ − = − − =     
     −     

, (10.10) 

 
Following (10.9), each of the R, G, B colored fermions in (9.9) has a flavored baryon number 

1
3B = .  Now, with (10.10), the red color of fermion is assigned 1

3Q = −  and so is a down flavor 

of fermion in addition to its red color assignment, the green and blue colors of quark are assigned 
2
3Q = +  and so are up flavors of fermion in addition to their green and blue color assignments.  

So the SU(3)×U(1) quark triplet is now ( ), ,R G Bd u µ .  Further, the entire faux monopole 

( )( )
0

Tr 0P σµν′Σ  of (9.21) which comprises all of these fermions has a baryon number 1B =  and 

an electric charge 1Q = +  and so is a proton-flavored baryon with the color-neutral wavefunction 

[ ] [ ] [ ], , ,R G B G B R B R G+ + .  To use a parlance familiar from electroweak theory, we see in 

(10.10) that the electric charge generator for the proton and for the quarks within the proton sit 
across baryon number B and the 8λ  color generator, that is, they sit across SU(3)×U(1) in a non-
compact manner.  In similar fashion, in electroweak theory a U(1)Y generator is crossed with the 
three SU(2)W isospin generators iI , 1,2,3i =  to form SU(2)W×U(1)Y with the (left-chiral) quark 

doublets having the U(1)Y 2x2 weak hypercharge matrix generator 223
1

xIY = , the (left-chiral) 

lepton doublets having the 2x2 weak hypercharge matrix generator 221 xIY −= , and a non-

compact embedding of the electromagnetic group with charge generator 32/ IYQ +=  sitting 
across SU(2)W×U(1)Y. 
 
 For the neutron it is even simpler.  We simply make the compact assignment: 
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2
3

8 1
3

1
3

0 0
2

0 0
3

0 0
NQ λ

 
 ≡ = − 
 − 

. (10.11) 

 
Here, all of the fermions still have baryon number 1

3B = .  But now the red fermion is assigned 
2
3Q = +  thus is an up flavored-fermion, the green and blue fermions are assigned 1

3Q = −  and so 

are down flavored.  So the quark triplet is now ( ), ,R G Bu d d .  The overall faux monopole of 

(9.21) now has baryon number 1B =  and electric charge 0Q =  and so is a neutron-flavored 
baryon.  So the electric charge generator for the neutron and its quarks is compactly-embedded in 

8λ  which now serves the dual role of one of two SU(3)C generators and the electric charge 
generator.   
 

Of course, the fact that we must employ a different charge assignment (10.10) for the 
proton than (10.11) for the neutron is symptomatic that there is a larger yet-to-be-found gauge 
group which encompasses the SU(3)×U(1) group developed in (10.8) through (10.11).  That is 

82
3PQ B λ= −  and 82

3NQ λ=  is not invariant whereby one relationship, not two, defines the 

relationship between the electric charge and the group generators.  This disconnection between 
the proton and neutron electric charges is analogous to how in electroweak theory, the 1

3qY =  for 

the quark (q) doublets is disconnected from the 1lY = −  lepton (l) doubles which there too, 

signifies the need for a larger unifying group.  So the question is now raised: what is the nature 
of the gauge group that provides a unified basis for the proton and neutron electric charges Q, 
and can this same group also provide the basis for unifying the separate Y charges as between 
quarks and leptons while also dealing with chiral symmetry (breaking) issues?   
 

While we shall not explore this here, the author has studied these exact questions in [19] 
and shown how a simple SU(8) group with the fundamental fermion multiplet 
( ), , , , , , ,R G B R G Bu d d e d u uν  provides a complete unification which breaks down at low energies to 

the phenomenological SU(3)C×SU(2)W×U(1)Y with protons and neutrons, and at the same time – 
because two of the diagonalized SU(8) generators themselves become “fractured” apart from the 
other five diagonalized generators during symmetry breaking – leads to an explanation of why 
the known fermions appear to exist in exactly three generations, which answers Isador Rabi’s 
famous quip about the muon “who ordered this?”  That is because these two “fractured” 
generators provide the precise freedom needed to accommodate three horizontal generational 
eigenstates. 
 
 But what we now know from the development within this paper and specifically (10.10) 
and (10.11) is that the SU(3)C group which we introduced at (9.9) to enforce Exclusion actually 
becomes modified into a hybrid color and flavor group in view of the requirement to use 
SU(3)×U(1) because of the non-vanishing trace in (9.21).  We shall thus refer to this as a “flavor-
enhanced color group” which we denote generally by SU(3)C’.  When we use this group to 
represent a proton (P) quark triplet ( ), ,R G Bd u µ  with the charge assignments (10.10) we shall 
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further denote this by SU(3)PC’, while when we use this to represent a neutron (N) quark triplet 
( ), ,R G Bu d d  with the charge assignments (10.11) we shall denote this by SU(3)NC’.  Finally, in 

all cases, the U(1) factor is associated with baryon number B, so we shall denote this as U(1)B.  
So to summarize, once the U(1) factor is in place, the group developed thus far is SU(3)C’×U(1)B.  
For protons it is specialized via (10.10) to SU(3)PC’×U(1)B.  For neutrons it is specialized via 
(10.11) to SU(3)NC’×U(1)B.   
 

Next, keeping in mind (10.7), it also becomes important to find a larger simple gauge 
group C'( 4) SU(3) ×U(1)BG SU N= ≥ ⊃  which breaks down spontaneously to SU(3)C’×U(1)B.  

As the author details in section 7 of [15], there are two disconnected (4)G SU=  groups, but we 

are able to use 158
3B L λ− ≡ −  as the generator of baryon minus lepton number for both.  This 

follows Volovok from [20] Section 12.2.2 who also uses the 15λ  of SU(4) for a B L−  generator, 
but in the context of a preon model.  The first group, denoted SU(4)P, places the proton’s quarks 
and the electron into a ( ), , ,R G Be d u u  quadruplet in the fundamental representation.  The second 

group, denoted SU(4)N, places the  neutron’s quarks and the neutrino into a ( ), , ,R G Bu d dν  

quadruplet in the fundamental representation.  Then, each of these disconnected proton and 
neutron groups gets broken at GUT energies via C'(4) SU(3) ×U(1)B L BG SU −= →  to produce the 

stable magnetic monopole baryons via: 
 

( ) ( ) ( ) ( ) ( )2 ' 1 ' 1 ' 1 1(4) / (3) (1) (3) (1) (3) (1) (1)B L C B C B C B BSU SU U SU U SU U U Zπ π π π π− × = × = × = = .(10.7) 

 
Then, as the author details throughout [19], the disconnected SU(4)N and SU(4)P groups 

become unified together in the ( ), , , , , , ,R G B R G Bu d d e d u uν  of SU(8) mentioned moments ago, 

such that two of the seven generators (48λ  and 35λ ) become fractured from the remaining 
generators between the Planck and the GUT energy scales to provide the “horizontal” degrees of 
freedom needed to accommodate replication of the fermions into three generations, and there is 
also just enough freedom provided to also support chiral symmetry breaking.  Additionally, all of 
the observed features of left-chiral Cabibbo / CKM mixing naturally emerge.  The overall 
sequence of symmetry breaking is: 
   

(8) (6) (2) (3) (2) (1) (3) (1)
LB L C W Y B L C emSU SU SU SU SU U SU U= −→ × → × × → × . (10.12) 

 
Simultaneously with and as part of the (8) (6) (2)B LSU SU SU→ ×  symmetry breaking, the two 

isospin-differing C'(4) SU(3) ×U(1)B L BSU − →  symmetry breaks also take place to form the 

topologically-stable proton and neutron.  There is also an earlier breaking of 
(8) (7) (1)SU SU U→ ×  at or near Planck energies which separates the neutrino from all the other 

fermions right at the very start and causes the neutrino to behave very differently from all the 
other fermions as it clearly does at observable energies.  The symmetry breaking sequences 
found in [19] are then utilized in [21] to explain the observed proton and neutron masses 
themselves in relation to the current up and down quark masses and the CKM mixing matrices 
based on [16], within all experimental errors. 



Jay R. Yablon 

76 
 

 
 Next, let us return to (9.4) where we set the perturbation to 0V =  in (9.2).  Because 

everything that has been developed since (9.2), most notably the ( )( )
0

Tr 0P σµν′Σ  monopole / 

baryon of (9.21) was developed for 0V = , the question may be asked whether all of these results 
carry through when we no longer set 0V =  but allow all of the perturbations to occur.  Section 8 
answers this question.  What we learn in section 8 is that including perturbations really means 

recursing ( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + +  as many times as one chooses, then cutting 

off the recursion by setting 0V G k G Gτ τ
τ τ= − − =  at some chosen recursive order.  Of course, 

recursing to some order n and then setting V=0 as in (8.17) and (8.18) to arrive at a ( )( )0
n
 

expression is a calculation technique.  But it is to be expected that nature does not cut off the 
recursion at all, but rather, recurses to infinity before setting 0V = , so that G Jµ µπ ∞=  as in 

(8.20).  So if the monopole ( )( )
0

Tr 0P σµν′Σ  of (9.21) is the ground state of the baryon, it will be 

the infinite recursion of (8.20), not some arbitrarily truncated recursion, which will drive what 

nature herself does in physical reality.  This means that (9.3) in the form ( )( )Tr 0P σµν
∞

′Σ , is 

really the equation for the physical baryon, with a teeming non-linear mix of quarks and gauge 
fields in a “sea” perturbating through all finite orders up to infinite order, which is exactly what 
one observes in the complex composite system that is a proton or a neutron or any other baryon. 
 
 Finally, although (9.21), if it represents a baryon, only does so in the zero-perturbation, 
no-recursion limit, it is important to ask whether there is anything about this limit that is 
observed in nature.  Put differently, while cutting off the perturbations at the zeroth recursive 
order may see arbitrary, it is the only order beside infinite order that would seem to have some 
distinctive claim to not being arbitrary.  And so we raise the question whether there are any 
phenomena observed in nuclear or particle physics which manifest the linear, non-perturbative 

behavior of the ( )( )
0

Tr 0P σµν′Σ  baryon (9.21)?  To use an analogy, although gravitation is a 

highly non-linear theory, we do observe certain aspects of the linear behavior of gravitation 
theory in the real world, namely, whenever we observe what was first discovered by Keppler and 
Newton.  So while we would most certainly need to describe the complete proton and neutron 
and other baryons without removing the perturbations from (9.2) a.k.a. (9.3), we should also look 
to see if certain aspects of nuclear behavior that might be very-definitively described by the 
“linear approximation” (9.21). 
 

 In this regard, ( )( )eff 0
0F µν  in (10.4) is very important for pursuing experimental 

validation, because it does describe what “effectively” net flows in and out of the closed 
monopole surfaces in the ground state linear theory.  Specifically, it is well-known that one can 
calculate electrodynamic energies from the pure gauge field 1

gauge 4 F Fστ
στ= −L  by using this in 

3
gaugeE d x= −∫∫∫L .  So one should do a similar exercise using what in non-abelian theory 

becomes the Lagrangian density ( )1
gauge 2 Tr F Fστ

στ= −L , using ( )( )eff 0
0F µν .  If we compare 

(10.4) which is a trace equation to (9.21) which is another trace equation from which it was 
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derived, then by backtracking to (9.20), we see that (we have now removed the Σ  spin sum 
designation, which now is taken to be implied): 
 

( )( )
( )

( )
( )

1

[ ]

1

eff [ ]0
1

[ ]

0 0

0 0 0

0 0

R R R R

G G G G

B B B B

p m

F i p m

p m

µ ν

µν µ ν

µ ν

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

−

−

−

 −/ 
 = − −/
 
 −/ 

.(10.13) 

 
This is now a 3x3 matrix expression with all diagonal elements.  From this, there are two trace 

expressions that can be formed.  One is ( )Tr F Fστ
στ which is what is usually found in the Yang-

Mills Lagrangian density.  The other is Tr TrF Fστ
στ .   

 
It turns out as the author has detailed in sections 11 and 12 of [15], and greatly expanded 

upon throughout [16], that the expression (10.13) when used in 3
gaugeE d x= −∫∫∫L  with a 

combination of ( )Tr F Fστ
στ  and Tr TrF Fστ

στ  inner and outer products, can be used to retrodict 

nuclear binding energies, including the heretofore unexplained binding energies of the lightest 
nuclides 2H, 3H, 3He and 4He, as well as the 56Fe binding energy, with parts per 105 or even 106 
AMU precision, and the neutron minus proton mass difference to under one part per million 
AMU.  Note that in general, the trace of a product of two square matrices is not the product of 
traces.  The only circumstance in which “trace of a product” equals “product of traces” is when 
one forms a tensor outer product using ( ) ( ) ( )Tr Tr TrA B A B⊗ = , and as shown in [16] the 

observed binding energies contain both inner and outer products.  This line of development in 
sections 11 and 12 of [15] and throughout [16] also explains why the per-nucleon binding energy 
seems to be limited for any nucleus to a maximum of about 8.75 MeV for 56Fe, and yields a 
dynamical, energy-based understanding of confinement.   
 

While all of the formal understandings of the color symmetries of baryons and mesons 
and quarks are important, direct experimental validation is even more important.  It is the 
experimental concurrences that can be confirmed starting with (10.13) to perform various energy 

calculations 3
gaugeE d x= −∫∫∫L  with ( )Tr F Fστ

στ  and Tr TrF Fστ
στ , that leads to the direct 

phenomenological confirmation that the faux magnetic monopoles of non-abelian gauge theory 
really are baryons including protons and neutrons. 
 
PART II: QUANTUM YANG-MILLS THEORY 
 
11. Quantum Yang-Mills Theory: Exact Analytical Path Integration  
 
 Finally, let us make use of the recursion developed in section 8, and particularly the 
substitution ( )1 1

0 1 1 1G J k J J Jτ τ
µ τ τ µπ π π π− −

∞− ∞− ∞−→ + +  from (8.20) in lieu of the usual 

/G Jµ
µ δ δ→ , to perform an exact analytical deduction of the quantum path integral associated 
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with the classical field equation ( )J g D D D D Gν νσ τ σ ν
τ σ− = −  of (5.15) in order to “prove that 

for any compact simple gauge group G, a non-trivial quantum Yang–Mills theory exists on 4� ,” 
see page 6 of Jaffe and Witten’s [6]. 
 
 In abelian gauge theory, the classical electric charge field equation is of course 
* *J d dG=  which is an abelian subset equation embedded in (1.12).  When fully expanded for a 

massive boson this becomes the abelian ( )( )2J g m Gν νσ τ σ ν
τ σ− = ∂ ∂ + − ∂ ∂  of (5.15).  The 

related action after integration-by-parts is thus ( ) ( )( )21
2S G G g m G J Gµν σ µ ν µ

µ σ ν µ= ∂ ∂ + − ∂ ∂ + , 

and this is what is used in the path integral ( ) ( )4exp expZ DG i d xS G iW J= ≡∫ ∫  to deduce the 

quantum amplitude ( ) ( )( ) ( ) 144 21
2 / 2W J d k J k k m i Jσ σ

σ σπ ε
−

= − +∫  with iε+  using the 

contextual reduction that also occurs from the continuity relation 0k Jν
ν =  as reviewed at length 

in section 6 and 7.  If we use the terminal condition ( ) 12
0 k k m iτ

τπ ε
−

= − +  of the (8.20) 

recursion, then this simplifies to ( ) ( )( )441
02 / 2W J d k J Jσσπ π= ∫ . 

 
 In non-abelian gauge theory the classical electric charge field equation is the entirety of 

(1.12), that is * *J D DG=  which as shown expands to ( )( )2J g D D m D D Gν νσ τ σ ν
τ σ− = + −  

derived in (5.15).  Without going through a detailed exposition of how to derive the associated 
Lagrangian because this is well-known, it will be appreciated that as the result of this exercise 
the non-abelian action will found to be: 
 

( ) ( ) ( )( )
( )( ) ( )( )

4 4 2

4 2

, , Tr 2

Tr 2 2

S G J d x G J d x G g D D m D D G J G

d x G g iG G G m iG G G G G G J G

µν τ ν µ τ
µ τ ν τ

µν τ τ τ ν µ ν µ ν µ ν µ τ
µ τ τ τ ν τ

 = = + − +
 

 = ∂ ∂ − ∂ − + − ∂ ∂ − ∂ − + +  

∫ ∫

∫

L

,(11.1) 

  
where we have also included (5.16) and (5.17).  
 
 When we now take the next step of using this action in ( )exp ,Z DG iS G J= ∫ , there are 

two new issues that come into play which are not present in the abelian gauge theory.  The first is 
that the non-abelian gauge transformation ,G G G i Gν ν ν ν νθ θ′  → = + ∂ −   gives rise to ghost 

fields due to the introduction of the additional term ,i Gν θ −    into the integration measure DG  

in order to ensure that Z Z Z′→ =  remains invariant under this gauge transformation, and so we 
need to employ †DGDcDc  not just DG  as the integration measure.  But the second issue is that 
even before we get to worrying about ghost fields, it is simply not known, as a mathematical 
matter, how to use an expression like (11.1) in a path integral to calculate: 
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( )( )
( )( )

( )

4 2

2

4

exp Tr 2

exp Tr 2
2

Z DG i d x G g D D m D D G J G

g iG G G m
DG i d x G G J G

iG G G G G

µν τ ν µ τ
µ τ ν τ

µν τ τ τ
τ τ τ τ

µ ν τν µ ν µ ν µ µ ν

 = + − +
 

  ∂ ∂ − ∂ − +
  = +
  − ∂ ∂ − ∂ − +   

∫ ∫

∫ ∫
. (11.2) 

 
This is because, as will be apparent from studying the lower expression in (11.2), this is a fourth-
order polynomial in G, but known mathematical techniques for calculating integrals of this form 

use the second order ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫ .  Why?  Put plainly and 

simply, it is known how to calculate ( )21
2expdx Ax Jx− −∫ , but not how to calculate the higher 

order ( )4 3 21
2expdx Bx Cx Ax Jx+ − −∫ .  To date, this is an intractable mathematics problem.  

Normally, of course, the approach is to turn every gauge field inside the configuration space 

operator ( )2g D D m D Dµν τ µ ν
τ + −  into a current term /G Jµ

µ δ δ→  via ( ) /G G J Jν µ
µ νδ δ=  

and then use (8.25) to apply ( )( )exp /V Jδ δ−  to ( )11
2exp J K J−⋅ ⋅  the latter of which is 

obtained in the usual way from ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫ . 

 
 But now the recursion developed in section 8 gives us a new mathematical approach.  
Now, we are able to use (8.20) to turn every occurrence of G inside ( )2g D D m D Dµν τ µ ν

τ + −  

into a function solely of ( ),G J k  via ( )1 1
0 1 1 1G J J k J J Jτ τ

µ µ τ τ µπ π π π π− −
∞ ∞− ∞− ∞−= = + +  with the 

abelian terminal condition ( ) 12
0 k k m iτ

τπ ε
−

= − + .  None of G Jµ µπ ∞→  these contains Gµ !  So, 

making this replacement in (11.2), we now have: 
 

( )( )
( )( )

( )
( )( )

4 2

2

4

2

4

exp Tr 2

exp Tr 2
2

exp Tr
2

Z DG i d x G g D D m D D G J G

g iG G G m
DG i d x G G J G

iG G G G G

g i J J J m
DG i d x G

i J J J J

µν τ ν µ τ
µ τ ν τ

µν τ τ τ
τ τ τ τ

µ ν τν µ ν µ ν µ µ ν

µν τ τ τ
τ τ τ

µ ν µ ν µ ν µ ν

π π π

π π π π π

∞ ∞ ∞

∞ ∞ ∞ ∞

 = + − +
 

  ∂ ∂ − ∂ − +
  = +
  − ∂ ∂ − ∂ − +   

∂ ∂ − ∂ − +
=

− ∂ ∂ − ∂ − +

∫ ∫

∫ ∫

∫ ( )
( )( )2

4

2

exp Tr 2
2

i k

G J G
J

g k k J k J J m
DG i d x G G J G

k k J k J J J J

τ
ν τµ

µν τ τ τ
τ τ τ τ

µ ν τ
ν µ ν µ ν µ ν µ

π π π

π π π π π

∞

∂→ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

  
   +
  
   

  − + + −
  ⇒ +
  + + + −  

∫

∫ ∫

. (11.3) 

 
 Lo and behold, we have removed all the gauge fields from the path integral except for 

( )...G Gµν
µ ν  and J Gτ

τ .  This leaves us with the tractable quadratic form 
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( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫ .  So we can integrate (11.3) analytically and 

exactly, so long as we know the inverse for ( ) ( )2... g D D m D Dµν µν τ µ ν
τ= + −  or any of its other 

variants in (11.3).  But this, of course, was a central focus of what we studied in section 6 and 7, 
and this was one of the reasons we studied this so closely.  Particularly, for the field equation 

( )( )2J g D D m D D Gν νσ τ σ ν
τ σ− = + − , as seen in (8.19), with the context afforded by the 

continuity relation 0D Jσ
σ = , the inverse solution is simply G Jµ µπ ∞= .  So we recognize 

immediately that the exact analytical solution to (11.3) is: 
 

( )( )
( )( )

( )( ) ( ) ( )

4 2

2

4

44 1
2

exp Tr 2

exp Tr 2
2

exp / 2 Tr exp

Z DG i d x G g D D m D D G J G

g k k J k J J m
DG i d x G G J G

k k J k J J J J

i d k J J iW J

µν τ ν µ τ
µ τ ν τ

µν τ τ τ
τ τ τ τ

µ ν τ
ν µ ν µ ν µ µ ν

σ
σ

π π π

π π π π π

π π

∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

∞

 = + − +
 

  − + + −
  = +
  + + + −  

= ≡

∫ ∫

∫ ∫

∫

. (11.4) 

 
This, again, is an exact analytical solution.  Expressed directly in terms of the amplitude and 
using (8.18), this means that: 
 

( ) ( ) ( ) ( )( )
( )

4 4 4 1 1
0 1 1 1

12
0

2 Tr Tr

                                                                                                

W J d k J J d k J J k J J J

k k m i

σ τ τ σ
σ σ τ τ

τ
τ

π π π π π π

π ε

− −
∞ ∞− ∞− ∞−

−

 = = + +

 = − +

∫ ∫
. (11.5) 

 
 If it is desired to see explicitly how this gives us the non-linear propagator and current 
and momentum terms that we expect to find in a Yang-Mills path integral, it suffices, just for 
illustration, to examine the amplitude ( )

2
W J  for a second-order recursion, using the terminal 

condition ( ) 12
0 k k m iτ

τπ ε
−

= − + .  This is (cf. (8.5)): 
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( ) ( ) ( )
( )

( ) ( )

4 4 4 1 1
2 0 1 1 12

1 1 1
0 0 0 0 04 1

1 1 1 1
0 0 0 0 0 0 0 0

2

2

4

2 Tr Tr

Tr

Tr

W J d k J J d k J J k J J J

J k J J J k
d k J J

J k J J J J k J J J

k k m i

J
k k m i

d k J

σ τ τ σ
σ σ τ τ

τ τ τ
τ τ τ σ

σ τ τ τ τ τ
τ τ τ τ τ

τ
τ

τ
τ

σ

π π π π π π

π π π π π

π π π π π π π π

ε

ε

− −

− − −

−

− − − −

  = = + +   

  + + +
  =
  + + + + +  

− +

+ − + +

=

∫ ∫

∫

( )

( )

( )

1
22 2

1

2 1
22 2

2 1
22 2

k J J
J k

k k m i k k m i

JJ k J J
k k m i J

k k m i k k m i

J k J J
k k m i J

k k m i k k m i

τ τ
ττ τ

ττ τ
τ τ

στ τ
τ τ τ

τ ττ τ
τ τ

τ τ
τ ττ τ

τ τ τ
τ τ

ε ε

ε
ε ε

ε
ε ε

−

−
−

−

  
  

   
   +
 − +  − +   

   
   + − + + +   − + − +   
  

   
   × − + + +
 − +  − +  

















∫
. (11.6) 

 
With this being only the second-order recursion, it will be appreciated how this will expand 
rapidly in a highly-nonlinear way to include all orders of J, k, m and iε+ , right through infinity 
for ( ) ( )W J W J

∞
≡ .  For doing practical calculations, including those with computers, one can 

use expressions with a few more orders of recursion to obtain results fairly close to those that 
would be obtained upon an infinite recursion, assuming convergence.  So let us now look at that. 
 
 We can ascertain the general trend toward convergence or divergence simply using the 

1n =  recursive order, because as we have seen here and in section 8, the basic pattern for higher 
orders is already established at first order.  For ( )

1
W J  we have: 

 

( ) ( ) ( )

( )
( ) ( )

( )

4 4 4 1 1
1 0 0 0 01

4 2 1
22 2

32 2

4 1
22

2 Tr Tr

Tr

Tr

W J d k J J d k J J k J J J

J k J J
d k J k k m i J

k k m i k k m i

k k m i k k m i J k J J
d k J J

k k m i

σ τ τ σ
σ σ τ τ

τ τ
τ στ τ

σ τ τ τ
τ τ

τ τ τ τ
τ τ τ τ σ

σ τ
τ

π π π π π π

ε
ε ε

ε ε

ε

− −

−

−

  = = + +   

  
  = − + + +
  − + − +   

  − + + − + +
  =
  − +  

∫ ∫

∫





∫

. (11.7) 

 
Given i i

AB ABJ J Jµ µ µλ= =  for SU(3)×U(1) has dimension 3 at the same time that 

( ) ( )3 32 2
ABk k m i k k m iτ τ

τ τε δ ε− + = − +  sits on the 3x3 diagonal, a naive look at (11.7) tells us 

that the dominant term in the numerator will be ( )32k k m iτ
τ ε− +  for ( )22J k k k m iτ τ

τ τ ε< − +  
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and ( )32J J k k m iτ τ
τ τ ε< − + .  But when considering the matrix equations, a more precise 

statement would say that ( )32k k m iτ
τ ε− − +  represents eigenvalues of 

( )2k k m i J k J Jτ τ τ
τ τ τδ ε≡ − + + , and will dominate when these eigenvalues are larger rather than 

smaller.  In the case where J kτ
τ  and J Jτ

τ  are small and substantially negligible in relation to 

( )22k k m iτ
τ ε− +  and ( )32k k m iτ

τ ε− + , the overall expression (11.7) will be: 

 

( ) ( ) ( )
( )

32
4 4 1 4

2 21 2

1
2 Tr Tr

k k m i
W J d k J J d k J J

k k m ik k m i

τ
τ σ σ

σ σ ττ
ττ

ε δ
π

εε
−

  − + +    = ≅     − + − +   
∫ ∫ , (11.8) 

 
which is of the same form as the abelian propagator.  So the solution (11.6) would appear to be 
fully convergent (or, at least no more divergent than the abelian path integral) for J kτ

τ  and J Jτ
τ   

which are small in comparison to eigenvalues which are specific powers of 2k k m iτ
τ ε− + .  It is 

also worth noting that the positive sign in (11.8) is the quantum field explanation for why the 
electromagnetic force between like charges is repulsive.  In electrodynamics this means that like 
charges repel. In chromodynamics this means that charges of the same color repel, e.g., red 
repels red, etc., which is another way of viewing Exclusion. 
 
 Finally, because (11.5) is an exact analytical calculation using a closed recursive kernel, 
per [6] page 6, this “prove(s) that for any compact simple gauge group G, a non-trivial quantum 
Yang–Mills theory exists on 4

� .” 
 
12. The Baryon Candidate Lagrangian Density and Action 
 
 The quantum path integral for the non-abelian ( )W J  derived in (11.5) is for the current 

density i i i i
CAB AB CD DJ Jµ µ µ µλ λ λ γ γ= = Ψ Ψ ≡ Ψ Ψ  of a dimension-3 column vector of fermion 

wavefunctions which we were required by Exclusion to introduce at (9.9) and which we named 
with Red, Green and Blue eigenstates.  As stated between (10.5) and (10.6), what is arbitrary are 
the names.  What is not arbitrary is that we require three such names.  At (9.21) and in the 
opening discussion of section 10 we showed that the faux monopole density P σµν′  has the 
colorless SU(3)-invariant antisymmetric wavefunction R G B∧ ∧  of a baryon, and at (10.5) we 
found that the only fields which net flow across closed surfaces of these monopoles have the 

SU(3)-invariant symmetric wavefunction BBGGRR ++  of a meson.  It was on this basis, as 
well as the topological discussion in section 10 which led to additional flavored associations of 
these monopoles with protons and neutrons, that we have identified these faux monopoles P σµν′ , 
at least at the classical level, with a baryon density, and thus the colored fermions with quarks.  
We shall sometimes refer to these as “candidate” baryons and quarks. 
 

As stated at the end of section 4, it is certainly unrealistic to expect that a classical-only 
treatment of baryons based on Yang-Mills magnetic monopoles will explain all of the observed 
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phenomenology of baryons.  Nonetheless, finding the complete and correct quantum description 
of baryons begins by finding and fleshing out, the right classical theory to quantize.  Sections 10 
and 11 advance the thesis that the right classical theory is one in which these non-abelian faux 
monopoles P σµν′  – which arise as the underlying density behind a non-vanishing Yang-Mills 

magnetic field flux 0F ≠∫∫�  which we showed in section 11 has a BBGGRR ++  meson 

wavefunction – are taken to be classical baryons.  So having found and suitably developed a 
candidate for the right classical theory to quantize, it is now time to quantize that theory.   

 
As made clear in (5.9), the classical theory can be summarized in two Gauss’ / Stokes’ 

integral equations which are the non-abelian generalization of Maxwell’s equations.  One is for a 
net flow * 0F ≠∫∫�  of a non-abelian electric field across closed surfaces, sourced by the 

elementary, non-composite electric charge and current density three-form 

[ ]* * * ,* ,J d dG iG dG G G G = − −   , see the third line of (5.7).  The other is for a net flow 

0F ≠∫∫�  of a non-abelian magnetic field across closed surfaces sourced by the faux magnetic 

density three-form [ ],P idGG id G G′ = − = −  which arises as a non-elementary, composite 

function of the gauge fields G in turn sourced by *J.  We have already obtained the highly-non-
linear quantum amplitude  ( )W J  in (11.5) which characterizes the quantum interactions of the 

non-abelian electric currents J µ µγ= Ψ Ψ  and thus, of the quark eigenstates Rψ , Gψ , Bψ .  That 

is, ( )W J  is the quantum amplitude / potential energy, in momentum space, for quark 

interactions.  We now seek ( )W P′  which, if [ ],P idGG id G G′ = − = −  is indeed a baryon 

density, would be the quantum amplitude for baryon interactions.  Because we have shown later 
in section 10 that these classical baryons can also be made topologically stable and given the 
flavored properties of protons and neutrons, finding ( )W P′  would lay the foundation for 

developing a quantum field theory description of nuclear interactions.  So let us proceed. 
 
The classical field equation for a Lagrangian density L  with a gauge field Gν  is of 

course given by the Euler-Lagrange equation: 
 

( )0
G Gσ

σ ν ν

 ∂ ∂= ∂ −  ∂ ∂ ∂ 
L L . (12.1) 

 
The first step is to obtain the Lagrangian density ( )P′L  for the monopole density 

[ ],P idGG id G G′ = − = − , that is, to find an ( )P′L  which causes (12.1) to be one and the same as 

the classical field equation [ ],P idGG id G G′ = − = − .  We implicitly did the same thing prior to 

(11.1) for ( )JL  and the classical field equation ( )( )2J g D D m D D Gν νσ τ σ ν
τ σ− = + −  without 

going through the detailed exercise of doing so via (12.1) because it is already well-known how 
to do this.  But for [ ],P idGG id G G′ = − = −  we shall trace through the entire exercise because 
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this does not appear to be known and certainly it does not appear that [ ],P idGG id G G′ = − = −  

has ever before been regarded as the classical field equation for a baryon.  The second step is to 
then write down the monopole / baryon action ( ) ( )4, ,S G P d x G P′ ′= ∫ L  parallel to what we did 

in (11.1) for the electric charge / quark field action.  And the final step is to do the path integral 

( )exp ,Z DG iS G P′= ∫  and thus deduce the quantum amplitude ( )W P′  for the baryon field as 

we did in the balance of section 11 to find ( )W J .  The advantage we now have in view of 

section 11, is knowing that a clever use of recursive kernel G Jµ µπ ∞=  from (8.20) will enable us 

to replace some of the gauge fields Gµ  with current densities Jµ to maintain a quadratic form 

expression which can then be integrated exactly and analytically.  And, given this, and studying 

(11.5), we anticipate that the amplitude we obtain will really be ( )( )( ), , , , ,R G BW P J k mψ ψ ψ ε′ , 

which will describe the quantum interactions of a baryon in a fashion which includes their quark 
fields , ,R G Bψ ψ ψ  as well as their gauge fields as represented kτ . 

 

 For ( )( )2J g D D m D D Gµ µν τ ν µ
τ ν− = + −  which is the electric charge / quark current 

density field equation  first obtained in (5.15), the Lagrangian density is 

( ) ( )( )2, Tr 2G J G g D D m D D G J Gµν τ ν µ τ
µ τ ν τ

 = + − +
 

L  as seen in (11.1).  These both contain 

the identical configuration space operator ( )2g D D m D Dµν τ µ ν
τ + − .  The only difference is that 

in the action this operator is sandwiched between two gauge fields ( )...G Gµ ν , there is the 

additional term J Gτ
τ  which contains the source current, and because we are using non-abelian 

gauge theory, a trace (Tr) is required to maintain L  as a scalar.  Earlier, way back in (3.4), we 
derived the four-vector current density *P α′  for first-rank dual of the faux monopole Pσµν′  which 

we now see from (9.21) has the classical color symmetries of a baryon.  In (3.4) the calculation 
was illustrative.  But now, a calculation akin to (3.4) is an essential step to deriving ( )P′L .   

 

Specifically, we keep in mind that field equation ( )( )2J g D D m D D Gµ µν τ ν µ
τ ν− = + −  

which we abbreviate as ( )...J Gµ
ν− =  with ( )2... g D D m D Dµν τ ν µ

τ= + −  maps to Lagrangian 

density ( ) ( )( )2, Tr 2G J G g D D m D D G J Gµν τ µ ν τ
µ τ ν τ

 = + − +
 

L   for the electric current density 

J, which L  we abbreviate as ( ) ( ), Tr ... 2G J G G J Gτ
µ ν τ = + L .  We also are mindful that it is 

easier to start with a Lagrangian and find its field equation rather than the other way around.  We 
note that (2.11) contains several way to write P, but that the only terms without commutators are 
dGG and GdG.  Noting the identities [ ], 2i G dG iGdG idGG− = − +  and [ ],d G G dGG GdG= −  

which were found in (2.8) and (2.9), we see that any expression containing a commutator can 
always be separated into an expression with some linear combination of terms AdGG BGdG+  
where A and B are constant numbers.  We also know that 0GdG=  from (12.11), but for the 
moment we will include terms with GdG to establish formal concurrence between the 
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Lagrangian density and the classical monopole field equation and only apply this at the very end 
to reduce our results. 

 
Thus, with all of this in mind, we now fashion a “test” Lagrangian density for the pure 

field term absent any sources in which Gτ  left-multiplies [ ]*dGG G Gµ τ
µ⇔ ∂  and  

[ ]*GdG G Gµ τ
µ⇔ ∂ , while also including a term *G Pτ

τ  with the dual 1
3!*P Pα σµνα

σµνε= of the 

original (not faux) monopole, all with the required trace, of the form: 
 

( ) ( ) ( )[ ] [ ]
test Tr * Tr * Tr *iA G G G iB G G G C G Pµ τ µ τ τ

τ µ τ µ τ≡ − ∂ − ∂ +L . (12.2) 

 
Of course, because 1

3!* 0P Pα σµνα
σµνε= =  via the Jacobian identity (2.4), in the last term 

* 0G Pτ
τ = .  But this is still needed because the faux monopole which appears to be a classical 

baryon density is [ ],P id G G idGG′ = − = − .  Thus, we can eventually use this last term to 

introduce P′  via [ ] [ ]0 , ,P id G G idGG P idGG id G G P′ ′= = − = − − = + .  We also note that 

( )[ ]Tr * 0B G G Gµ τ
τ µ ∂ =  because [ ]*G Gµ τ

µ ∂  is an alternate way to write 0GdG= , but for now, 

as stated, we also carry this as a term without yet setting it to zero.  In (12.2) above, A, B, and C 
are unknown constant numbers that we shall now determine by using (12.2) in (12.1) to 
reproduce the classical field equation [ ], 0P id G G idGG= − =  of (2.11).  In other words, 

[ ], 0P id G G idGG= − =  is the target equation we seek to derive by placing (12.2) into (12.1) 

and then choosing A, B, and C to math up (12.1) to [ ], 0P id G G idGG= − = . 

 
 For the latter term in the Euler-Lagrange (12.1) we may use (12.2) to first calculate: 
 

( ) ( ) ( )

( )

[ ] [ ]
test

[ ] [ ]

[ ] [ ]

[ ] [ ]

Tr * Tr * Tr *

Tr * *

Tr * * Tr *

Tr * * Tr

iA G G G iB G G G C G P
G G

GG
iA G G G G

G G

GG G
iB G G G G C P

G G G

iA G G G G iB

µ τ µ τ τ
τ µ τ µ τ

ν ν

µµ τ µ ττ
µ τ

ν ν

µµ τ µ τ ττ τ
µ τ

ν ν ν

ν µ τ µ τ ν
τ µ τ µδ δ δ

∂ ∂  − = − − ∂ − ∂ + ∂ ∂

∂ ∂= ∂ + ∂ ∂ ∂ 

∂   ∂ ∂+ ∂ + ∂ −   ∂ ∂ ∂   

= ∂ + ∂ +

L

( ) ( )
( ) ( )
( ) ( )

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

* * Tr *

Tr * * Tr * * Tr *

Tr * Tr * Tr *

G G G G C P

iA G G G G iB G G G G C P

iA G G iA G G C P

ν µ τ ν µ τ ν τ
τ µ τ µ τ

µ ν ν τ µ ν ν τ ν
µ τ µ τ

σ ν ν σ ν
σ σ

δ δ∂ + ∂ −

= ∂ + ∂ + ∂ + ∂ −

= ∂ + ∂ −

.(12.3) 

 
For the operand of the former term in (12.1) we use (12.2) together with second rank duality in 
the form [ ] 1

[ ]2!* G Gµ τ αβµτ
α βε∂ = ∂ , being very careful with signs, to calculate: 
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( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( ) ( )( )( )
( )
( )

( )
( )

[ ] [ ]
test

1
[ ] [ ]2!

1
2!

1
2!

Tr * Tr * Tr *

Tr Tr

Tr Tr

Tr

iA G G G iB G G G C G P
G G

i A G G G B G G G
G

i A G G G G B G G G G
G

G G
i A G G

G G

µ τ µ τ τ
τ µ τ µ τ

σ ν σ ν

αβµτ
τ α β µ τ µ α β

σ ν

αβµτ
τ α β β α µ τ µ α β β α

σ ν

α β β ααβµτ
τ µ

σ ν σ ν

ε

ε

ε

∂ ∂= − ∂ − ∂ +
∂ ∂ ∂ ∂

∂= − ∂ + ∂
∂ ∂

∂= − ∂ − ∂ + ∂ − ∂
∂ ∂

 ∂ ∂ ∂ ∂
 = − −
 ∂ ∂ ∂ ∂
 

L

( )
( )

( )
( )

( )( ) ( )( )( )
( ) ( )( )

( )

1
2!

1
2!

1 1
2! 2!

Tr

Tr Tr

Tr Tr

Tr , Tr

G G
B G G

G G

i A G G B G G

i A G G G G B G G G G

i A G G B G

α β β α
τ µ

σ ν σ ν

αβµτ σ ν σ ν σ ν σ ν
τ α β β α µ τ µ α β β α

σνµτ νσµτ σνµτ νσµτ
τ µ τ µ τ µ τ µ

σντµ σντµ
τ µ τ

ε δ δ δ δ δ δ δ δ

ε ε ε ε

ε ε

     ∂ ∂ ∂ ∂
     + −

     ∂ ∂ ∂ ∂
     

= − − + −

= − − + −

 = +  ( )( ),

Tr * , Tr * ,

G

iA G G iB G G

µ

σ ν σ ν

  

   = +    . (12.4) 
 
This of course means that: 
 

( ) test Tr * , Tr * ,iA G G iB G G
G

σ ν σ ν
σ σ σ

σ ν

 ∂
   ∂ = ∂ + ∂      ∂ ∂ 

L . (12.5) 

 
Finally, combining (12.5) and (12.3) into (12.1) yields the classical field equation: 
 

( )
( ) ( )

test test

[ ] [ ]

0

Tr * , Tr * , Tr * Tr * Tr *

G G

iA G G iB G G iA G G iA G G C P

σ
σ ν ν

σ ν σ ν σ ν ν σ ν
σ σ σ σ

 ∂ ∂= ∂ −  ∂ ∂ ∂ 

   = ∂ + ∂ + ∂ + ∂ −   

L L

(12.6) 

 
which we then rewrite with * 0Pν =  on the left using the Jacobian zero of (2.4) to obtain: 
 

( ) ( )[ ] [ ]Tr * Tr * , Tr * , Tr * Tr * 0C P Ai G G Bi G G Ai G G Ai G Gν σ ν σ ν σ ν ν σ
σ σ σ σ   = ∂ + ∂ + ∂ + ∂ =    (12.7) 

 
But in (2.11) we uncovered the identity 0 GdG=  which in tensor form reads: 

 

[ ] [ ] [ ] 0G G G G G Gσ µ ν µ ν σ ν σ µ∂ + ∂ + ∂ =  (12.8) 

 
Multiplying through by 13!

ασµνε  to take the first rank dual then yields: 
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( ) ( )
( )
( )

1
[ ] [ ] [ ] [ ] [ ] [ ]3!

1 1 1 1
[ ] [ ] [ ]3 2 2 2

[ ] [ ] [ ] [ ] [ ]1
3

0 *

* * * * *

G G G G G G G G G G G G

G G G G G G

G G G G G G G G G G

σµνα
σ µ ν µ ν σ ν σ µ σ µ ν µ ν σ ν σ µ

σµνα σµνα σµνα
σ µ ν µ ν σ ν σ µ

σ α µ α ν α σ α α σ
σ µ ν σ σ

ε

ε ε ε

= ∂ + ∂ + ∂ = ∂ + ∂ + ∂

= ∂ + ∂ + ∂

= ∂ + ∂ + ∂ = ∂ = − ∂

 (12.9) 

 
So the final term in (12.7) zeroes out and the overall field equation now becomes: 
 

( )[ ]Tr * Tr * , Tr * , Tr * 0C P Ai G G Bi G G Ai G Gν σ ν σ ν σ ν
σ σ σ   = ∂ + ∂ + ∂ =     (12.10) 

 
Now we need to match this up against the target field equation [ ], 0P id G G idGG= − =  

of (2.11) which we write in tensor form as: 
 

[ ]( ) ( )[ ] [ ] [ ], , , 0P i G G G G G G i G G G G G Gσµν σ µ ν µ ν σ ν σ µ σ µ ν µ ν σ ν σ µ   = ∂ + ∂ + ∂ − ∂ + ∂ + ∂ =     (12.11) 

 
We then use 1

3!*P Pα σµνα
σµνε=  to write the first rank dual as: 

 

[ ]( )
( )
( )

1
3!

1 1 1 1
3 2! 2! 2!

1 1 1 1
[ ] [ ] [ ]3 2! 2! 2!

[ ] [ ] [1 1
3 3

*

, , ,

* , * , * , * * *

P P

i G G G G G G

i G G G G G G

i G G G G G G i G G G G G

α σµνα
σµν

σµνα σµνα σµνα
σ µ ν µ ν σ ν σ µ

σµνα σµνα σµνα
σ µ ν µ ν σ ν σ µ

σ α µ α ν α ν α σ α µ
σ µ ν ν σ

ε

ε ε ε

ε ε ε

=

   = ∂ + ∂ + ∂   

− ∂ + ∂ + ∂

     = ∂ + ∂ + ∂ − ∂ + ∂ + ∂      ( )]

[ ]* , * 0

G

i G G i G G

α
µ

σ α σ α
σ σ = ∂ − ∂ = 

(12.12) 

 
Taking the trace and renaming the free index, this is: 
 

( ) ( )[ ]Tr * Tr * , Tr * 0P i G G i G Gν σ ν σ ν
σ σ = ∂ − ∂ =   (12.13) 

 
Now we compare this with (12.7) which was derived from the Euler-Lagrange equation 

(12.1) and the Lagrangian density (12.2).  First we set 1C =  to match the left side.  Thereafter, 
on the right, we must match ( )[ ]Tr *Ai G Gσ ν

σ∂  to ( )[ ]Tr *i G Gσ ν
σ− ∂  with tells us that 1A = − .   

So (12.10) becomes: 
 

( )[ ]Tr * Tr * , Tr * , Tr * 0P i G G Bi G G i G Gν σ ν σ ν σ ν
σ σ σ   = − ∂ + ∂ − ∂ =     (12.14) 

 
To complete the match, we must set 2B = + .  Then (12.14) becomes: 
 

( )[ ]Tr * Tr * , Tr * 0P i G G i G Gν σ ν σ ν
σ σ = ∂ − ∂ =   (12.15) 
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which perfectly matches (12.13).  So we use these findings in (12.2) to write the Lagrangian 
density as: 
 

( ) ( ) ( )[ ] [ ]Tr * 2Tr * Tr *i G G G i G G G G Pµ τ µ τ τ
τ µ τ µ τ= ∂ − ∂ +L . (12.16) 

 
Finally, having established formal equivalence of the Lagrangian density with the 

monopole field equation via Euler-Lagrange, we now take advantage of 0 GdG=  which is 
written as [ ]* 0G Gν τ

µ ∂ =  in (12.9), and we also use the Jacobian-based * 0Pτ = , to further 

reduce this Lagrangian density to: 
 

( ) ( ) ( )[ ] [ ]Tr * Tr * Tr *i G G G G P i G G Gµ τ τ µ τ
τ µ τ τ µ= ∂ + = ∂L . (12.17) 

 
The above, when used in the Euler-Lagrange equation (12.1), will indeed reproduce the classical 
field equation [ ], 0P id G G idGG= − =  of (2.11), or more precisely, will reproduce its trace 

equation [ ]( ) ( )Tr Tr , Tr 0P i d G G i dGG= − = . 

 
 Yet, (12.17) is not our final result, because it still contains the original monopole *Pτ  
which is zero, and we wish to now inject the faux monopole density *P τ′  which is the dual of the 
candidate baryon density Pσµν′ .  Now, as noted following (12.2), we will want to apply the 

relation [ ] [ ]0 , ,P id G G idGG P idGG id G G P′ ′= = − = − − = +  to get P′  into the Lagrangian 

density (12.17).  Were we to use P P idGG′= − −  in (12.17), this would offset the [ ]*G G Gµ τ
τ µ∂  

term and we would lose important information about the gauge fields, just as if we had stopped 
at 0P =  in (2.11) rather than proceeding to make use of [ ], 0P id G G idGG= − =  to develop the 

identity [ ],P id G G idGG′ = − = −  from which we learned a lot more including in (9.21) that P′  

has the color symmetries of a baryon and that [ ], 0F P i dGG i G G′= = − = − ≠∫∫ ∫∫∫ ∫∫∫ ∫∫� �  has 

the color symmetries of a meson.  So we expand [ ], 0P id G G P′= + =  into tensor form and use 

this in (12.17) to create a mix of both [ ],id G G  and idGG  terms which has already been fruitful 

elsewhere.  Thus, we expand [ ], 0P id G G P′= + =  into: 

 

[ ]( ), , , 0P i G G G G G G Pσµν σ µ ν µ ν σ ν σ µ σµν′   = ∂ + ∂ + ∂ + =    . (12.18) 

 
The dual relation is then: 
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[ ]( )
( )

1
3!

1 1 1 1 1
3 2 2 2 3!

1
3

*

, , ,

* , * , * , *

* , * 0

P P

i G G G G G G P

i G G G G G G P

i G G P

α σµνα
σµν

σµνα σµνα σµνα σµνα
σ µ ν µ ν σ ν σ µ σµν

σ α µ α ν α α
σ µ ν

σ α α
σ

ε

ε ε ε ε

=

′   = ∂ + ∂ + ∂ +   

′     = ∂ + ∂ + ∂ +     

′ = ∂ + = 

. (12.19) 

 
We then use (12.19) in (12.17) to finally obtain: 
 

( ) ( ) ( )[ ] [ ],* Tr * * , * Tr *G P iG G G iG G G G P i G G Gτ σ τ σ σ τ σ
σ τ σ τ σ σ τ′ ′ = ∂ + ∂ + = ∂ L . (12.21) 

 
This is the Lagrangian density for the Yang-Mills monopole, written in terms of the dual of the 
candidate baryon density P σ′ .  By replicating ( )[ ]Tr *i G G Gτ σ

σ τ∂  all by itself in the final term, 

we are asserting that * , * 0iG G G G Pτ σ σ
σ τ σ ′ ∂ + =   i.e., that * * ,P i G Gσ τ σ

τ′  = − ∂   , which is 

[ ],P id G G′ = − .  Then, because [ ],id G G idGG− = −  is also an identity, we end up via this final 

term implicitly stating that [ ]0 ,P id G G idGG= = − .  And, given that [ ]* G G dGGτ σ
τ∂ ⇔  and 

[ ]* , ,G G d G Gτ σ
τ  ∂ ⇔   are both embedded in (12.21), we see how (12.21) is just a Lagrangian 

statement of [ ],P id G G idGG′ = − = − .  

 
 Now let us rework (12.21) a little bit so we can identify its configuration space operator 
as a first step to calculating the path integral.  Here, we use the dual relationships 

[ ] 1
[ ]2!* G Gτ σ αβτσ
α βε∂ = ∂  and 1

2!* , ,G G G Gτ σ αβτσ
α βε   =     to write: 

 

( ) ( )
( )( )

( ) ( )( )( )

[ ]

1
[ ]2!

1
2!

1
2!

,* Tr * * , *

Tr , *

Tr *

Tr

G P iG G G iG G G G P

iG G G iG G G G P

iG G G iG G G iG G G iG G G G P

iG G G iG G G

iG G G iG G G iG

τ σ τ σ σ
σ τ σ τ σ

αβτσ σ
σ α β τ σ τ α β σ

αβτσ σ
σ α β τ σ β α τ σ τ α β σ τ β α σ

σ α β τ σ β α ταβτσ

σ τ α β σ α τ β σ

ε

ε

ε

′ ′ = ∂ + ∂ + 

′ = ∂ + ∂ + 

′= ∂ − ∂ + ∂ − ∂ +

∂ − ∂
=

+ ∂ + ∂ − ∂

L

( )( )
( )( )( )
( )( )( )

( )( )

1
2!

1
2!

1
[ ] [ ]2!

[ ] [ ]

*

Tr 4 2 *

Tr 4 2 *

Tr 2 *

Tr 2* * *

G P
G G iG G G

iG G G iG G G G P

iG G G G G P

iG G G G G P

iG G G G G P

σ
σ

τ β α σ β τ α

αβτσ σ
σ α β τ σ α β τ σ

αβτσ σ
σ α β α β τ σ

αβτσ σ
σ α β α β τ σ

τ σ τ σ σ
σ τ σ

ε

ε

ε

  
′+    − ∂  

′= ∂ − ∂ +

′= ∂ − ∂ +

′= ∂ − ∂ +

′= ∂ − ∂ +

. (12.22) 
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So now we see that for the faux monopole / baryon dual *P σ′ , the configuration space operator 
is [ ] [ ]2* *G Gτ σ τ σ∂ − ∂ , contrast g D D D Dνσ τ σ ν

τ −  of (5.15) for the current density Jν , with 

2D D iG G G G Gσ ν σ ν σ ν σ ν ν σ≡ ∂ ∂ − ∂ − +  in (5.16) and D D iG G Gτ τ τ τ
τ τ τ τ= ∂ ∂ − ∂ −  in (5.17). 

 
 Finally, based on (12.22), the faux monopole / baryon action is written in the 
configuration space format: 
 

( ) ( ) ( )( )4 4 [ ] [ ],* ,* Tr 2* * *S G P d x G P d x iG G G G G Pτ σ τ σ σ
σ τ σ′ ′ ′= = ∂ − ∂ +∫ ∫L . (12.23) 

 
This is what we will new seek to plug into the path integral 

( ) ( ) ( ),* exp ,* exp *Z G P DG iS G P iW P′ ′ ′= ≡∫ C  to develop the quantum field properties of our 

faux monopole / candidate baryon P′ . 
 
 Before turning to the path integral, given that we now have a faux monopole action 

( ),*S G P′  in contrast to the electric charge action ( ),S G J  in (11.1), it also helps by way of 

contrast to similarly take the first rank dual of (9.21) to obtain: 
 

( )( ) ( )( )
( )( )

( )( )
( )( )

( )( )
( )( )
( )

1
3!0 0

1 1[ ]1 1
[ ]3! 3

1 1[ ]1 1
[ ]3! 3

1 1[1 1
[ ]3! 3

Tr* 0 Tr 0

*

*

*

R R R R R R R R

G G G G G G G G

B B B B B B B

P P

p m p m

i p m i p m

p m p m

α σµνα
σµν

σµνα σ α
σ µ ν σ

σµνα µ α
µ ν σ µ

σµνα ν
ν σ µ ν

ε

ε ψ γ γ ψ ψ γ γ ψ

ε ψ γ γ ψ ψ γ γ ψ

ε ψ γ γ ψ ψ γ

Σ Σ

− −

− −

− −

′ ′=

 ∂ − ∂ −/ / 
 

= − +∂ − = − +∂ −/ / 
 
 +∂ − +∂ −/ /  ( )

( ) ( ) ( )( )
]

1 1 1[ ] [ ] [ ]1
3 *

B

R R R R G G G G B B B Bi p m p m p m

α

σ α σ α σ α
σ

γ ψ

ψ γ γ ψ ψ γ γ ψ ψ γ γ ψ− − −

 
 
 
 
 
 
 

= − ∂ − + − + −/ / /

. (12.24) 

 

So in the ground state, this first rank monopole / baryon dual has the symmetric RR GG BB+ +  
color symmetry of a duality-transformed meson, in the form 

( )( ) ( )0
Tr* 0 *P RR GG BB

σαα
σΣ′ ∝ ∂ + + . 

 
13. The Baryon Candidate Quantum Path Integral 
 
 In order to path integrate the classical action (12.23), we will again make use of the 
recursion developed in section 8 to recast the path integral into a form that is quadratic, i.e., no 
higher than second order, in the gauge field Gµ .  We first substitute the recursive kernel 

( )1 1
0 1 1 1G J J k J J Jτ τ

µ µ τ τ µπ π π π π− −
∞ ∞− ∞− ∞−= = + +  with ( ) 12

0 k k m iτ
τπ ε

−
= − +  as a terminal 

condition from (8.20) into the configuration space operator in (12.23) and then convert over to 
momentum space via i k∂ →  to obtain: 
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( ) ( )( )
( )( )

( )( )

4 [ ] [ ]

4 [ ] [ ]

4 [ ] [ ]

,* Tr 2* * *

Tr 2 * * *

Tr 2 * * *

S G P d x iG G G G G P

d x iG J J G G P

d x G k J J k G G P

τ σ τ σ σ
σ τ σ

τ σ τ σ σ
σ τ σ

τ σ τ σ σ
σ τ σ

π π

π π

∞ ∞

∞ ∞

′ ′= ∂ − ∂ +

′= ∂ − ∂ +

′= − +

∫

∫

∫

. (13.1) 

 
Note that kτ  and π∞  readily transpose because kτ  is an ordinary abelian vector and everything 

else on the final line is also in momentum space (thus averting any terms arising from the 
canonical commutation operation [ , ]xx k i= � ), and the duality can be moved over by segregating 

out the Levi-Civita tensor and then integrating it back in.  The (non-Ghost portion of the) path 
integral over DG  (omitting †DcDc ) is then specified by: 
 

( ) ( )
( )( )
( )( )

( )( )
( )

4 [ ] [ ]

4 [ ] [ ]

4 [ ] [ ]

,* exp ,*

exp Tr 2* * *

exp Tr 2 * * *

exp Tr 2 * * *

exp *

Z G P DG iS G P

DG i d x iG G G G G P

DG i d x iG J J G G P

DG i d x G k J J k G G P

iW P

τ σ τ σ σ
σ τ σ

τ σ τ σ σ
σ τ σ

τ σ τ σ σ
σ τ σ

π π

π π

∞ ∞

∞ ∞

′ ′=

′= ∂ − ∂ +

′= ∂ − ∂ +

′= − +

′≡

∫

∫ ∫

∫ ∫

∫ ∫
C

. (13.2) 

 
As in section 8, the infinite recursion has enabled us to remove all gauge fields above 

quadratic order, and render (13.2) into a form that can be integrated exactly, analytically.  The 
mathematical Gaussian integral that we will want to use as template for this is: 
 

( ) ( ) ( ).52 2exp / exp / 2dx iAx iPx i A iP Aπ+ = −∫  . (13.3) 

 
with ~x G,  [ ] [ ]~ 2 * *A k J J kτ σ τ σπ π∞ ∞− , and ~ *P P′ .  Clearly, we need to now obtain the 

inverse of [ ] [ ]~ 2 * *A k J J kτ σ τ σπ π∞ ∞−  because it shows up on the right-hand side in 2 /P A. 

 
 To find the inverse of [ ] [ ]2 * *k J J kτ σ τ σπ π∞ ∞− , we note the procedure employed 

throughout sections 6 and 7.  But here, [ ] [ ]2 * *A k J J kτ σ τ σπ π∞ ∞≡ −  is an antisymmetric matrix.  

Therefore, as a special case, its inverse is equal to inverse of the negative of its transpose, that is: 
 

( ) 11 [ ] [ ]1 1
2 2 2 * *A k J J kσ τ σ τπ π

−−
∞ ∞= − + . (13.4) 

 
Therefore, using (13.3) as a template, we find from (13.2) and (13.4) that: 
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( ) ( )( )
( )( ) ( )( )

( )

4 [ ] [ ]

144 [ ] [ ]1
2

,* exp Tr 2 * * *

exp / 2 Tr * 2 * * *

exp *

Z G P DG i d x G k J J k G G P

i d k P k J J k P

iW P

τ σ τ σ σ
σ τ σ

σ σ τ σ τ τ

π π

π π π

∞ ∞

−

∞ ∞

′ ′= − +

′ ′= −

′≡

∫ ∫

∫C

C

. (13.5) 

 
And from this we extract the amplitude: 
 

( ) ( ) ( )( )14 4 [ ] [ ]1
22 * Tr * 2 * * *W P d k P k J J k Pσ σ τ σ τ τπ π π

−

∞ ∞′ ′ ′= −∫  . (13.6) 

 

We further define M  which is the momentum space amplitude density by ( )44 2d k Wπ≡∫ M  to 

extract both ( ) ( ) ( )44 * 2 *d k P W Pπ′ ′≡∫ M  from (13.6) and ( ) ( ) ( )44 2d k J W Jπ≡∫ M  from 

(11.5) with comparable coefficients.  In (11.5) we also use ( ) ( )
1

J J
∞ ∞−

≅M M  to set 1∞ − → ∞ .  

Thus, in an apples-to-apples comparison, shown together with the recursive kernel and the 
terminal condition from (8.18), we may write: 
 

( ) ( )( )
( ) ( )( )

( )
( )

1 11
02

1[ ] [ ]1
2

1 1
0 1 1 1

12
0

Tr 2 2 2    

* Tr * 2 * * *

                            

                                                

n n n n

J J J k J J J

P P k J J k P

J k J J

k k m i

τ τ σ
σ τ τ

σ σ τ σ τ τ

τ τ
τ τ

τ
τ

π π π π

π π

π π π π π

π ε

− −
∞ ∞ ∞

−

∞ ∞

− −
− − −

−

= + +

′ ′ ′= −

= + +

= − +

M

M

    











. (13.7) 

 
Earlier, we wrote out (5.9) which displayed Maxwell’s classical equations in non-abelian gauge 
theory in integral form.  The above (13.7) are the quantum field theory counterpart of these non-
abelian Maxwell equations.  Together, these two equations – which are in momentum space – 
should furnish the basis for properly deciphering the quantum field behaviors of the electric 
current densities which are quark current candidates, and the quantum field behaviors of the faux 
magnetic current densities which are baryon candidates.  In short, (13.7) is a candidate quantum 
field theory for quark and baryons which parallels Maxwell’s equations in non-abelian form. 
 

However, *P σ′  appearing in the monopole amplitude (13.7) is the first rank dual of the 
third-rank faux monopole Pσµν′  which, formally speaking, is itself the candidate baryon density 

with the R G B∧ ∧  color symmetries found in (9.21).  So we now seek to have Pσµν′  explicitly 

appear in ( )*P′M .  Toward this end, we make use of second-rank duality in the form of 
[ ] 1

[ ]2!*k J k Jσ τ αβστ
α βε=  and [ ] 1

[ ]2!*J k J kσ τ αβστ
α βε=  to write: 

 

( ) ( ) ( )( )1 1
1 1

[ ] [ ]2 2!* Tr * 2 *P P k J J k Pαβστ σ τ
α β α βε π π

− −

∞ ∞′ ′ ′= −M . (13.8) 
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But it is also an identity of the Levi-Civita tensor in flat spacetime that 1
4!

αβστ
αβστε ε = − , and of 

course, by definition, ( ) 1
1αβστ αβστε ε

−
≡ .  Combining these two expressions gives 

( ) 1
1 1
4! 4!

αβστ αβστ αβστ
αβστε ε ε ε

−
− = = −  or ( ) 1

1
4!

αβστ
αβστε ε

−
− = .  We then use the later expression in 

the form of ( ) 1
1 1
2 2! 4!αβστ

αβστε ε
−

= −  to rewrite (13.8) as: 

 

( ) ( )( )1

[ ] [ ]* 4! Tr * 2 *P P k J J k Pσ τ
αβστ α β α βε π π

−

∞ ∞′ ′ ′= − −M . (13.9) 

 
Because the minus sign in 1

4!
αβστ

αβστε ε = −  arises from the fact that the Minkowski metric tensor 

( ) ( )diag 1, 1, 1, 1µνη = − − −  has a determinant det 1η = − , the sign reversal in (13.9) emanates 

from the underlying structure of Minkowski space. 
 
 Next we use 1

3!*P Pσ µνρσ
µνρε′ ′=  to further rewrite (13.9) as: 

 

( ) ( )( )
( )( )

( )( )

1

[ ] [ ]

1
1

[ ] [ ]3!

1
1

[ ] [ ]3!

1
3!

* 4! Tr * 2 *

4! Tr 2 *

4! Tr 2 *

4!

P P k J J k P

P k J J k P

P k J J k P

σ τ
αβστ α β α β

µνρσ τ
αβστ µνρ α β α β

µνρ τ
αβτ µνρ α β α β

µ ν ρ µ ν ρ µ ν ρ
α β τ β τ α τ α β

µ ν ρ µ ν ρ µ ν
β α τ α τ β τ β

ε π π

ε ε π π

δ π π

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

−

∞ ∞

−

∞ ∞

−

∞ ∞

′ ′ ′= − −

′ ′= − −

′ ′= − −

+ +
= −

− − −

M

( )( )
( )( )

( )( )
( )( )

1

[ ] [ ]

1

[ ] [ ]

1
1

[ ] [ ]3!

1

[ ] [ ]

Tr 2 *

Tr 2 *

2 4! Tr 2 *

Tr 2 *

P k J J k P

P k J J k P

P k J J k P

P k J J k P

τ
µνρ α β α βρ

α

ρ
µνρ µ ν µ ν

ν
µνρ ρ µ ρ µ

µ
µνρ ν ρ ν ρ

π π

π π

π π

π π

−

∞ ∞

−

∞ ∞

−

∞ ∞

−

∞ ∞

 
′ ′  −

 
 

 ′ ′−
 
 

′ ′ = − × + −
 
 ′ ′+ − 
 

. (13.10) 

 
Next we use 1

3!*P Pρ αβγρ
αβγε′ ′=  and the like for the remaining first rank duals.   

 

( )

( )( )
( )( )
( )( )

1

[ ] [ ]

1
1 1

[ ] [ ]3! 3!

1

[ ] [ ]

Tr 2

2 4! Tr 2

Tr 2

P k J J k P

P P k J J k P

P k J J k P

αβγρ
µνρ µ ν µ ν αβγ

αβγν
µνρ ρ µ ρ µ αβγ

αβγµ
µνρ ν ρ ν ρ αβγ

ε π π

ε π π

ε π π

−

∞ ∞

−

∞ ∞

−

∞ ∞

 ′ ′−
 
 

′ ′ ′ = − × + −
 
 ′ ′+ − 
 

M . (13.11) 

 
But because Pµνρ  is antisymmetric in all indexes and given the way it is summed, this reduces to: 
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( ) ( )( )
( )( )

1
1 1

[ ] [ ]3! 3!

11
[ ] [ ]

2 4! 3 Tr 2

4 Tr 2

P P k J J k P

P k J J k P

αβγρ
µνρ µ ν µ ν αβγ

αβγρ
µνρ µ ν µ ν αβγ

ε π π

ε π

−

∞ ∞

−−
∞

′ ′ ′= − × × −

′ ′= − −

M

. (13.12) 

 

Note that in the bottom line we have factored out 1π −
∞  from ( ) 1

[ ] [ ]2 k J J kµ ν µ νπ π
−

∞ ∞− .  So we 

now use (13.12) to rewrite ( )*P′M  in (13.7) with 1∞ → ∞ −  directly in terms of the third rank 

baryon density candidate Pαβγ′ , as: 

 

( ) ( )
( ) ( )( )

( )
( )

1
2

11
[ ] [ ]

1 1
0 1 1 1

12
0

Tr 2                                                

2 Tr 2 2

                          

                       

n n n n

J J J

P P k J J k P

J k J J

k k m i

σ
σ

αβγρ
µνρ µ ν µ ν αβγ

τ τ
τ τ

τ
τ

π

ε π

π π π π π

π ε

∞

−−
∞

− −
− − −

−

=

′ ′ ′= − −

= + +

= − +

M

M

                          











. (13.13) 

 
This describes the quantum field interactions of candidate quark and baryon charge / current 
densities, up to ghost fields c that we omitted at (13.2) and also in section 11.  That is, the 
complete, gauge-invariant path integral involves the integral and measure †DGDcDc∫ .  So by 

integrating over DG∫  we have effectively integrated in one of two “dimensions,” in the nature 

of taking ( )dxF x∫  as a partial integration in an overall integral of the form ( ),dxdyF x y∫ .  The 

much more challenging, seemingly-intractable problem is how to do the mathematics of a 
Gaussian integral which contains terms higher than second order quadratic in the integration 
variable, as does the Yang-Mills path integrals with regard to the gauge field.  With (13.13) 
containing the very explicit solution to this key mathematical problem, any number of 
individuals with ordinary knowledge should be able to fill in the ghost fields.  When truncated at 
a finite recursive order n, cf. (8.17), from (13.13) we may write: 
 

( ) ( )
( ) ( )( )

( )
( )

1
2

11
[ ] [ ]

1 1
0 1 1 1

12
0

Tr 2                                                

2 Tr 2 2

                           

                    

nn

nn

n n n n

J J J

P P k J J k P

J k J J

k k m i

σ
σ

αβγρ
µνρ µ ν µ ν αβγ

τ τ
τ τ

τ
τ

π

ε π

π π π π π

π ε

−−

− −
− − −

−

=

′ ′ ′= − −

= + +

= − +

M

M

                              











. (13.14) 

 
 There are some additional reductions that can be made in (13.14).  First because 
everything in in momentum space we may commute J k k Jτ τ

τ τ=  and then set this to zero in nπ  

because 0i G k Gν ν
ν ν∂ = =  as first found in (6.5).  Thus, we simplify to: 
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( )1 1
0 1 1n n nJ Jτ

τπ π π π− −
− −= +  (13.15) 

 
which now contains only second order terms 1 1n nJ Jτ

τπ π− −  in J, but no first-order Jk terms.   

Next, if we write out the term [ ] [ ]2k J J kµ ν µ ν−  from ( )P′M  component-by-component 

and again keep in mind that we are in momentum space so that the commutator [ , ]xx k i= �  does 

not come into play, we find that [ ] [ ] [ ] [ ] [ ]2 2 3k J J k k J J k k Jµ ν µ ν µ ν ν µ µ ν− = + = .  As a result,  

 

( ) ( )( ) ( )( )1 11 14
[ ] [ ]32 Tr 2 3 Trn nn

P P k J P P k J Pαβγρ αβγρ
µνρ µ ν αβγ µνρ µ ν αβγε π ε π

− −− −′ ′ ′ ′ ′= − = −M . (13.16) 

 
It is interesting to note the natural emergence of the QCD color factor 4

3FC = , see [14] eq. 

[2.98].  And it is also very interesting to note that the relationship between an abelian gauge field 
Aν  and the associated abelian (A) field strength is [ ] [ ]AiF i A k Aµν µ ν µ ν= ∂ =  in view of i k∂ → .  

But [ ]k Jµ ν  in (13.15) has exactly the same form as AiF µν .  It simply contains Jν  rather than Aν  

and so is two differential orders lower than AiF µν .  We shall thus define the antisymmetric tensor 

[ ]i k Jµν µ νΦ ≡  as the “echo field strength” tensor because in a sense it is merely an “echo” of 

AiF µν  at two orders lower.  And to be able to think about this tensor in a familiar way, we may 

define its contravariant components by analogy to E and B via bivectors →E εεεε  and →B ββββ  as: 
 

0

0

0

0

x y z

x z y

y z x

z y x

µν

ε ε ε
ε β β
ε β β
ε β β

− − − 
 − Φ ≡
 −
  − 

. (13.17) 

  

Because (13.16) contains ( ) 1

[ ]k Jµ ν
−

, we see that to further develop (13.16), we will need to take 

the inverse of this tensor.  Generally, to invert a 4x4 matrix A, the formula is [22]: 
 

( ) ( )11 3 2 3 2 2 2 31 1
(tr ) 3tr tr 2tr (tr ) tr tr

6 2
−−  = − + − − + −  

A A A A A A A A A A A A . (13.18) 

  
But because (13.17) is an antisymmetric tensor its trace is zero and so the above simplifies to: 
 

11 3−− = −A A A . (13.19) 

 
 The third and final simplification is to recognize that if (13.14) does indeed describe the 
amplitude densities of QCD, then we should also set 0m=  in 0π  because this is associated with 

the “mass” of the gluons, and we know that the QCD gluons are massless.  Ordinarily, when a 
gauge boson mass is set to zero, some uniqueness is lost because a degree of freedom is removed 
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from the system, even when we enforce the contextual gauge fixing of a conserved continuous 
current density.  In particular, 0Gσ

σ∂ =  is no longer a requirement but is relegated to an 

optional gauge condition.   This was a central aspect of the discussion in section 6 and 7.  But we 
also saw how contextual gauge fixing restores lost uniqueness, and in effect forces the massless 
inverses into the Feynman / continuity gauge.  As regards (13.13), we then showed at (9.15) how 
when 2k k mτ

τ −  are associated with the gluons within a baryon, the gluon mass can be set to zero 

at the same time the quarks are given a mass, by simply shifting one degree of freedom from a 
gluon into a fermion in a type of Goldstone mechanism, so that no uniqueness is lost in the 
context of the overall baryon system.  So as long as we associate (13.13) with the gluons within a 
baryon that contains massive quarks, we can set these boson masses in (13.13) to zero with the 
implicit transfer of a degree of freedom that makes the quarks massive, and without any loss of 
uniqueness.  So in this context, we now set m=0 in (13.13) and (13.14).  Together (13.15) and 
(13.16), we rewrite (13.13) and (13.14) respectively as: 
 

( ) ( )
( ) ( )( )

( )
( )

114
[ ]3

1 1
0 1 1

1

0

Tr                                     

Tr

                            

                                          

n n n

J J J

P P k J P

J J

k k i

σ
σ

αβγρ
µνρ µ ν αβγ

τ
τ

τ
τ

π

ε π

π π π π

π ε

∞

−−
∞

− −
− −

−

 =

 ′ ′ ′= −

 = +

 = +

M

M

, (13.20) 

 

( ) ( )
( ) ( )( )

( )
( )

114
[ ]3

1 1
0 1 1

1

0

Tr                                     

Tr

                            

                                          

nn

nn

n n n

J J J

P P k J P

J J

k k i

σ
σ

αβγρ
µνρ µ ν αβγ

τ
τ

τ
τ

π

ε π

π π π π

π ε

−−

− −
− −

−

 =

 ′ ′ ′= −

 = +

 = +

M

M

. (13.21) 

 
With this, we have the quark density and baryon density amplitudes which should explain the 
phenomenology of quantum chromodynamics for which the gluons are indeed massless. 
 
 It is worth noting that since ( ) ( )00

TrJ J g Jµ ν
µνπ=M  for the zeroth recursive order is 

simply the abelian amplitude density, we normally associate ( )0 /g g k k iτ
µν µν τπ ε= +  with the 

abelian propagator (up to a factor of i).  This means that ngµνπ  generally represents the non-

abelian gluon propagator for a given recursive order n, and that gµνπ ∞  therefore represents the 

physical gluon propagator with all non-linear effects accounted for.  But if gµνπ ∞  represents the 

propagator for a gluon field between two J each of which represents a quark current density, then 
what can we say about ( )P′M  which is the amplitude density for two monopoles P which we 

have shown have the color symmetries of baryons?  We know that interactions between baryons 
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are mediated, not by gluons, but by mesons.  So by analogy to ( )JM , we expect that  

( ) 11
[ ]n k Jµ νπ

−−  will be the meson propagator at recursive order n, and that 

( ) ( )1 11 1
[ ]k J iµ ν µνπ π

− −− −
∞ ∞= Φ  will define the propagator for the physical mesons with all non-

linear effects accounted for.  So we see that the “echo” tensor is not just an interesting analog to 

[ ]AiF k Aµν µ ν= , but rather, is an important physical tensor which in inverse form, see (13.19), 

plays a definitive and central role in the propagation of the mesons which mediate interactions 

between baryons and most importantly, nucleons.  That is, ( ) 11 i µνπ
−−

∞ Φ  fundamentally 

represents the strong nuclear force between nucleons and other baryons. 
 
 So if gµνπ ∞  defines the propagator for gluons mediating interactions between quark 

currents J, and if ( ) 1

µνπ
−

∞Φ  likewise defines the propagator for mesons mediating interactions 

between monopole / baryon currents P, then a full development of ( )JM  should establish the 

confinement of quarks within baryons, while the full development of ( )P′M  should establish the 

short range of the nuclear interaction.  We now develop ( )JM  in configuration space to 

demonstrate confinement. 
 
14. Direct Quantum Field Theory Demonstration of Confinement – 
Abelian Calculation 
 
 While the physical amplitude density for interactions between quark currents J is given 
by ( ) ( )TrJ J Jσ

σπ ∞=M , the basic character of confinement is already demonstrated at the first 

recursive order, that is, by ( ) ( )11
TrJ J Jσ

σπ=M .  Because this calculation can be completed on 

a wholly analytical basis, this will be our starting point for dynamically demonstrating 
confinement, and in particular, for developing a potential energy E between any two J separated 
in configuration space by a distance r which tightly confines the J together as r is increased 
beyond a certain length on the order of the nuclear scale close to 1 Fm.  The calculation we shall 
now develop directly mirrors the calculation shown in chapter I.4 of [11], with the exception that 
it uses 1π  rather than 0π , and with the further difference that in (13.20) and (13.21) we have set 

0m=  because the non-linear current densities will themselves take on a role analogous to the 
mass m as used in the calculation of chapter I.4 of [11]. 
 
 To start with, we use (13.21) to write 1π  from the gluon propagator 1gµνπ  as: 

 

( )
( )

( )
( )

3

1 1 1 1
1 0 0 0 2 2

k k i J JJ J
J J k k i

k k i k k i

τ ττ
τ ττ τ τ

τ τ τ τ
τ τ

ε
π π π π ε

ε ε
− − − −

   + +
   = + = + + =
   + +   

. (14.1) 
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Also, back before (1.2) we scaled gG Gµ µ→ , noting that this g can always be extracted back out 

when explicitly needed.  Now, it is explicitly needed.  Because the currents J have been shown to 
have the features of quark currents, we associate g with the running strong charge sg , and 

because all of the gauge fields Gµ  were replaced with like-indexed currents Jµ  via G Jµ µπ ∞→  

back at (11.3), we may rescale 2
sJ J g J Jτ τ

τ τ→  and then use the dimensionless strong running 

coupling 2 / 4s sg cα π= �  in natural units 1c= =�  to write (14.1) as: 

 

( )
( ) ( )

3

1 1
1 2 2

4 4s s
k k i J J J J

k k i
k k i k k i

τ τ τ
τ τ τ τ

ττ τ
τ τ

ε πα παπ ε
ε ε

− −
   + +
   = = + +
   + +   

. (14.2) 

 
So now the running strong coupling is now part of this first-recursive-order propagator term. 
 
 Next we may use (13.21) and (14.2) to write the amplitude density: 
 

( ) ( )
( )

1
1 21

4
Tr Tr 4 s

s

J J
J J J J k k i J

k k i

τ
σ τ στ

σ σ τ τ
τ

παπ πα ε
ε

−
  
  = = + +
   +  

M . (14.3) 

 
If we use the SU(3) generators (the Gell-Mann matrices iλ ) to expand i iJ Jτ τλ= , we see that: 
 

. (14.4) 

 

So inverting involves taking ( )( )3 14 i j i j
s J J k k iτ τ

τ τπα λ λ ε −+ + , which is the inverse of the 3x3 

matrix ( )3
4 i j i j ij

s J J k k iτ τ
τ τπα λ λ δ ε − − +

  
 for which ( )3

k k iτ
τ ε− +  represent the eigenvalues of 

4 4i j i j
s sJ J J Jτ τ

τ τπα λ λ πα=  via the determinant ( )3
4 0i j i j ij

s J J k k iτ τ
τ τπα λ λ δ ε − − + =

  
.  

Further, commuting Jσ  from the right to the left of ( )( )2 14 /sk k i J J k k iτ τ τ
τ τ τε πα ε −+ + + , 

which we will need to do at one point in the calculation following (at (4.10 supra)) is made much 
more difficult because i iJ Jσ σλ=  and j jJ Jτ τλ=  and do not commute with one another, but 
rather commute via , , 0i j i j ijk k i jJ J J J if J Jσ τ σ τ σ τλ λ λ   = = ≠     based on the group relation 

,i j ijk kifλ λ λ  =  . 

 
 As a result, we shall organize the mathematical calculation proceeding from (14.3) into 
two main steps.  First, in this section, we shall treat all of the J in (14.3) as 1x1 matrices, rather 

( ) ( )
( )

1
1 21

4
Tr Tr 4

i j i j
k k l ls

s

J J
J J J J k k i J

k k i

τ
σ τ στ

σ σ τ τ
τ

πα λ λπ πα λ ε λ
ε

−
  
  = = + +
   +  

M
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than as the 3x3 matrices i iJ Jτ τλ=  which they are in SU(3)C.  This means two things: first, we 

can now set ( )( ) ( )( )2 214 / 1/ 4 /s sk k i J J k k i k k i J J k k iτ τ τ τ τ τ
τ τ τ τ τ τε πα ε ε πα ε−+ + + → + + +  as if 

this is an ordinary denominator.  Second, we can now treat the current densities Jσ  as ordinary 
abelian currents and so commute them past one another using , 0J Jσ τ  =  , at will.  Second, in 

the next section, we shall review how this abelian simplification affected the overall calculation, 
and use that review to generalize the overall abelian result of this section, to non-abelian theory. 
 
 Accordingly, as an abelian simplification, we may now use the inverse in (14.3) as if it 
was an ordinary denominator, and so write (14.3) as: 
 

. (14.5) 

 
Because we now take these J to be 1x1 objects, we remove the trace.  At (14.8) below, we will 
also restore the overall coefficient of 1

2  which is eliminated once one introduces generator 

matrices normalized to ( )2
1
2Tr iλ = .  The above, (14.5), will now be our starting point for 

demonstrating a confining potential between the two Jσ  sources. 
 
 Using the above, the amplitude density integrated over momentum space will then be: 
 

( )
( )

( )
( )

( )
( )

( )

4 4 4

14 4 41 1

2

1
4

42 2 2
s

s

d k d k d k
W J J J J J J

J J
k k i

k k i

σ σ
σ σ τ

τ τ
τ τ

τ

π πα
παπ π π ε

ε

= = =
+ +

+

∫ ∫ ∫M . (14.6) 

 
But this is all in momentum space, and we now need to do the Fourier transforms over into 
configuration space.  We know that in configuration space, the propagator ( )1D x y−  to first 

recursive order, based on (14.6) is found via the Fourier transform: 
 

( )
( )

( )

( )
4

1 4

2

1
42

ik x y

s

d k
D x y e

J J
k k i

k k i

σ
σ

τ
τ τ

τ τ
τ

παπ ε
ε

−− =
+ +

+

∫ . (14.7) 

Additionally, ( )
1

W J  in (14.6) is also given in configuration space with 4 sπα  by: 

 

( ) ( ) ( ) ( )4 4
11

1
4

2 sW J d xd y J x D x y J yσ
σπα= − −∫∫ . (14.8) 

 

( ) ( )
( )

11

2

1
4

4s
s

J J J J J
J J

k k i
k k i

σ σ
σ σ τ

τ τ
τ τ

τ

π πα
παε

ε

= =
+ +

+

M
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This now includes the factor of 12  which doubles to compensate for generator matrices 

normalized to ( )2
1
2Tr iλ =  as noted after (14.5).  It is included because we are approximating 

past the generator matrices by using the inverse as an ordinary denominator.  Using (14.7) in 
(14.8) then gives us: 
 

( ) ( )
( )

( )

( )
( )

4
4 4

41

2

1
4

42 2

ik x y

s
s

d k e
W J d xd y J x J y

J J
k k i

k k i

σ
σ

σ
σ τ

τ τ
τ τ

τ

πα
παπ ε

ε

−

= −
+ +

+

∫∫ ∫ . (14.9) 

 
Now let’s get to work evaluating (14.9) as a definite integral.  The first thing is to 

separate the time from the space components and the spacetime-dependent objects from the 
momentum space-dependent objects, and so write (14.9) as: 
 

( ) ( ) ( ) ( )

( )
( )

( )

0
0

0 3
0 0 3 3

31

2

1
4

42 2 2

i
ik x y

s
s

dk d k e
W J dx dy d xd x J J e

J J
k k i

k k i

σ
σ τ

τ τ
τ τ

τ

πα
παπ π ε

ε

⋅ −
−= −

+ +
+

∫∫ ∫∫ ∫ ∫
k x y

x y .(14.10) 

 
In going from (14.9) to (14.10), we moved ( )J y  from the right to the left of the overall 

denominator ( )( )2
1/ 4 /sk k i J J k k iτ τ τ

τ τ τε πα ε+ + + , which was only possible because we are 

using an abelian simplification in which , 0J Jσ τ  =  .  So in the next section when we seek the 

non-abelian generalization of the results to be derived here, we shall return to dissect the step of 
going from (14.9) to (14.10) in much more detail to “reconstruct” whatever we are foregoing 
because of the abelian simplification. 
 
 The expression ( ) ( ) ( ) ( )3 3 3 34 s s sd xd y J J d xg J x d yg J yσ σ

σ σπα =∫∫ ∫ ∫x y  can effectively 

be set to 1 given that †
0s sg J gψ ψ ρ= ≡  defines the probability density.  So in the rest frame, 

( ) ( ) ( ) ( )3 3 3
0 0 1 1 1s s ss

d xg x d yg y x d yg yρ ρ ρ ρ= = ⋅ =∫ ∫ ∫ , where 0ρ  is the proper, scalar 

probability density.  Thus the integral ( ) ( )3 3 4 1sd xd y J Jπα =∫∫ x y .  Additionally, as Zee does at 

the top of page 26 in [11], we add a factor of 2 to account for both of the interactions x yJ J  and 

y xJ J .  Thus, (14.10) becomes: 

 

 ( ) ( )

( )
( )

( )

0
0

0 3
0 0

31

2

42 2

i
ik x y

s

dk d k e
W J dx dy e

J J
k k i

k k i

τ
τ τ

τ τ
τ

παπ π ε
ε

⋅ −
−= −

+ +
+

∫∫ ∫ ∫
k x y

. (14.11) 
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Next we use the Dirac delta.  This infinite Gaussian spike of area 1 is defined as the 
Fourier transform of the number 1, that is, as ( ) ( )/ 2 1 ikxx dk eδ π≡ ∫  with ( ) 1x dxδ =∫   So 

taking the entire term ( ) ( )0
00 0 0 / 2 ik x ydx dy dk eπ −

∫∫ ∫  in (14.11), and in the final step setting 

0 0k =  as at the top of page 26 in [11], we may rework this term into:   

 

( )

( ) ( )

0 0 0
0 0 0

0 0 0
0 0 0

0 0
0 0 0 0

0 0 0 0 0 0 0 0

2 2
ik x y ik x ik y

ik x ik x ik x

dk dk
dx dy e dx dy e e

dx dy e y dx e y dy dx e dx

π π
δ δ

− −=

= − = − = =

∫∫ ∫ ∫∫ ∫

∫∫ ∫ ∫ ∫ ∫
. (14.12) 

 
Because 0 0k = , 2k kτ

τ = −k .  Using this together with (14.12), and also removing iε+  because 

with 0 0k =  we are not on-shell, there is an overall sign reversal, and (14.11) simplifies to: 

 

( )
( )

( )3
0

31
2

4

42

i

s

d k e
W J dx

J Jτ
τπαπ

⋅ −

=
−

∫ ∫
k x y

k
k

. (14.13) 

 

 Now for 0dx∫ , we note that the path integral ( )expZ iW J= C  represents the quantum 

operator ( ) ( )0 exp 0 expiHT iET− = −  so we may in this context use 0dx T=∫ .  Thus, setting 
0iW iET iE dx= − = − ∫  we reduce (14.13) to: 

 

( )
( )3

1 3
2

4

42

i

s

d k e
E

J Jτ
τπαπ

⋅ −

= −
−

∫
k x y

k
k

. (14.14) 

  
The subscript in 1E  designates that this is taken at the first recursive order, and this should be 

contrasted with (I.4.6) in [11] with which it is precisely analogous.  The only difference is that at 
the first recursive order the term 2 44 /sm J Jτ

τπα′ ≡ − k  (which means that m′  is imaginary in the 

nature of iε ) plays a role analogous to the mass in (I.4.6) of [11], which we see very clearly if 
we use 2 44 /sm J Jτ

τπα′ ≡ − k  to write (14.14) as: 

 

( )
( )3

1 3 2 2
2

id k e
E

mπ

⋅ −

= −
′+∫

k x y

k
. (14.15) 

 
 Now, our goal is to get from (14.14) which is an analog to (I.4.6) of [11] as we see just 
above, to an analog of (I.4.7) of [11], namely, the abelian potential ( ) ( )1/ 4 mrE r r eπ −= − .  In 

particular, just as m in this expression alters the inverse square nature of the potential, we expect 
that 2 44 /sm J Jτ

τπα′ ≡ − k  in (14.14) will also modify the potential away from an inverse square 



Jay R. Yablon 

102 
 

potential.  And in particular, one would hope – as we shall now show – that the modification 
stemming from 2 44 /sm J Jτ

τπα′ ≡ − k  in (14.14) might lead to confinement.  So we now proceed. 

 
 The challenge presented by (14.13) is that although it can be put into the form of (14.14), 
this term ( ) ( )2 44 /sm J k J kτ

τπα′ ≡ − k  is still a function of k whereas an ordinary mass m is not.  

So this must be accounted for in the integral over 3d k , which makes the integration much more 
difficult than if ( ) ( )2 44 /sm J k J kτ

τπα′ ≡ − k  was not a function of k, as regards both the 

explicitly-appearing k4, and the implicit ( )J kτ . 

 
 As a first step to analytically calculate (14.15), let us transform over from Cartesian into 
spherical coordinates, ( ) ( ), , , ,i ix x y z x rθ ϕ′= → = .  With this the volume element transforms 

over to 2 23 3 d sin d d d d sin drx y z rd k dk dk dk d k kk θ θ ϕ ϕ θ θ→ == −′= k k .  The sign reversal in 

the last term arises from the differential geometry relation 2 3 3 2dx dx dx dx= −  because area 
elements not only have area magnitude, but also vector direction.  So the transformed (14.14) is:  
 

( )
( )

( )
( )3

1 3 3
2

4

2

2
4

d d sin d

4 42 2

i

s

r
i

s

d k e e
E

J J

k

J Jτ τ
τ τπα πα

ϕ θ θ
π π

⋅ − ⋅ −

= − =
− −

∫ ∫
k x y k x yk

k k
k k

. (14.16) 

 
Now, ( )⋅ −k x y  in the exponent is a scalar (dot) product in three space dimensions.  So if the 

angle between k and −x y  is defined to be θ , we may write ( ) cosθ⋅ − = −k x y k x y .  Then 

we may define r as the radial length r = −x y , so ( ) cosr θ⋅ − =k x y k .  Further, let us do a 

further coordinate transformation from 2 2 cosx x uθ θ′ ′′= → = = .  Thus, sindu dθ θ= − , and 
also, ( ) ru⋅ − =k x y k .  With all of this, and carefully attending to the ranges for the definite 

integrals, (14.16) becomes: 
 

( )
( )

( )
2 1

1 3 2 0 0

2

1
2 2

4

2

4

1

4 422 2

d d sin d d
d

i rui

s s

r
r

e e
E du

J J

k

J J
k

π

τ τ
τ τ

ϕ θ θ
π

ϕ
α παππ π

⋅ − ∞

−
= = −

− −
∫ ∫ ∫ ∫

kk x y

k k
k k

k
k . (14.17) 

 

Of course ( )2

0
/ 2 1d

π
ϕ π =∫  so that term comes out.  And we can also readily perform the integral 

over du.  Doing all of this and using 2 sinix ixe e i x−− =  turns (14.17) into: 
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( ) ( )

( )

1

1 2 20 0
2 2

4 4
1

2 0

4

2

2

1 1 1 1
4 42 2

sin2 1

d

42

u

i ru i r i r

r
s s

u

r

r
s

e e e
E dk

J J J Ji
k

r ri

r
dk

J Jr

τ τ
τ τ

τ
τ

πα παπ π

παπ

=

−∞ ∞

=−

∞

−= − = −
− −

= −
−

∫ ∫

∫

k k k

k
k

k k
k k

k
k

k
k

k

. (14.18) 

 
 We now have our 1/ r  dependence for the potential, and the final integral we need to do 

is the one over dk.  First, using 1
20

sin sind dθ θ θ θ
+∞ +∞

−∞
=∫ ∫  we extend the range of the definite 

integral and divide by 2.  Then, we may use sin ixi x e
∞ ∞

−∞ −∞
=∫ ∫  because cosx  is an even function 

which cancels out when the magnitudes of the top and bottom of the integration range are equal, 
as they now are with the extension.  Thus, (14.18) now becomes: 
 

( ) ( )

( )

1 2 20
2 2

4 4

2
2

4

sin sin2 1 1 1
4 42 2

exp1 1

42

r r
s s

r
s

r r
E dk dk

J J J Jr r

i r
dk

J Jri

τ τ
τ τ

τ
τ

πα παπ π

παπ

∞ ∞

−∞

∞

−∞

= − = −
− −

= −
−

∫ ∫

∫

k k
k k

k k
k k

k k

k
k

. (14.19) 

 
Now there is one final matter we must first resolve before we can integrate (14.19), 

which is that ( )J kτ σ  in momentum space is itself also a function of momentum, and we are 

integrating over rdk  which based on how we arrived at (14.19) is the momentum in the radial 

coordinate direction.  Here we keep in mind that rdk  is not the same as the original 4d k , and 

that we have already integrated out over three of the four spacetime dimensions including time t 
and the two angles 1cos uθ −= and φ .  So the way to resolve the ( )J kτ σ  momentum-

dependency problem is to choose a frame in which ( )J kτ σ  is independent of the measure rdk  in 

this integral.  One way to do this is to transform Jτ  to the rest frame, ( )0,0,0,0Jτ ρ= , where 

0ρ  is the proper current density.  Then, the spatial momentum vector for J will be zero, 0=k , 

and J Jτ
τ  in this rest frame will be independent of the rdk  measure.  Then, after we have done 

the integral, we can use general covariance to move back out of the rest frame.  So, setting 

( )0,0,0,0Jτ ρ=  to rest, we may write 2
0J Jτ

τ ρ=  with 0ρ  independent of the radial space 

integration measure rdk , and (14.19) finally becomes:      
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( ) ( )

4

1 2 2 2 6 2
2 0 0

4

exp exp1 1 1 1

4 42 2
r r

s s

i r i r
E dk dk

r ri iπα ρ πα ρπ π
∞ ∞

−∞ −∞
= − = −

−−
∫ ∫

k k k k k

k
k

k

. (14.20) 

 
The only k dependence left in (14.20) is that which explicitly appears in the k. 
 

Now we must embark upon the remaining integral, which will utilize the method of 

contour integration.  As now constituted, 2=k k  and 2k  hence 4k  are all ordinary variables.  

Thus, we may turn every real k in the above into a complex variable z and then do the integral 
over a suitable contour.  Specifically, the integral we now seek to evaluate based on extending 
into the complex plane via z→k  is: 

 

( )
5

2 6 2
2 0 0

4

exp exp

4 4C C C
s s

z izr z izr
f z dz dz dz

z
z

z

πα ρ πα ρ
= =

−−
∫ ∫ ∫� � � . (14.21) 

 
We now need to separate this out using the method of partial fractions.  But as a predicate 

for doing this, we first need to work with the denominator 6 2
04 sz πα ρ−  which, with 2z x=  and 

2
04 sd πα ρ= − , takes the general form of a cubic equation 3 2( )f x ax bx cx d= + + +  with 1a =  

and 0b c= = .  A good online reference to help evaluate the roots of this function is [23], from 
which it may be shown that: 
 

( )( ) ( ) ( )
1 1 12 2 2
3 3 33 3 36 2 2 2 2

0 0 0 04 4 4 4
1 3 1 3

2 2S S S Sz z z
i

z
iπα ρ πα ρ πα ρ πα ρ−  

− = − − −    
 

−



+ −
.(14.22) 

 
Therefore, the contour integral is: 
 

( )

( )( ) ( ) ( )
1 1 12 2 2
3 3 33 3 3

5

6 2
0
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1 3 1 3
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4
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4
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4 4

C C
s

C

S S S

z izr
f z dz dz

z
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z z
i i

z

πα ρ

πα ρ πα ρ πα ρ

=
−

=
  

− − −  
  

− + − −

∫ ∫

∫

� �

�
. (14.23) 

 
 Now we can separate this into a sum of three distinct contour integrals via partial 
fractions.  The result of this exercise is: 
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( )

( )( ) ( ) ( )
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exp exp exp
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πα ρ πα ρ πα ρ
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−
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   − − −   
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− − −



+

∫ ∫

∫ ∫ ∫

� �

� � �
.(14.24) 

 
Now we need to directly reveal the poles of the first order z, so we can obtain the residues and 
complete the Cauchy integration.  It is readily appreciated that with an explicit pole separation, 
(14.24) may be further written as: 
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z z

z izr
dz
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∫
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3C∫�

. (14.25) 

 
This contains six poles and it also contains square roots of the cubed roots of unity, which are 

thus sixth roots of unity.  Additionally, in ( )
1
64 Sπα  and 

1
3

0ρ  we see that other sixth roots have 

been taken to arrive at (14.25).  For two of these sixth roots of unity, it is readily seen that: 
 

1 3 1 3 1 3 1 3
;

2 2 2 2 2 2

i i
i i

− + − −= − + = − −  (14.26) 

 
which enables us to rewrite (14.25) as: 
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. (14.27) 

 

 Now, we use the three roots ( )
1 1
6 3

1 04 Sz πα ρ= , ( )( )
1 1
6 31

22
3

2 04 Siz πα ρ−=  and 

( ) ( )
1 1
6 31

23
3

2 04 Siz πα ρ+=  to extract the residue and evaluate the integral which includes an 

overall multiplication by 2 iπ  which is standard in such integrals.  What we obtain is: 
 

( )

( )( ) ( ) ( )
1 1 11 1 1
6 6 63 3 3

5

6 2
0

0 0 0

exp

4

1
2 exp 4 exp

1 3 1 3

2 2
4 exp

6 2
4

2

C C
s

S S S

z izr
f z dz dz

z

i i r i r ii i r
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π πα ρ πα ρ πα ρ
   

− +      
 

=
−



    
= + +    

         

∫ ∫� �
. (14.28) 

 

The overall integral evaluated above is 
Arc

( ) ( ) ( )
C

f z dz f z dz f z dz
∞

−∞
= +∫ ∫ ∫� , which includes both 

the entire range over the real arguments ( )f z dz
∞

−∞∫  as well as 
Arc

( )f z dz∫  which represents the 

contour arc through the complex plane.  But it is readily shown and is well-known that for an 

integral of the form (14.27), 
Arc

( ) 0f z dz=∫ .  So (14.28) is a complete result, and it may 

therefore be equated back to the original integral in (14.20).  So we now have: 
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( )( ) ( ) ( )
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6 6 63 3 3
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� �

. (14.29) 

 
 Then, we use the above in (14.20) to compute the potential, which is:   
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( )

( )( ) ( ) ( )
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6 6 63 3 3
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1 2 6 2
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−
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  
− +      
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k k k
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.(14.30) 

 
We see that for 0Sα →  which is the regime in which quarks are asymptotically free, this will 

reduce to: 
 

( )
0

1
1

1 1 1 1 1 1
3

4 3 4 4

S

E r
r r

α

π π π

=
−→ − = − = − . (14.31) 

 
which is the inverse-square law potential that is in [I.4.7] of [11].  This is an important check that 
our calculation properly reduces to the expected result when the strong coupling is small.  But 
(14.30) also contains a radial dependence inside the square brackets, which should give us 
confinement if all is well.   
 

Proceeding, we further simplify (14.30) by separating the roots of unity in the latter two 
of the three terms in (14.30) into real and imaginary parts and then using the hyperbolic function 
2cosh x xx e e−= + .  We also note that 2

0 J Jσ
σρ = .  Although we earlier set Jσ  to be at rest in 

order to get through the integration over rdk , after the integration everything is safely in 

configuration space and so we can use general covariance to transform back out of the rest frame 

and insert ( )
11 63

0 J Jσ
σρ =  into (14.30).  But the proper current density cubed root 

1
3

0ρ  is itself a 

scalar number in spacetime, so it is simpler to leave this as is.  This yields our final result: 
 

( )( ) ( ) ( )
1 1 11 1 1
6 6 63 3 3

1 0 0 0

1 3
cosh

2

1 1 1
exp 4 2exp 4 4

4 23 S S SE i rir r
r

πα ρ πα ρ πα ρ
π

  
= −  ⋅      

+ 
   

.(14.32) 

 
 It now helps to graph the behavior of this function.  If we set the “frequency” coefficient 

which is common to all three terms to ( )
1 1
6 3

04 Sf πα ρ≡  and regard this at this time to be a 

constant (later we shall examine other behaviors for this), and also scale out the lead amplitude 
coefficient 1/12A π≡  except for the negative sign of the potential, then we can somewhat 
unclutter the above by writing: 
 

( )1
1 exp 2e

1 3
cosh

2 2
xp iE Ar ifr fr fr−    ⋅        

 
= − + 

  
. (14.33) 

 

Defining a dimensionless ( )
1 1
6 3

04 sR fr rπα ρ≡ ≡  we further rewrite this as: 

 



Jay R. Yablon 

108 
 

( )1
1 / exp

1 3
c2exp osh

2 2
E Af R iR R Ri−    ⋅        

 
= − + 

  
. (14.34) 

 
 Now, this is a complex number.  Because observables energies in physics are real 

numbers, we will wish to ascertain the square magnitude (modulus) 
2

1 1 1*E E E=  and then 

obtain 
2

1 1E E= ± .  (We use ±  because as with any square root of a positive number, this can 

be either positive or negative.  The  symbol here is not for the absolute value but for the real 

magnitude.)  Therefore, the real magnitude of (14.34) may be written as:    
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(14.35) 

 
where we have defined the real and imaginary portions of the complex 1E via: 

 

( ) ( ) ( )
( ) ( ) ( )

31
2 2

31
2 2

cosh

cosh

cos 2cos

sin 2sinb
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+ ⋅
. (14.36) 

 
It is readily seen that the square magnitude: 
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. (14.37) 

 
This is not separable via the quadratic equation because it does not cross the R axis and so has no 

real roots.  So 
2

a bi a bi+ = ± +  is just the positive and negative square roots of the above: 

 

( ) ( ) ( ) ( ) ( ) ( )2 3 31 1
2 2 2 21 4 cos cos sin sincosh 4 cosha bi R R R R R R + =  + +± + . (14.38) 

 
Consequently, we use this in (14.35) to write the observable magnitude 1E  as: 

 

( ) ( ) ( ) ( ) ( ) ( )2 3 31 1
2 2 2

1
1 2/ 1 4 cos cos sin sincosh 4 coshE Af R R R R R R R−  = +  + +∓ . (14.39) 
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At this point we would like to graph 1E  as a function of R .  But before we do so, as a 

baseline for discussion we plot the ordinary ( ) 1
1 1/ 4E rπ −= −  potential of (14.31).  To plot this 

on scales and with variables that can be compared directly to those in (14.39) we use 1/12A π≡  

and  ( )
1 1
6 3

04 sR fr rπα ρ≡ ≡  to rewrite this potential as 1
1 / 3E Af R−= − .  The radial distance in 

spherical coordinates is always taken to be a positive number, so we only show the curve for 
.  This very familiar baseline potential is illustrated in Figure 1 below. 

  
Figure 1: The Ordinary R-1 Potential 

 
For a charge situated at r which is unlike-charged in relation to the charge sourcing this potential, 
the natural “geodesic” tendency will always be to seek the lowest possible potential, so that a 
charge at R will trend toward the left of the above graph and move closer to 0R= .  The like-
charge potential is simply the mirror image of Figure 1 flipped about the R axis, i.e., 

1
1 / 3E Af R−= + .  So, two like-charges will naturally tend to push further apart.  Additionally, a 

charge situated at large R does not require a whole lot of energy to separate even further, because 
of the manner in which 1

1 / 3E Af R−= −  asymptotically approaches the r axis from below.  

Because of this asymptotic behavior of the potential for large R, there is nothing in the Figure 1 
potential to “confine” this charge.  With the provision of sufficient finite, small energy, this 
charge is free to move all the way out to R→ ∞ .  
 

Now let’s graph (14.39).  We see from (14.38) that it is possible to use either the negative 
or positive sign.  One choice will yield a like-charge potential, the other an unlike-charge 
potential, and we will need to ascertain which is which.  For reasons that will become 
momentarily apparent, we graph this using the negative sign from (14.38) which produces an 
overall positive sign.  The graph is shown below in Figure 1a: 

0r >
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Figure 2: The Yang-Mills Potential 1E  of (14.39) at First Recursive Order    

 
 The +1/ R potential dominates the behavior of this curve at small R.  But at large R the 

terms containing ( )3
2cosh R  take over and force the curve to reverse and become infinitely large 

in the same way as does the hyperbolic cosine function.  Between these two domains there is a 
minimum in the potential at approximately ( ) ( )1, / 1.668,3.118R E Af ≈ .  So by least action / 

least potential principles, a charge situated in this potential will tend to seek this minimum point 
at 1.668R≈ .  Starting from this minimum, energy is required to pull the charge further away 
from 0R=  and also to push the charge closer to 0R= .  So the force 1 1 /F E R= ∂ ∂  associated 

with this potential is attractive for 1.668R> , repulsive for 1.668R<  and zero at 1.668R≈ .  
 
 Although (14.39) is only an abelian simplification as noted prior to (14.5), we 
nonetheless see in Figure 1a the first indication that the Yang-Mills potential, when 

( )
1 1
6 3

04 Sf πα ρ≡  is defined to be constant, is a confining potential.  Additionally, it is a stable 

potential, because at the same time it operates against a charge being removed to a separation 
much greater than 1.668R≈ , it also prevents a charge from getting too close to the source of the 
potential, because the potential 1/ r∝ +  for 0r → .    We shall develop and explore these two 
aspects of the Yang-Mills potential in great depth in the next few sections, together with 
exploring its asymptotic freedom. 
 
 We proceed to gain additional insight into this potential if we examine the real portion of 
(14.34), (14.35) by itself, namely: 
 

( ) 1
1Re / c

1 3
cos osh

2
s

2
2coE Af R R R R−    ⋅        

 
= − + 

  
. (14.40) 
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Because , in the  limit the square bracket term is still equal to 3 as 

in (14.31) and the dimensionless version of (14.31) becomes. 
 

1
1 / 3E Af R−= − . (14.41) 

 
As is to be expected, this is the 1/r potential of (14.31) and Figure 1.  If we now plot (14.40) 

using  while still treating ( )
1 1
6 3

04 Sf πα ρ≡  as a constant frequency as we 

did for Figures 1 and 2, the result is Figure 3 below:  

 
 Figure 3: The Yang-Mills Potential 1ReE  of (14.40) at First Recursive Order  

 
 This is the exact same function based on (14.34) as that shown in Figure 2, except here 
we are looking at 1ReE  rather than 1E .  We expect that 1E  will an abelian-simplified, first-

recursive order approximation to an observable potential, and that 1ReE  in Figure 3, although 

not observable because it truncates the imaginary contributions to 1E , can still give us some 

valuable insights into the observable Figure 2 potential.  Specifically, in Figure 3 we see the 
usual 1/ R−  potential melded with a confining potential that begins its uptick in the vicinity of 

2R ≈ .  Both Figure 2 and Figure 3 shows this confining potential, but in Figure 2 the potential 
continues to rise to infinity without ever retreating, while in Figure 3 this potential peaks at 
around ( )( ) ( )1,Re / 8.245,85.184R E Af ≈  and then retreats due to the sinusoidal behaviors that 

disappear in Figure 2, see the term reductions in (14.37).  What Figure 3 clues us into, which 
Figure 2 does not, is a length scale for these confining behaviors.  Specifically, because the first 
peak at 8.245R ≈  is a natural length scale embedded in (14.34), and because both Figures 2 and 

( )
1 1
6 3

04 SR fr rπα ρ= = 0Sα →

( )
1 1
6 3

04 SR fr rπα ρ= =
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3 show a confining potential, we shall now wish to associate 8.245R ≈  with some physically-
based radius r which is indicative of confinement.   
 

This brings us to the question whether Figure 2 is the potential for like or unlike charges.  
On the one hand, for 0R→ , this approximates to a 1/ R+  potential, which is the potential for 
like-charges repelling.  The 1/ R−  potential for unlike-charges attracting is what appears for 

0R→  in Figures 1 and 3.  So, one might conclude that Figure 2 is a potential for like charges 
repelling.  But at the same time, for 1.668R>  Figure 2 becomes confining, and so looks like a 
potential for unlike charges attracting.  And so we come to the crux: in Figure 2 there is a region 
of repulsion for 1.668R< , a region of attraction for 1.668R> , and a region of stability at 

1.668R≈ , as already pointed out.  But the charges do not switch from being like to unlike; it is 
the potential that changes its character as a function of r.   Put differently, we normally take the 
view that unlike charges attract and like charges repel because the potentials we usually have 
available, such as 1/r, do not at any point switch from repulsive to attractive.  But the potential in 
Figure 3 does switch from repulsive to attractive, and that is a very desirable feature of this 
potential because this renders it both confining and stable.  So how do we interpret this desirable 
feature of Figure 2?  
 
 Even since the time of Newton, and later Coulomb, -1/r potentials have been a central 
fixture of theoretical physics.  This is because 1/r potentials are central to both gravitation and 
electromagnetism.  But at the same time, it has been widely understood – at least qualitatively – 
that if one truly were able to experimentally study a -1/r potential for 0r → , where zero really 
meant zero, e.g., where r was a length even smaller than the Planck length, or maybe even a 
nuclear or atomic length, at some point the -1/r potential would no longer apply.  That is, it has 
long been understood that while -1/r potential has very wide applicability to macroscopic length 
scales, its range of validity in the smaller scale is not expected to be unlimited.  This was one of 
the problems confronted after the turn of the 20th century, when the Bohr model of the atom 
began to provide a mechanism for stopping the electron from otherwise losing energy and 
spiraling into the nucleus as its potential 1/ 4 rπ → −∞ .  So in general, it has been shown that it 
is wise to treat with caution, the applicability of a -1/r for extremely small r in the atomic domain 
and below.  On the other hand, a +1/r potential, often associated with the repulsion of like-
charges, does prevent a physically viable picture for small r.  This potential, for example, would 
prevent two protons from ever collapsing into one another.  But if there was nothing further, the 
protons would repel and fly apart, and there would be no atomic nuclei.  This is really the inverse 
of the problem of the electron spiral, and of course, today we know that the strong interaction is 
what prevents this from occurring.  
 

But what is still missing from present-day understanding, is a single potential curve 
derived from quantum field theory (as opposed to a potential which is simply postulated such as 

the ( ) ( )22 * *V φ µ φ φ λ φ φ≡ +  potential commonly employed in scalar field theory) which 

permits systems of unlike charges to simultaneously a) not collapse at extremely close distance, 
and b) not disintegrate at larger distances.  This is not dissimilar to problem that Max Planck 
confronted at the turn of the 20th century in trying to meld together the Wein curve for short 
wavelengths with the Rayleigh–Jeans curve for larger wavelengths.  Figure 2, while an abelian 
simplification limited to the first recursive order of non-linear quantum field theory, is the type 
of stable potential that is required to seamlessly meld attraction and repulsion into a single 
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potential curve that provides stability and avoids either system collapse or system disintegration.  
And because it has features of both attraction and repulsion, Figure 2 appears to be a stable, 
confining-yet-collapse-averting potential for unlike charges, and more specifically, the type of 
potential which is qualitatively suitable to govern the behaviors of the R, G, B quarks of unlike 
color, inside a baryon.  Again, while Figures 2 and 3 are approximations based on an abelian 
simplification and consideration of only the first recursive order of non-linear quantum field 
theory, these very desirable features will cause is to develop study this form of potential much 
more closely in the next several sections.  
 

Before concluding, let us do some order of magnitude calculations using dimensional 
analysis, based on all of the foregoing.  We see in Figure 3 for the real portion of the potential 
that a sharp rise in the potential starts to occur in the vicinity of 2R ≈  to 4R ≈  and peaks in the 

vicinity of the dimensionless ( )
1 1
6 3

04 8.245sR fr rπα ρ= = ≈ .  All experimental evidence suggests 

that there are exactly six quark flavors existing in nature, and we know from empirical data that 

for six quarks, ( ) ( )6 90.6 3.4QCD MeVΛ = ±  is the strong interaction cutoff arrived at through 

dimensional transmutation, see [9.24a] from PDG’s [24].  The deBroglie relation /E c= � �  
enables any mass / energy value 2E mc=  to be represented by an equivalent reduced length scale 
� .  In natural 1c= =�  units, 1/E = � .  The PDG data at [25] states that the “wavelength of a 1 
eV/c particle” ( ) 639 841 8/ (1 ) 751. 312 10hc eV m−= × .  Via a reduced / 2h π=�  this is 

alternatively expressed as the GeV-to-Fermi conversion 11 .197 326 9631GeV F− =  or 
11 5.067 731163F GeV−= , see also [11], Table 1.2b.  These conversions effectively provide a 

shortcut to transpose between E and �  in 3 /E c= � �  without having to explicitly use �  and c, 
which is the practical upshot of using 1c= =�  units.   So via 11 5.067 731163GeV F−= , the 

mean empirical value ( )6 .0906QCD GeVΛ =  has a radial length equivalent via 1/E = � , of 
( )6 1.0906 .4591 1/ 2.178 1/QCD GeV F F r−

ΛΛ = = = ≡ .  So we are able to define 2.178r FΛ ≡  as the 

approximate radial distance associated with the six quark QCD cutoff ( )6
QCDΛ  which we 

henceforth denote simply as Λ . 
 
Because this cutoff radius is the approximate empirical radial length at which the QCD 

coupling sα → ∞  and thereby confines quarks in six quark models, this 2.178r FΛ ≡  is the 

length scale at which we expect the confining potential inside a nucleon to peak.  Although 
Figure 3 only accounts for the real portion of the potential and is abelian and is based on the first 
recursive order only, it does provide a dimensionless 8.245R ≅  at which the potential peaks in 
Figure 3.  So in order to introduce an observable physical length / energy scale into Figures 2 and 
3, we now associate 2.178r FΛ ≡  at which sα → ∞  in six-quark theory with 8.245R ≅  at which 

the real portion of the potential peaks in Figure 1.  That is, we now regard  
2.178 8.245r F RΛ = ⇔ ≅  to be two equivalent ways of expressing the same physical radius, the 

former dimensional based on empirical data, and the latter dimensionless and based on the theory 

that led to Figures 2 and 3.  So using the definition ( )
1 1
6 3

04 constantsR fr rπα ρ≡ ≡ ≡  leading to 

(14.34), this means that we can implement the association 2.178 8.245r F RΛ = ⇔ ≅  by way of: 
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( ) ( )
1 11 1
6 63 3

0 08.245 4 4 2.178S SR r Fπα ρ πα ρ≅ = = . (14.42) 

 
We may then invert this and use 11 .197 326 9631F GeV− = to obtain: 
 

( )
1 1
6 3

0
1 18.245 .459 3.784 4 .747 747S F F GeV MeVπα ρ − −= ⋅ = = = . (14.43) 

 
So we see a (cubed root) density number that, on an order-of-magnitude basis, is what we expect 
to see when we are talking about baryons such as protons and neutrons with 

 and  respectively, see, e.g., [26], which 

establish the lower range of baryon masses which generally run from about 1GeV to about 
6GeV, see, e.g., [27].  
 
 There is also another way to understand (14.43), which in view of 

24 /s sg cπα = � , is to 

cube everything and then write (14.43) as: 
 

( )0 0

3
4 .747S s GeVgπα ρ ρ == . (14.44) 

 
This contains the running of the coupling  and the bare (uncoupled) proper density  of the 

quark currents in natural units.  Because .747GeV is a constant energy, as the strong charge 

 grows the bare proper density diminishes in inverse proportion.  As  

weakens the bare proper density grows larger in inverse proportion.  So the conclusion is clear: 
bare quark current densities  will be more greatly-concentrated where the running coupling 

 is smaller, and less-concentrated where the running coupling is larger.  For an infinite 

running coupling , the bare proper density .  There are of course many reasons 

to believe that confinement and the existence of a mass gap are related to the running of the 
coupling constant, which is an inherently quantum effect.  The above is yet another way of using 
the dimensional analysis in (14.42) to (14.44) to better understand the nature of confinement in 
relation to this running of the strong coupling. 
 
 So, with all of these results, we have fully converted from the classical analysis of 
sections 1 through 10 which gave us evidence that the magnetic monopoles of Yang-Mills theory 
have many of the symmetry features of baryons and that the electric current densities of Yang-
Mills theory similarly mirror the quark currents, to a complete analysis relying upon quantum 
field theory.  We confirm via (14.32) and its visualization in Figures 2 and 3 that even at first 
recursive order, and even with an abelian simplification, there is a very definitive appearance of 
confinement in the form of a potential that grows increasingly rapidly at distances larger than 

, which based on 2.178 8.245r F RΛ = ⇔ ≅ , has the correspondence 

.792 3r F R= ⇔ = .  In other words, all of this suggests that confinement starts to kick in, in 
earnest, once we try to separate two J by more than , which is the dimensional length 

( )938.272 046 21  pm MeV= ( )939.565 379 21  nm MeV=

Sα 0ρ

4S Sg πα= 4S Sg πα=

0ρ

Sα

Sα → ∞ 0 0ρ →

( )
1 1
6 3

04 3SR fr rπα ρ= = ≅

3R ≅
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.792r FΛ =  based on associating 2.178 8.245r F RΛ = ⇔ ≅ .  So as predicted by the theoretical 

results here in combination with the empirical , it is at about .792F  

that one crosses over from asymptotic freedom and starts to encounter an uptick in the quantum 
potential 1E   which we associate with confinement. 

 
15. Direct Quantum Field Theory Demonstration of Confinement – Non-
Abelian Generalization 
 
 At (14.5) in the prior section, we introduced an abelian simplification of the amplitude 

 which enabled us to treat  as 

an ordinary denominator and treat the currents as commuting .  Based on this 

simplification we arrived in (14.32).  Now we wish to extend (14.32) to the generalized non-
abelian relationship , , 0i j i j ijk k i jJ J J J if J Jσ τ σ τ σ τλ λ λ   = = ≠    .  To do so, we will identify 

precisely those points in the calculation of the previous section where the term  
was neglected, and thereby pinpoint what would be the generalized form of (14.32) had we not 
neglected this term.  There are two aspects to what we did which now need to be updated: first 

treating the inverse as an ordinary denominator, and second, commuting with .  We 

take these in turn. 
 
 As to inverses, for a square matrix M the inverse  is defined generally (and often 
deduced) by , where is a diagonal unit matrix.  It is customary to use the 
mathematical notation  rather than  for two reasons.  First, this serves as a mnemonic 
reminder that the object M is a matrix and not an ordinary number.  But this is just a symbolic 
convenience, and one could still write  rather than  so long as one was very careful to 
keep in mind that an object is a matrix and make sure that whenever  was in fact calculated, 
this calculation was performed using .  The more serious issue is that matrices in 

general are not commuting, and so the use of  rather than  generally serves as a 
placeholder to hold the commutation position of the matrix inverse in what may otherwise be a 
string of matrix multiplications for which left-right ordering matters.  For example, suppose we 
have three square matrices A, B and C which have the relationship .  If we wanted to 
rearrange, we could multiply from the right by C, and thus obtain .  The fact 
that we use  rather than  tells us that a right multiplication is in order.  Had 
we instead started merely with  we could end up with either  or , but 
the former would be right and the latter would be wrong. Here too, one could still write 

 and try to remember that  and not  is the original relationship, but 
that is not best practice for two reasons.  First, this illustrates that  is notationally 
ambiguous, and mathematical notation should be unambiguous.  Second, in a complicated 
calculation (such as the one in the last section) where original expressions undergo substantial 

(6)  90( ).6 3.4  QCD MeVΛ = ±

( ) ( )11
J J Jσ

σπ=M ( )( )2 14 4 /s sJ k k i J J k k iτ τ τ
σ τ τ τπα ε πα ε −+ + +

, 0J Jσ τ  = 

0ijk k i jif J Jσ τλ ≠

, 0J Jσ τ  = 

1M −

1M M δ−⋅ ≡ δ
1M − 1/ M

1/ M 1M −

1/ M

( )1/M M δ⋅ ≡
1M − 1/ M

1A BC−=
1AC BC C B−= =

1A BC−= /A B C=
/A B C= AC B= CA B=

/A B C= 1A BC−= 1A C B−=
/A B C=
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metamorphosis, it may be difficult to properly account for or reconstruct left and right ordering 
even with a good memory.   
 

And yet, there are benefits to the  notation, especially when it comes to visualizing 
cancellations of terms between a numerator and denominator, as well as carrying out other 
mathematical operations which do not involve an explicit calculation of  via .  
We saw an example of this in (7.20) where we used the subscripted down-arrow “ ” symbol as a 

marker to denote and hold commutativity position in combination with the usual “divide by” 
symbol “/” the eliminate this ambiguity in lieu of using the “-1” notation.  So with the present 
example, we could write  as  and in this way continue to use an ordinary “/” 

symbol without ambiguity.  If the posited relationship was  we could then write 
 and similarly have an unambiguous expression.  As an additional benefit, it may turn 

out that after a complicated calculation is complete, a matrix M which started out in the form 
 ends up being reinverted back to M without it ever becoming necessary to do the explicit 

calculation of  via .  A good example of this is the result (14.32) presently 
under review:  We already pointed out prior to (14.32) that one could revert to2

0 J Jσ
σρ = .  Now 

we do exactly that to rewrite this as:  
 

( )( ) ( ) ( )
1 1 1
6 6 61

1

1 3
cosh

2

1
exp 4 2exp 4

12 2
4S S SE r i J J r J J r Ji J rσ σ σ

σ σ σπα πα πα
π

−   
= − +  ⋅      

    
. (15.1) 

 

Although 4 sJ Jτ
τπα  originated in the inverse term ( )( )2 14 /sk k i J J k k iτ τ τ

τ τ τε πα ε −+ + +  in 

(14.3), by the time we completed the complex set of calculations that led to (14.32), (15.1), this 
inverted appearance of 4 sJ Jτ

τπα  ended up reinverted in the form of (15.1) and there was no 

need to explicitly calculate  via  or make use of this inverse in a 

string of other matrix multiplications  Instead, we found that the cubic and sixth root 
mathematics that started with the denominator  in (14.21), ended up with the 

original 4 sJ Jτ
τπα  appearing in an uninverted sixth root( )

1
64 SJ Jσ

σπα . 

 
 As to the second aspect, commutation, we now ask: how would (15.1) change if we had 
done the calculation of the last section using , . 0i j i j ijk k i jJ J J J if J Jσ τ σ τ σ τλ λ λ   = = ≠     rather 

than , 0J Jσ τ  =  ?  Or, stated differently, how does (15.1) generalize if the J which it contains 

commute via , 0J Jσ τ  ≠   rather than , 0J Jσ τ  =  ?  If the calculation of the last section had 

used no commutations between two or more J with different spacetime indexes, then (15.1) 
would remain as is.  But if there was a commutation – as there was in in going from (14.9) to 

(14.10) – then (15.1) needs to be reviewed and possibly amended for .  Let us now 

trace this through. 

1/ M

1M − 1M M δ−⋅ ≡
∨

1A BC−= /A B C∨=
1A C B−=

/A B C∨=

1M −

1M − 1M M δ−⋅ ≡

( ) 1
J Jτ

τ
− ( ) 1

J J J Jτ τ
τ τ δ

−
⋅ ≡

6 2
04 sz πα ρ−

, 0J Jσ τ  ≠ 
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 The abelian simplification began at (14.5) where we treated the inverse I which we 

reorder as ( )( )2 14 /sI J J k k i k k iτ τ τ
τ τ τπα ε ε −= + + + , as a denominator.  Now, let’s treat this like 

a true inverse.  The mathematical skeleton of this inverse comes from substituting 

( )2
4 /sJ J k k i xτ τ

τ τπα ε+ →  and k k i kτ
τ ε+ → −  and representing this inverse as ( ) 1I x k −= − .  

Then, taking the series expansion, we have:  
 

( )
2 3 4

1

0

1 1
1 ...

n

n

x x x x x
I x k

k k k k k k k

∞−
=

        = − = − + + + + + = −                 
∑ . (15.2) 

 
So reversing this substitution and again reordering in the inverse now tells us that the inverse 
written as a series expansion is: 
 

( )

( ) ( )
( )

( )

1
2

2

3 3 30

4

4 4 41 1
1 ... 1

s

n

ns s s

n

J J
I k k i

k k i

J J J J J J

k k i k k ik k i k k i k k i

τ
τ τ

τ τ
τ

τ τ τ
τ τ τ

τ ττ τ τ
τ ττ τ τ

παε
ε

πα πα πα
ε εε ε ε

−

∞

=

 
 = + +
 + 

    
    = − + + = −    + ++ + +     

∑

. (15.3) 

 
 So let us now return to (14.7) for the Fourier transform ( )1D x y−  and use the above 

inverse instead, thus replacing (14.7) with: 
 

( )
( )

( )
( )

( )
4

1 4 30

4
1

2

n
ik x y

n s
n

J Jd k e
D x y

k k i k k i

σ
σ τ

τ
τ τ

τ τ

πα
επ ε

−
∞

=

 
 − = −
 + + 

∑∫ . (15.4) 

 
We then remove the leading coefficient  from (14.8) because we are now reintroducing 

 with generator matrices normalized to  and restore the trace that was 

removed at (14.5), and so write: 
 

( ) ( ) ( ) ( )4 4
11

Tr 4 sW J d xd y J x D x y J yσ
σπα= − −∫∫ . (15.5) 

 
Then using (15.4) in (15.5) we obtain: 
 

( ) ( )
( )

( )
( )

( )
( )

4
4 4

4 31 0

4
Tr 4 1

2

n
ik x y

n s
s n

J Jd k e
W J d xd y J x J y

k k i k k i

σ
σ τ

στ
σ τ τ

τ τ

παπα
επ ε

−
∞

=

 
 = − −
 + + 

∑∫∫ ∫ . (15.6) 

1
2

i iJ Jα αλ= ( )2
1
2Tr iλ =
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This now replaces what was earlier (14.9).   
 

Now we can pinpoint exactly how the abelian approximation of the last section lost 
certain information due to the fact that we treated the current densities as commuting 

, 0J Jσ τ  =  .  This is because in going from (14.9) to (14.10) we moved ( )J yσ  from the far 

right, over to the left past the inverse without concern for commutation.  But now, we are treating 

, . 0i j i j ijk k i jJ J J J if J Jσ τ σ τ σ τλ λ λ   = = ≠     as non-commuting, and in (15.6) we see that to 

move ( )J yσ  over to the left past the series sum Σ , we must effectively commute ( )J yσ  past 

( )n
J Jτ

τ  for any n right up to infinity, that is, we must move ( ) ( ) ( ) ( )n n
J J J y J y J Jτ σ σ τ

τ τ→  .  

Accordingly, we see that what was neglected in the abelian calculation of the previous section 

was the non-zero commutator ( ) , 0J J Jτ σ
τ

  ≠  . 

 
One might think to attack the required commutation in (15.6) by actually trying to 

calculate ( ) , 0J J Jτ σ
τ

  ≠  , and then generalize to ( ) ,
n

J J Jτ σ
τ

 
  

 for larger n.  But that leads to 

some very unwieldy expressions, and there is a much better way.  Instead, we make use of the 
fact that for SU(N) generally, each i iJ Jα αλ= , where iλ  are the group generators.  Of course, 
for SU(3)C we use the eight Gell-Mann matrices, but there is no reason for the present discussion 
to limit ourselves to one particular gauge group, and we can be perfectly general.  So in general, 
the number of group generators for SU(N) is 2 1N −  and the 21... 1i N= −  generators sit in an 
adjoint representation of the group. 

 
Now, although i iJ Jα αλ=  is a perfectly good way to expand Jα , let us be even more 

pedantic about this, and use the bra-ket notation to make one of iλ  and iJ α  a row/bra object, and 
the other a ket/column object.  It does not matter which is which because the result is identical in 
either case, that is: 

 
i i i i i iJ J J Jα α α αλ λ λ= = = . (15.7) 

 
Just to illustrate explicitly, suppose the group is SU(2).  Then (15.7) would be expanded to: 

 

( ) ( )
1 1

1 2 3 2 1 2 3 2

3 3

i i i i i i

J

J J J J J J J J

J

α

α α α α α α α α

α

σ
σ σ σ σ σ σ σ

σ

   
   = = = = =   
   
   

, (15.8) 

 
and we see why it does not matter which is the row/bra and which is the column/ket.   
 

So, going back to (15.6), we set and ( ) ( )i iJ x J xσ σλ=  and ( ) ( )j jJ y J yσ σ λ=  

with opposite alternatives (15.7) and so rewrite this as: 
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( ) ( )
( )

( )
( )

( )
( )

4
4 4

4 31 0

4
Tr 4 1

2

n
ik x y

ni i j js
s n

J Jd k e
W J d xd y J x J y

k k i k k i

σ
σ τ

στ
σ τ τ

τ τ

παπα λ λ
επ ε

−
∞

=

 
 = − −
 + + 

∑∫∫ ∫ . (15.9) 

 

In the above, we are now free to move the ( )iJ yσ  bra over to the left past the ( )n
J Jτ

τ , so long 

as we leave the jλ  ket right where it is way over on the right.  This is because it is the jλ  

which hold the commutation position, not the iJ σ .  The only restriction on moving ( )iJ yσ  to 

the left is that we cannot move it to the left of ( )iJ xσ  because now the ket and the bra will 

“butt heads.”  But most importantly, because ( )iJ yσ  is a function of configuration space while 

J Jτ
τ  inside the series is a function of momentum k, we can move ( )iJ yσ  far enough left to 

get it outside the integral over 4d k .  Doing this move, and also moving the iλ  (constant) bra 

all the way over to left outside of the 4 4d xd y integral, (15.9) now becomes: 
 

( ) ( ) ( )
( )

( )
( )

( )
4

4 4
4 31 0

4
Tr 4 1

2

n
ik x y

ni i j js
s n

J Jd k e
W J d xd y J x J y

k k i k k i

σ
σ τ

σ τ
σ τ τ

τ τ

παλ πα λ
επ ε

−
∞

=

 
 = − −
 + + 

∑∫∫ ∫ .(15.10) 

Contrasting with (14.9) and (14.10), the difference wrought by non-abelian gauge theory now 
rests in the bras and the kets appearing above. 
 
 Now, let us focus on reducing: 
 

( ) ( ) ( ) ( )
( ) ( )

4 4 0 0 3 3

0 0 3 3

4 4i j i j
s s

i j
s s

d xd y J x J y dx dy d xd y J J

dx dy d xg J d yg J

σ σ
σ σ

σ
σ

πα πα=

=

∫∫ ∫∫ ∫∫

∫∫ ∫ ∫

x y

x y
. (15.11) 

 
As we did between (14.10) and (14.10), we can move into the rest frame where 

†
0s sg J gψ ψ ρ= ≡  is the probability density.  But now, we have 0

i i
sg J ρ≡  defining a total of 

2 1N −  such probability densities, with the result that ( ) ( )3 3 1 1i j i j
s sd xg J d yg Jσ

σ =∫ ∫x y .  

For the SU(2) example, to be explicit: 
 

( )
1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1

i j ij

   
   = = ≡   
   
   

. (15.12) 

 
So ( ) ( )3 3i j

s sd xg J d yg Jσ
σ∫ ∫x y  is an ( ) ( )2 21 1N N− × −  matrix of ones 1ij , as opposed to a 

diagonal unit matrix ijδ .  Thus, (15.11) reduces to: 
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( ) ( )4 4 0 04 1i j ij
sd xd y J x J y dx dyσ

σπα =∫∫ ∫∫ , (15.13) 

 
and in view also of ( )21 1i ij jNλ λ= −  (use (15.12) to see this explicitly for SU(2)), (15.10) 

reduces further  to: 

( )
( )

( )
( )

( )

( )
( )

( )
( )

( )

4
0 0

4 31 0

4
2 0 0

4 30

4
2Tr 1 1

2

4
2 1 Tr 1

2

n
ik x y

ni ij js

n

n
ik x y

nj js

n

J Jd k e
W J dx dy

k k i k k i

J Jd k e
N dx dy

k k i k k i

σ
σ

σ
σ

τ
τ

τ τ
τ τ

τ
τ

τ τ
τ τ

παλ λ
επ ε

παλ λ
επ ε

−
∞

=

−
∞

=

 
 = − −
 + + 

 
 = − − −
 + + 

∑∫∫ ∫

∑∫∫ ∫

. (15.14) 

 
Above, we have also added a factor of 2 as we did at (4.11) to account for both of the 
interactions x yJ J  and y xJ J .   

 
 Now that the series Σ  in (15.14) has served its function by showing us exactly what 
commutations need to be carefully considered, let us revert to remove the series via (15.3) and 
rewrite the above it renaming the summed indexes i j→  as: 
 

( ) ( )
( )

( )

( )
4

2 0 0 1
4 21

4
2 1 Tr

2

ik x y i isJ Jd k
W J N dx dy e k k i

k k i

σ
σ

τ
τ τ

τ τ
τ

παλ ε λ
π ε

− −
 
 = − − + +
 + 

∫∫ ∫ . (15.15) 

 
Now, as in (14.10), we separate 0dk  from 3d k  in the Fourier terms to write: 
 

( ) ( ) ( )

( )
( )

( )
0

0

0 3
2 0 0 1

3 21

4
2 1 Tr

2 2

ik x y ii isJ Jdk d k
W J N dx dy e e k k i

k k i

τ
τ τ

τ τ
τ

παλ ε λ
π π ε

− ⋅ − −
 
 = − − + +
 + 

∫∫ ∫ ∫
k x y . (15.16) 

 
We then apply (14.12) with 0 0k =  so 2k kτ

τ = −k  and we can remove iε+  exactly as before, so 

(15.16) becomes: 
 

( ) ( )
( )

( )
3

2 0 2 1
3 41

4
2 1 Tr

2

ii isJ Jd k
W J N dx e

τ
τπαλ λ

π
⋅ − − 

= − − 
 

∫ ∫
k x y k

k
. (15.17) 

 

 Finally, as in (14.14), we set 0dx T=∫  and W ET= −  to obtain: 

 

( )
( )

( )
3

2 2 1
1 3 4

4
2 1 Tr

2

ii isJ Jd k
E N e

τ
τπαλ λ

π
⋅ − − 

= − − − 
 

∫
k x y k

k
. (15.18) 
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This is the non-abelian counterpart to (14.14).  It is identical in form in all respects.  The 
substantive differences are as follows: A) There is an overall trace (Tr) as expected for a non-
abelian gauge theory.  B) There is an overall factor of 2 to account for the generator 

normalization ( )2
1
2Tr iλ = .  C) There is a further overall factor of 2 1N −  which accounts for the 

dimension of the adjoint representation of SU(N).  D) The integrand inside the Fourier 3d k  is 

exactly the same as before, with the exception that it is bracketed inside of a iλ  on the left and 

a iλ  on the right.  We also note that (15.18) employs the customary inverse notation 1M −  

rather than the ordinary 1/ M  employed in (14.14), but this is only a difference of form.  If we 
wish, we can as a matter of mathematical notation represent (15.18) exactly as we did (14.14), by 
writing this as: 
 

( ) ( )
( )

( )
3

2 2
1 1 abelian3

2
4

2 1 Tr 2 1 Tr
42

i
i i i i

s

d k e
E N N E

J Jτ
τ

λ λ λ λ
παπ

⋅ −
 
 

= − − = − 
 − 
 

∫
k x y

k
k

. (15.19) 

 
It is now to be seen that the term inside the rounded brackets above is exactly the same as 

the integral for 1E  in the abelian simplification (14.14).  We simply need to remember at suitable 

points in the development that it is really an inverse not a denominator.  It is the sandwiching of 
this inverse between iλ  and iλ  which now contains the residue of the commutativity issues 

that we first started to tackle in (15.6) and (15.7).  This is to say, in the non-abelian gauge theory, 
the inverse must be and must remain sandwiched between iλ  and iλ  in order to take proper 

account of , . 0i j i j ijk k i jJ J J J if J Jσ τ σ τ σ τλ λ λ   = = ≠     in non-abelian gauge theory.  These 
iλ  and iλ  carry and preserve the fact that in (15.6), ( )J xσ  was to the left and ( )J yσ  was to 

the right of the inverse.  Everything else has now been distilled out from (15.19). 
 
 Now let us fast forward a few steps from (14.14) to (14.20) during which we transformed 
the coordinates to eliminate all but the integral over rdk  and in a final step set 2

0J Jτ
τ ρ=  where 

0ρ  is the proper probability density.  Nothing occurred during that stretch of equations as 

regards the inverse.  So we substitute the result (14.20) for 1 abelianE  in the above and now 

explicitly show the inverse ( ) 16 2
04 sπα ρ

−
−k , to write: 

 

( )
( ) ( )

2
14 6 2

1 02

2 1 1
Tr exp 4

2
i i

r s

N
E dk i r

ri
λ πα ρ λ

π
∞ −

−∞

−
= − −∫ k k k k . (15.20) 

 
This is the non-abelian counterpart to (14.20).   
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Now we need to again integrate over rdk , and will look to contour integration via 

z→k  to help us do so.  But there is an important difference between this integral and (14.20), 

because in an SU(N) non-abelian gauge theory 2
0ρ  has an NxN matrix representation 

2
0 0 0

i j i j i j i jJ J J Jτ τ
τ τλ λ λ λ ρ ρ ρ= = = , which we emphasize using inverse notation.  So as we did 

in (14.21), we extend this integral to complex numbers and write the contour integral which is 
identical to (14.20) in form, but for the denominator now being an inverse: 
 

( ) ( ) 15 6 2
0exp 4 sC C

f z dz dz z izr z πα ρ
−

= −∫ ∫� . (15.21) 

 
Using the same partial fraction separation employed from (14.21) to (14.27), we then arrive at: 
 

( ) ( )
( )( ) ( )( )

( ) ( )

( )

1 11 1
6 63 3

1

1 11 1
6 63 3

2

1
6

15 6 2
0

1 1
1

0 03

1 1

1
0 03

1
3

exp 4

e

1 3

xp 4 4

exp 4 4

ex

1 3

p

2 2 2 2

1 3

2
4

2

sC C

s sC

s sC

s

i

f z dz dz z izr z

d

i

i

z z izr z z

dz z izr z z

dz z izr z

πα ρ

πα ρ πα ρ

πα ρ πα ρ

πα ρ

−

− −

− −
   

− −     

= −

= + −

   
+ + −   

   
   

+ +


   

 
+  

 

∫ ∫

∫

∫

� �

�

�

( )
11 1
63 3

3

1 1

0 0

1 3

2 2
4 sC

iz πα ρ
− −

 
+  

 

   
−   

   
   

∫�

. (15.22) 

 
This is the counterpart to (14.27), but now, because 0 0

i iρ λ ρ=  with 21... 1i N= −  for SU(N) 

which stems from i iJ Jσ σλ= , the steps we must take to further develop (15.22) into an analog 
of (14.28) will bring us into qualitatively new, and very deep territory in a number of ways. 
 
 First of all, because 0 0

i iρ λ ρ=  is an NxN Hermitian matrix and the next step is to use the 

three roots ( )
1 1
6 3

1 04 sz πα ρ= , ( ) ( )
1 1
6 31

22
3

2 04 siz πα ρ−=  and ( )( )
1 1
6 31

23
3

2 04 siz πα ρ+=  to arrive at 

an analog of (14.28), we must inquire about both the nature of the roots 1 2 3, ,z z z  as well as about 

the nature of 
1
3

0ρ .  In the contour integration of the last section we took z to be an ordinary 

complex number z A iB= + .  But if we need to take, e.g., ( )
1 1
6 3

1 04 Sz πα ρ= , and if ( )1
3

3

0 0ρ ρ=  is 

an NxN Hermitian matrix, then we must regard z  as an NxN Hermitian matrix for SU(N), 
because this is the only way to make these root expressions zero which is required to perform to 
contour integral.  Otherwise, these would simply be eigenvalue equations for z in the form of, 

e.g., ( )
1 1
6 3

1 04 0sz πα ρ− =  using detA A≡ .  Second, if ( )1
3

3

0 0 0
i iρ λ ρ ρ= = , then we must find 

out more about the cubed root object 
1
3

0ρ , because this is not an ordinary number but is rather is 

the cubed root of an NxN Hermitian matrix 0 0
i iρ λ ρ= .  So what we really must do here is 
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harmonize the structure of z with that of 
1
3

0ρ  and with that of 0ρ  in a way that all makes sense in 

a quantum field theory.  Two pieces of historical context will help set the stage for this. 
 

 First, in 1843 imaginary 1i = −  and complex A Bi+  numbers were still fairly new 
when  William Rowan Hamilton sought to generalize 2 1i = −  to three dimensions by creating 
two more numbers j, k different from i which also are specified by 2 2 1j k= = − .  Among other 
things, this helped to describe rotations in three space dimensions.  In a seminal flash, he 
conceived the answer to his quest, and used his penknife to carve in the side of the Brougham 
Bridge the quaternions 2 2 2 1i j k ijk= = = = − .  In so doing, he extended complex numbers into 
three-dimensional spaces.  These quaternions are still very much in use throughout physics, but 
in modern parlance they take the form of the Pauli spin matrices ,i j ijk kiσ σ ε σ  =   normalized to 

( )2 1
2iTr σ = , which have the quaternion relationship 2 2 2

1 2 3 1 2 3 2 2iσ σ σ σ σ σ δ ×= = = − = .  Then, in 

1954 Chen Ning Yang and Robert Mills took the next step and generalized all of this to even 
higher dimensionality 2 1N −  via the generators ,i j ijk kifλ λ λ  =   of whatever compact simple 

traceless gauge group SU(N) one may wish to consider.  So, for example, the color group SU(3) 
is an eight-dimensional quaternion-like extension of Hamilton’s original complex analysis.  So it 
is natural, when trying to solve (15.20) by extending into complex numbers via z→k  and 

rdk dz→ , to take z to be not the simple complex number z A iB= + , but a Hermitian matrix of 

NxN dimensionality.  And, after all, the matrices of SU(N) are simply matrices containing several 
real and complex numbers, rather than just a single z A iB= + .  So if rdk dz→  in now an NxN 

Hermitian matrix, we are simply doing NxN contour integrals all at once and packaging them up 
in a single matrix.  The off-diagonal N N N× −  of these integrals are over complex measures z, 
and the on-diagonal N of these integrals are over real measures.  This is important to keep in 
mind because the 0 0

i iρ λ ρ=  which appear in (15.22) and which we need to set to roots such as 

( )
1 1
6 3

1 04 Sz πα ρ= , make use of these very same generators which are the progeny of Yang-Mill’s 

extension of Pauli’s and Hamilton’s extension of complex numbers into higher dimensionality. 
 
 Second, in 1928 Paul Dirac was attempting to obtain the non-trivial square root of the 
relativistic energy relationship 2p p mσ

σ =  but wanted to find a relationship which – unlike the 

Klein-Gordon equation a.k.a. relativistic Schrödinger equation –was linear in the spacetime 
gradient σ∂ .  In the process, he found that although the equations of special and general 
relativity were based on a Minkowski metric tensor µνη  which generalized to the spacetime 

metric gµν , there is an underlying fermion structure to spacetime that lays hidden in a set of µγ  

defined via a Clifford Algebra such that { }1
2 ,µν µ νη γ γ= .  In this way, Dirac’s equation 

p u m uσ
σγ =  is just the square root of 2p p mσ

σ = , but with a much richer substructure than 

is revealed by the trivial root equation p p mσ
σ = ± .  This is also important to keep in mind 

here, because channeling Dirac, the presence of 
1
3

0ρ  in the root equations residing in (15.22) is 

telling us that there is a cubed root substructure resting “beneath the hood” of Yang-Mills theory.  
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This is a substructure that we shall now find and develop.  And as we shall see, this substructure 
will bring us to the very heart of quantum field theory. 
 
 Both of these historical threads converge here, because now that we are taking z to be a 

Hermitian matrix so that we can set the roots to ( ) ( )
1 11
6 33

1 0 04 s sz gπα ρ ρ= = , 

( )( ) ( ) ( )
1 11
6 33

2 0
3 31 1

02 2 2 24 s si iz gπα ρ ρ− −= =  and ( )( ) ( )( )
1 11
6 33

3 0
3 31 1

02 2 2 24 s si iz gπα ρ ρ+ += =  

and complete the contour integration (15.22).  Because of this we must find out about these 
1
3

0ρ  

objects to which these three iz  are proportional up to numeric factors.  So now let us closely 

study 0ρ  and 
1
3

0ρ . 

 

 Insofar as 
1
3

0ρ  is concerned, this is not just any ordinary object.  The 0 0
i iρ λ ρ=  of which 

this is the cubed root is itself an inherently three-space-dimensional object.  Specifically, in the 
rest frame,  0 †

0 4 4s sJρ πα πα ψ ψ= =  is a proper probability density of the source current Jσ  in 

the three space dimensions of the natural world. In natural units 1c= =� , 0ρ  has a mass 

dimensionality of +3 and a length dimensionality of -3, or 1/volume.  So this means that 
1
3

0ρ  has 

a mass dimensionality of +1 and a length dimensionality of -1, i.e., that its dimension is of 

1/length.  If we use 
1
3

0µ ρ≡  to denote an object with mass dimension of +1, which when scaled 

with the running charge to ( )
11
33

0s sg gµ ρ≡  may be interpreted as a density along a single length 

dimension, then we may write 3
0s sg gρ µ=  and thus 3

0ρ µ= .  But these three dimensions for 

which 0ρ  is a 1/length3 measure are not just some abstract space: they are the physical space of 

physical experience which we often refer to the Cartesian coordinates x, y and z when we seek to 
talk about measurements in that space.   So rather than just write 3

0ρ µ= , let us define three 

distinct 0 0 0, ,x y zµ µ µ  which define proper linear densities along each of these three measurement 

axes, and thus write 0 0 0 0x y zρ µ µ µ≡  as the definition of 0 0 0, ,x y zµ µ µ .  However, so as to not 

introduce any bias toward a particular x, y, z ordering in view of the structure of antisymmetric 
field theory, we should really define these 0µ  using wedge products as 1

0 0 0 03! x y zρ µ µ µ≡ ∧ ∧ .  

Finally, because 0 0
i iρ λ ρ=  is itself an NxN Hermitian matrix, let us similarly define each of the 

one-dimensional 0 , ,x y zµ  in like fashion, and then ascertain the detailed ( )0 0 0 0, ,x y zρ µ µ µ  

relationship.  That is we now define 0 0
i i

x xµ λ µ≡ , 0 0
j j

y yµ λ µ≡  and 0 0
k k

z zµ λ µ≡ .   

 
 Tending for a moment to notation, we now define the notations kλ λ≡

�
 and 

( )0 0 0 0 0, ,k k k k
x y zµ µ µ≡ =�µ µµ µµ µµ µ  to represent each of kλ  and 0

kµµµµ  as a vector in the adjoint 

representation of the internal symmetry (not space) indexes 21... 1k N= − .  This is to say, vectors 
V in experiential three space will be represented in boldface type V and vectors I in the internal 
symmetry space will be represented by I

�
 with an arrow above the object.  We also use “	 ” to 

represent a dot product in internal symmetry space, versus the “⋅ ” reserved for experiential 
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space.  Further, in the same way that we use the Feynman slash V Vµ
µγ=/  to represent the “scalar 

product” of a vector Vµ  with the Dirac gamma matrices µγ , we will also define 0 0λ≡
� �
	µ µµ µµ µµ µ  with 

a horizontal slash to represent the internal symmetry space scalar product of 0
�µµµµ  with the group 

generators λ
�

.  Note that 0

�µµµµ  is itself a vector in both internal symmetry and experiential space.  

Thus, we now denote the x, y, z components of 0

�µµµµ  by 0 0
i i

x xµ λ µ≡ , 0 0
j j

y yµ λ µ≡  and 

0 0
k k

z zµ λ µ≡ .  In these notations, this means that we are really defining 0

�µµµµ  by 
1

0 0 0 03! x y zρ µ µ µ≡ ∧ ∧ . 

 
 All of this now means, using the group structure relationship ,i j ijm mifλ λ λ  =  , that: 

 

[ ]( )
( )

( )

1 1
0 0 0 0 0 0 0 0 0 0 0 0 03! 2!

1
0 0 0 0 0 0 0 0 0 02!

1
0 0 02!

1
02!

, , ,

, , ,

, , ,

x y z x y z y z x z x y

l l i i j j k k j j k k i i k k i i j j
x y z y z x z x y

i j k j k i k i j i j k
x y z

x

ρ µ µ µ µ µ µ µ µ µ µ µ µ

ρ λ λ µ λ µ λ µ λ µ λ µ λ µ λ µ λ µ λ µ

λ λ λ λ λ λ λ λ λ µ µ µ

µ

   = ∧ ∧ = + +   

     = = + +     

     = + +     

= ( )0 0
i j k i jkl j kil k ijl l

y z if if ifµ µ λ λ λ λ+ +

. (15.23) 

 
From this we can factor out the lλ  generator from very right, and simplify to: 
 

( )
( )
( )

1
0 0 0 02!

1
0 0 0 0 0 0 0 0 02!

1
0 0 0 0 0 0 0 0 02!

m i j k i jkm j kim k ijm
x y z

mij i j k i j k i j k k
x y z y z x z x y

mij i j i j i j
x y z y z x z x y

if if if

if

if

ρ µ µ µ λ λ λ

µ µ µ µ µ µ µ µ µ λ

µ µ µ µ µ µ µ µ µ

= + +

= + +

= + +

. (15.24) 

 
For a particular gauge group SU(N) with free index 21... 1m N= − , this contains 2 1N −  
simultaneous equations. 
 
 If we wish to gain a better geometric understanding of this relationship in the three-space 
of spacetime, we may choose the simplest internal symmetry group SU(2) just for illustration.  
Here, k kλ σ→   become the Pauli spin matrices (normalized with a 1

2  factor) and mij mijf ε→  

becomes the Levi-Civita tensor.  With a free index m, (15.24) for SU(2) now contains three 
simultaneous equations.  To garner the pattern, it suffices to explore one of these three equations, 
say, for 1

0ρ .  From the middle line of (15.25), using boldface type to represent vectors V in the 

three-space of ordinary experience, and then using ordinary cross and dot products in these three 
space dimensions, we obtain: 
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( )
( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )

1 11
0 0 0 0 0 0 0 0 0 02!

2 3 2 3 2 3 2 3 2 3 2 31
0 0 0 0 0 0 0 0 0 0 0 0 0 0 02!

2 3 2 3 2 31
0 0 0 0 0 0 0 0 02!

2 31 1
0 0 02! 4

ij i j k i j k i j k k
x y z y z x z x y

k k k k k k
y z z y x z x x z y x y y x z

x y zk k k k k k
x y z

k k

i

i

i

i i

ρ ε µ µ µ µ µ µ µ µ µ σ

µ µ µ µ σ µ µ µ µ µ σ µ µ µ µ µ σ µ

σ µ σ µ σ µ

σ ε

= + +

= − + − + −

= × + × + ×

= × ⋅ =

µ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µ

µ µ µµ µ µµ µ µµ µ µ ( ) ( ) ( )1 11
0 0 0 0 0 04

ij i j k k ij i jiσ ε× ⋅ = × ⋅µ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µ

.(15.25) 

 
With this notation we can write out 0 0

k kσ=µ µµ µµ µµ µ  in the final expression in (15.25) as: 

 
3 1 2

0 0 0
0 0 0 1 2 3

0 0 0

k k i

i
σ σ

 −
= = =  + 

� �
	

µ µ µµ µ µµ µ µµ µ µµ µ µµ µ µµ µ µµ µ µ
µ µ µµ µ µµ µ µµ µ µ

. (15.26) 

 
So in sum, (15.25) may now be written as ( )1 11

0 0 0 04
ij i jiρ ε= × ⋅µ µ µµ µ µµ µ µµ µ µ .  Given that this is 

just for the 1i =  component, we can generalize (15.25) to the 2,3i =  components by writing 

( )1
0 0 0 04

m mij i jiρ ε= × ⋅µ µ µµ µ µµ µ µµ µ µ .  Then, generalizing this back to any SU(N) by k kσ λ→  and 

mij mijfε → , we find that for any SU(N), with 0 0λ=
� �
	µ µµ µµ µµ µ , the relationship (15.24) is: 

 

( ) ( )1 1
0 0 0 0 0 0 04 4

m mij i j mij i jif ifρ λ= × ⋅ = × ⋅
� �
	µ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µ . (15.27) 

 
 As a final notational consolidation, recall the discussion back between (1.9) and (1.10) 
regarding how the wedge symbol ∧   is used to represent a cross product in internal symmetry 

space.  Specifically, we observed that while ( )kijk i jA Bε = ×A B  is used in experiential space, the 

analogous ( )k
ijk i jf A B A B= ∧

� �
 is used in internal symmetry space.  So we wish to use this to 

compact ( )0 0
mij i jf ×µ µµ µµ µµ µ  to include the internal symmetry space cross product symbol ∧ .  But 

there is already a spatial cross product ×  in this expression.  So the final notation we introduce 
will be ⊗ ≡ ×∪∧  to denote a “super-cross product” for a situation such as we have at present, 
where we unite (∪ ) a cross product in both the internal symmetry and the experiential spaces.  

With this notation, we employ ( ) ( )0 0 0 0

m mij i jf⊗ ≡ ×� �µ µ µ µµ µ µ µµ µ µ µµ µ µ µ  to write (15.27) as: 

 

( )1
0 0 0 04

mm iρ = ⊗ ⋅� �µ µ µµ µ µµ µ µµ µ µ . (15.28) 

 

Then we may suppress internal symmetry vector index m via 0 0
mρ ρ→ �

 and m⊗ → ⊗
�

 as we did 

at (1.10) to implement one final consolidation of the internal symmetry space vectors to: 
 

( )1
0 0 0 04 iρ = ⊗ ⋅

�� � �µ µ µµ µ µµ µ µµ µ µ . (15.29) 
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The above is (15.24), reduced down to the geometrically-understandable Maxwellian language 
of vectors and vector products in internal symmetry and experiential spaces.   
 

Now, returning to the original probability density 0 0
m mρ λ ρ=  with which all of this 

started, we may take the scalar product of (15.28) with mλ  to finally write: 
 

( ) ( ) ( )1 1 1
0 0 0 0 0 0 0 0 0 0 04 4 4

mm m mi i iρ λ ρ λ λ= = ⊗ ⋅ = ⊗ ⋅ = ⊗ ⋅
� �� � � � � �
	µ µ µ µ µ µ µ µ µµ µ µ µ µ µ µ µ µµ µ µ µ µ µ µ µ µµ µ µ µ µ µ µ µ µ . (15.30) 

 

In the final expression, we have set i iλ λ∧ = ∧ = ∧
� �
	 , which because we are symbolically using 

⊗ ≡ ×∪∧  to represent a unified cross product, results in m mλ λ⊗ = ⊗ = ⊗
� �
	 .  With the running 

charge strength scaled back in, this becomes ( )1 1 1
3 3 31

0 0 0 04s s s sg i g g gρ = ⊗ ⋅� �µ µ µµ µ µµ µ µµ µ µ . 

 
So if we want to see what this three-space probability density which in turn is situated 

inside the current density term 2
0J J σ

σ ρ=  looks like in terms of the proper probability density 

along each of the x, y, z space dimensions, SU(2) provides a good illustration.  From (15.28) and 

(15.30) and 0 0 0λ σ= →
� � � �
	 	µ µ µµ µ µµ µ µµ µ µ , we have: 

 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

3 1 2
0 0 0 1 1

0 0 0 0 0 0 0 04 41 2 3
0 0 0

3 1 2 3 1 2
0 0 0 0 0 0 0 0 01

4 1 2 31 2 3
0 0 00 0 0 0 0 0

mm m mi
i i

i

i i
i

ii

ρ ρ ρρ σ ρ σ σ
ρ ρ ρ
 −

= = = ⊗ ⋅ = ⊗ ⋅ + − 

 ⊗ ⊗ − ⊗  −
 = ⋅ 
  + −⊗ + ⊗ − ⊗   

�� � � � �
	

� � � � � �

� � � � � �

µ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µ

µ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µ µ µ µµ µ µµ µ µµ µ µ
µ µ µµ µ µµ µ µµ µ µµ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µµ µ µ µ µ µ

 . (15.31) 

 
The construction of the probability density for higher dimensional groups SU(N) will follow this 
same basic pattern. 
 
 When we used the analogy following (15.22) of Paul Dirac having discovered a Clifford 
Algebra substructure to spacetime in the form of { }1

2 ,µν µ νη γ γ= , it was (15.31) above that we 

had in mind.  Normally the consideration of the probability density ends with 0 0
m mρ λ ρ=  above 

and goes no further.  In (15.31) which uses SU2) for illustration, we deconstruct the probability 
density which is a density in a three-dimensional volume, into its component probability density 
vector 

�µµµµ  over each of the x, y and z dimensions (and over the internal symmetry dimensions).  

Given that 2
0J Jσ

σ ρ=  in turn, this is a level of substructure within a current density four-vector 

0J uµ µρ≡  which does not appear to have previously been uncovered. 

 
 Now, we come to the ( ) ( ), , , ,i j k

x y z x y zµ µ µ µ µ µ=� � � �µ =µ =µ =µ =  themselves.  This three-space 

vector of 2 1N −  internal symmetry vectors has a mass dimension of +1, i.e., of 1/length.  
Because these represent probability one-densities, the question now arises as to the origin of 

these one-densities.  Here, we simply introduce a proper “probability field” ( ) ( )0 0, ,iP x y z P= x
�
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which for SU(N) represents 2 1N −  dimensionless probability distributions spread over all three 

space dimensions.  Therefore 0 0P Pλ =
� �
	 .  We very deliberately refer to this as a probability 

field, because as we shall explore in the next several sections, the abelian relationship (14.32) 
which were are presently seeking to extend to non-abelian gauge theory is a quantum field 
equation.  So the question naturally arises: what are the “fields” in quantum field theory which 
are analogs of the gauge fields Gµ  of classical theory which are the variable of integration in the 
path integral ( ) ( )4exp expZ DG i d xS G iW J= ≡∫ ∫ ?  That is, because the classical fields Gµ  

disappear during path integration, by definition, what then are the “fields” of quantum field 
theory as represented in ( )W J  following path integration? 

 
The answer to this, is that the probability fields ( )0 , ,iP x y z  are the fundamental fields 

underlying quantum field theory.  The coupled linear probability densities will be normalized 

such that ( ) ( )1
3 1s xg x x dxµ =∫∫∫

��
, ( ) ( )1

3 1s yg y y dyµ =∫∫∫
��

 and ( ) ( )1
3 1s zg z z dzµ =∫∫∫

��
, which is 

to say that coupled the field associated with ( )1
3

0 , ,sg P x y z
�

 will definitely be located somewhere 

along the x axis, somewhere along the y axis and somewhere along the z axis.  We earlier did the 
same thing between (15.11) and (15.12) with the per-three-space-volume probability density.  If 
we then wish to ascertain the one-density of this probability along each of x, y, z, we simply take 
the partial derivatives of each.  This means that the 0

�µµµµ  from which we constructed 0ρ  in (15.31) 

above are themselves rooted in the space gradient ( ), ,x y z= ∂ ∂ ∂∇∇∇∇  according to: 

 

( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

1 1 1 1
3 3 3 3

0 0 0 0

0 0 0 0 0

, , , ,

, , , , , ,

i i i i
s s x y z s x y z s

i
x y z

g g g g

h x y z P x y z h P hP hP h P

µ µ µ µ µ µ= =

≡ ∂ ∂ ∂ = = = +x x

� � � �

� � � �

µ = µµ = µµ = µµ = µ

∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇
 , (15.32) 

 
where a dimensionless running probability field coupling ( )h x  is defined in terms of sg  and 0

�µµµµ  

by the above first order differential relationship,  and where the 0

�µµµµ  are defined by 
1

0 0 0 03! x y zρ µ µ µ≡ ∧ ∧  prior to (15.23) which became by ( )1
0 0 0 04 iρ = ⊗ ⋅� �µ µ µµ µ µµ µ µµ µ µ  in (15.30).  

This ( )h x  not to be confused with the Higgs field ( )h x .  We simply use h here because it is the 

next letter after g in the Roman alphabet.  Taking (15.32) in the compacted form ( )1
3

0 0sg hP=
��µµµµ ∇∇∇∇

, we also have ( ) ( )1 1
3 3

0 0 0 0s sg hP g hPλ λ= = =
� � ��
	 	µ µµ µµ µµ µ∇ ∇∇ ∇∇ ∇∇ ∇ . 

 

In terms of this bare probability ( )0P x
�

 and its coupling ( )h x , (15.28) and (15.29) may 

now be written together as: 
 

( ) ( )( ) ( ) ( ) ( )( ) ( )1 1
0 0 0 0 0 0 0 04 4

m
m

s sg i hP hP hP g i hP hP hPρ ρ= ⊗ ⋅ = = ⊗ ⋅
� � � � ��∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ . (15.33) 

 

Further, we may take the internal symmetry space 	  product of the above with mλ λ=
�

, thus: 
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( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

0 0 0

1 1
0 0 0 0 0 04 4

1
0 0 04

m m
s s s

m
m

g g g

i hP hP hP i hP hP hP

i hP hP hP

λ ρ λ ρ ρ

λ λ

= =

= ⊗ ⋅ = ⊗ ⋅

= ⊗ ⋅

� �
	

�� � � � �
	

� �

∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

. (15.34) 

 

Again, ( )0P x
�

 are dimensionless probability distributions.  Fundamentally, these 0P
�

 are the fields 

of quantum field theory.  Each of the three ( )1
3

0 0sg hP=
��µµµµ ∇∇∇∇  in (15.32) has a mass dimension of 

+1 by virtue of the gradient ( ), ,x y z= ∂ ∂ ∂∇∇∇∇ , so ( ) ( )( ) ( )1
0 0 0 04sg i hP hP hPρ = ⊗ ⋅

� �
∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  which is 

the overall three-volume density has the required mass dimension of +3. 
 

 We may also calculate out ( ) ( )0 0hP h h P= +
� �

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  as shown in the last two expressions of 

(15.32), to write the above as: 
 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( )

1 1
0 0 0 0 0 0 04 4

3
0 0 0

2
0 0 0 0 0 0 0 0 0

1
4

0 0 0 0 0 0 0 0 0

0 0 0

sg i hP hP hP i h h P h h P h h P

h P P P

h hP P P P hP P P P hP
i

h hP hP P hP P hP P hP hP

hP hP hP

ρ = ⊗ ⋅ = + ⊗ + ⋅ +

 ⊗ ⋅
 
 + ⊗ ⋅ + ⊗ ⋅ + ⊗ ⋅
 =  
+ ⊗ ⋅ + ⊗ ⋅ + ⊗ ⋅

+ ⊗ ⋅ 

� � � �

� �

� � � � � �

� � � � � �

� �

∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

( ) ( )0 0hP h h P





= +
� �

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

.(15.35) 

   
which now includes in the form of a first order differential equation, the running of the usual 
interaction charge ( )sg x  in relation to that of the newly-established probability coupling ( )h x .  

 
 In the next section we shall discuss the physical interpretation of these results, but at the 
moment, our goal is to complete the mathematics of doing the contour integral (15.22).  So we 

return to the ( )
1
3

1 0sz g ρ= , ( )( )
1
331

2 22 0sz gi ρ−=  and ( )( )
1
331

2 23 0sz gi ρ+=  poles, and now 

approach these in view of what we have uncovered since (15.22).  We now see that each of these 
1
3

0 0ρ µ→  represents a probability density along one of three linear space dimensions x, y, z, and 

that 1
0 0 0 03! x y zρ µ µ µ≡ ∧ ∧ .  We see that each of these linear probability densities has a Yang-

Mills structure 0 0
i i

x xµ λ µ≡ , 0 0
j j

y yµ λ µ≡  and 0 0
k k

z zµ λ µ≡ .  We see that the probability 

densities 0 0
iρ ρ=� , 21... 1i N= −  for the gauge group SU(N) are related to the linear probability 

densities by (15.29), so that the original probability density 0 0
m mρ λ ρ=  which appears as

1
3

0ρ  in 
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(15.22) is related to the 0
�µµµµ  according to (15.30).  And we finally see in (15.32) that the 0

�µµµµ  

themselves are part of the gradient relationship ( )1
3

0 0sg hP
��µ =µ =µ =µ = ∇∇∇∇  of a dimensionless probability 

distribution field ( ) ( )0 0
iP P=x x

�
, so that the usual representations 0 0

mρ ρ=� , 0 0
i iρ λ ρ=  for the 

three-dimensional (per-volume) probability density are related to the probability field via (15.33) 
and (15.34), which is intertwined with the relationship between the running charge strength 

( ) ( )4sg πα=x x  and a coupling ( )h x  associated with the probability field ( )0P x
�

 in the 

overall form of ( ) ( )0h Px x
�

.  

 
 Given all of this, let us commence the contour integration of (15.22) by associating each 
of these three poles 1z , 2z  and 3z  in (15.22), which we take to be Hermitian matrix extensions of 

the k  of (15.20) into one or more complex planes, with one of the three ( ), ,x y zµ µ µµ =µ =µ =µ =
which have been defined, in essence, as the cubed roots of the density 0 0ρ ρ=  according to what 

was originally 1
0 0 0 03! x y zρ µ µ µ≡ ∧ ∧  and what we now recognize following the development of 

(15.23) to (15.30) should be denoted 1
0 0 0 03! x y zρ µ µ µ≡ ∧ ∧ , and which, in (15.30), calculates 

out to be  ( )1
0 0 0 04 iρ = ⊗ ⋅� �µ µ µµ µ µµ µ µµ µ µ .  First, we update (15.22) to include all that we have learned 

through (15.35), including the fact that the contour integration variable z is to be regarded as an 
NxN Hermitian matrix.  So we specifically establish 2 1N −  real iz  for SU(N), and then extend 

into one or more imaginary planes via setting i iz z z zλ λ→ = =
� �
	 , and so write (15.22) with 

24 S sgπα =  as:    

 

( ) ( )( )
( )( ) ( )( )

( ) ( )

( )

1 1
3 3

1

1 1
3 3

2

1
3

125 6
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1
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exp
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2 2 2
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p

sC C

s sC

s sC

s

f z dz dz z izr z g

dz z izr z g z g

dz z izr z g z g
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i

ρ

ρ ρ

ρ ρ

ρ

−

− −

− −

−

= −

= + −

   
+ + −   

   
   

   
− −    



 
   

  
+


+ + − 

 
 

+  
 

∫ ∫

∫

∫

� �

�

�

( )
1
3

3

1

0sC
g ρ

−
 
 
 


  
  

∫�

. (15.36) 

 

Now we come to 
1
3

0ρ  which first motivated the development from (15.23) through 

(15.35).  We now know that each of these 
1
3

0ρ  should be associated with one of the 

( )1
3

0 0sg hP=µµµµ ∇∇∇∇  in 1
0 0 0 03! x y zρ µ µ µ≡ ∧ ∧ , because these 0µµµµ  were defined to be the cubed roots 

of 0ρ  in recognition that this density 0ρ  subsists in three space dimensions so that its cube root 

naturally has an x, y, and z aspect, in other words, because 1
3!dV dx dy dz= ∧ ∧  is the differential 

volume element within which 0ρ  is a density.  So now we have migrated from the originally-
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appearing ( ) ( )1 1 1 1 1
3 3 3 3 3

0 0 0 0 0 0 0 0 0, , , ,x y z x y zρ ρ ρ ρ µ µ µ→ = →ρ µ =ρ µ =ρ µ =ρ µ = , and the question now 

becomes how to do the assignments in (15.36) as among the three contour integrals over C1, C2 
and C3.  As with 1

3!dV dx dy dz= ∧ ∧  we will want a balanced x, y and z assignment, which we 

will do after the contour integration when the right way to do this will become clear.  First, 

merely to get started, we assign the 
1
3

0ρ  in C1, C2 and C3 successively to ( )0 0 0, ,x y zµ µ µ  and 

then set pole values  
1
3

0z s zz g µ= , ( ) 1
3

0
31

2 2x s xiz g µ−=  and ( ) 1
3

0
31

2 2y s yiz g µ+= .  With this, we 

advance (15.36) to: 
 

( ) ( )( )
( ) ( )1 1

3 3

1

1 1
3 3

2

1
3
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dz z izr z g z g
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i
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µ

−
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−

   
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 
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+ + −   

   
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∫ ∫

∫

∫

� �

�
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1
3

3

1

0

1 3

2 2 s zC
gi µ

−
 

− 
 

 
+  
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∫�

. (15.37) 

 
Now we are finally ready to do the integral.  Having set the three poles we remove those terms 
and set xz z= , xz z=  and xz z=  in the respective residue terms in C1, C2 and C3.  We then 

tack on the usual 2 iπ  factor, and relate this back to (15.20) with the all-important non-abelian 

indication 0 0ρ ρ→ .  Finally discard the contour arc 
Arc

( ) 0f z dz=∫  through the complex 

planes.  We thus obtain: 
 

( ) ( ) ( )

( ) ( )

1 1 1
3 3 3

1 1 1 1
3 3 3 3

1 15 6 2 4
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6 2
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π µ µ µ µ

− ∞ −
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= − = −

   
− +    

 
= + + 

  

= + +

 
   

∫ ∫ ∫ k k k k� �

( ) ( )1
3

2 0
3

0 expz s zr g rµ −
 

.(15.38) 

  
This should be contrasted to (14.29).  Now let’s turn to the x, y, z balancing.  The structure of 
this integral clarifies that an ( )1

3 xyz yzx zxy+ +  and not a 1
3! x y z∧ ∧  combination is the suitable 

way to spatially balance this equation, so we advance the above to: 
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( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

1 1 1 1 1
3 3 3 3 3

1 1 1 1 1
3 3 3 3 3

1 1
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3 31 1
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 
 
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 

.(15.39) 

  
The reason why 13! x y z∧ ∧ is not appropriate is clear: it would zero out the entire integral by 

identity, and this is because there is never any place in (15.38) where three terms with spatial 

aspects are multiplied.  All we have are terms like ( ) ( )1 1
3 331

2 2exp exps y s yi g r g rµ µ  where two 

terms are multiplied.  So we discard ( )1
3 xzy zyx yxz− + +  as inappropriate to the way (15.38) is 

structured and use only ( )1
3 xyz yzx zxy+ +  which is positive signed based on the right-hand-rule 

convention. The above may now be consolidated using 2cosh x xx e e−= +  to: 
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( ) ( ) ( )
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( ) ( )
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∫ k k k k

. (15.39) 

 
Then if we define a unit vector ( )1,1,1iU= ≡U  as a notational convenience to consolidate the 

line with ( )1
3

0exp sig rµµµµ , we can use the ordinary dot product in experiential three-dimensional 

space to further consolidate this to: 
 

( )( )
( ) ( ) ( )1 1 1

3 3 3

12

31
2

4 6
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0 0 02

exp
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2 exp 2exp cosh

6 3
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−∞

−∞
= −

 = ⋅ + ⋅
 

∫ k k k k

U µ µ µµ µ µµ µ µµ µ µ
. (15.40) 

  

 Plugging this result into (15.20) with ( )
11
63 4s Sg πα= , then yields our final non-abelian 

result, which should be carefully contrasted with the abelian (14.32): 
 



Jay R. Yablon 

133 
 

( )
( ) ( )

( ) ( ) ( ) ( )1 1 1
3 3 331
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N
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π

λ λ
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−
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−
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 

∫ k k k k

U µ µ µµ µ µµ µ µµ µ µ

. (15.41) 

 

To express this in terms of the coupled probability we finally substitute ( )1
3

0 0sg hP
��µ =µ =µ =µ = ∇∇∇∇  from 

(15.32) into the above in the form ( )1
3

0 0sg hPµ =µ =µ =µ = ∇∇∇∇  to write our final result: 

 

( ) ( )( ) ( )( ) ( )( )31
2 2

2

1 0 0 0

2 1 1 1 1
Tr exp 2exp cosh

3 4 3
i i

N
E i hP r i hP r hP r

r
λ λ

π
−

 = − ⋅ + ⋅
 
U ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇ .(15.42) 

 
This expresses the potential 1E  at the first order of recursion, for the non-abelian, non-linear 

gauge theory, as a direct function of the coupled probability field 0hP . 

 

 Given that ( )1
3

0 0sg hPµ =µ =µ =µ = ∇∇∇∇  is a definition of both the bare probability 0P  field and its 

coupling h  and that 
1
3

sg  has a definitive interpretation as the cubed root of a running interaction 

coupling and that each of h  are running scalar coupling numbers, we may also define h directly 
in terms of the known sg  rather simply, by:  

 
1
3

sh g≡ . (15.43) 

 

Then, in view of the definition ( )1
3

0 0sg hPµ =µ =µ =µ = ∇∇∇∇  a.k.a. ( )1
3

0 0sg hP
��µ =µ =µ =µ = ∇∇∇∇  in (15.32), (15.43) leads 

to the differential equation: 
 

( )1 1 1 2
3 3 3 31

0 0 0 3s s s s sg g P g P g g P−= +µ =µ =µ =µ = ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇ . (15.44) 

 
relating bare probability 0P  field to bare probability density 0µµµµ .  This is easily rewritten as: 

 

1
0 0 03

s

s

g
P P

g
= +µµµµ ∇∇∇∇∇∇∇∇ . (15.45) 

 
In general, we shall not find the need to explicitly use (15.45) for the bare probability and bare 
probability density, but shall work with the coupled probability 0hP  and the coupled probability 

density 
1
3

0sg µµµµ  as interrelated by ( )1
3

0 0sg hPµ =µ =µ =µ = ∇∇∇∇ .  Although 
1
3

sh g≡  and we could write the 

coupled probability as 
1
3

0sg P , we shall generally opt to use the form 0hP  so that the equations are 

not filled with a plethora of 
1
3

sg  cubed roots.  More generally, this will help in resetting us to 
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think about the probability densities not in terms of the three-dimensional coupled probability 
densities 0sg ρ  with which we are of course familiar, but in terms of three independent one-

dimensional coupled probability densities 
1
3

0 0sg h=µ µµ µµ µµ µ  into which a careful analysis of the 

content of (15.22) has required us to deconstruct 0sg ρ . 

 
Now we shall study (15.42) as well as its abelian counterpart (14.30) from a variety of 

different viewpoints, to see what these teach us about quantum fields in a non-linear quantum 
field theory (NLQFT) such as Yang-Mills gauge theory. 
 
PART III: ANALYTICAL NON-LINEAR QUANTUM FIELD THEOR Y: 
SPECIFIC EXAMPLES 
 
16. Constant Probability, Zero Probability Density Fields: Introduction to 
Analytical Non-Linear Quantum Field Theory   
 
 Beginning in this section, we shall use equation (15.42) above to analytically explore the 
workings of non-linear quantum field theory (NLQFT), using several different illustrative 
examples of coupled probability fields 0hP .  While 1E  in (15.42) is based on the amplitude 

density ( ) ( )11
TrJ J Jσ

σπ=M   at first order of recursion, where from (13.21), 

( )1 1
1 0 0 0J Jτ

τπ π π π− −= +  and ( ) 1

0 k k iτ
τπ ε

−
= + , and while physical amplitude densities 

( ) ( )TrJ J Jσ
σπ ∞=M  in (13.20) are expected to have non-linear contributions through infinite 

recursive order, the use of ( )
1

JM  does introduce a first order non-linearity which is very helpful 

to flesh out a deep understanding of NLQFT as an analytical field theory, versus simply doing 
numerical calculations with NLQFT without being able to obtain analytical functions involving 
fields and source potentials.  
 

In this section, starting with (15.42), let us first consider a region of experiential space in 

which the coupled probability field 0 constanthP = .  This means that ( )1
3

0 0sg hP= = 0µµµµ ∇∇∇∇  even 

for 0sg ≠  which is the approximation we considered to obtain the ( ) 1
1 1/ 4E rπ −= −  potential in 

(14.31) graphed in Figure 1.  So for a region of constant coupled probability 0 constanthP = , 

(15.42) reduces to: 
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= − − = − −

U 0 0 0

U U U U .(16.1) 
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This makes use of ( )21
2Tr 1i i Nλ λ = −  which is just another way of stating the normalization 

( )2
1
2Tr iλ =  for SU(N) with 2 1N −  generators.  Contrasting to (14.31), we see that in this limit 

of the 1/r potential, an overall factor of 1 in the abelian U(1) theory becomes an overall factor of 

( )22 1N −  for SU(1), and we explicitly see how the factor of 2 in ( )22 1N −  compensates for the 

generator normalization ( )2
1
2Tr iλ = . 

 
 But what is far more intriguing then comparing the coefficients as between abelian and 
non-abelian gauge theory is the very deep statement that (16.1) makes about the non-linear 
quantum field underlying the 1/r potential of linear, abelian gauge theory: In non-linear quantum 
field theory, a 1/r potential goes hand in hand with a constant coupled probability density 

0 constanthP = .  Restated: in non-linear quantum field theory, a 1/r potential is the source of a 

probability field which is constant, while any and all spatially-varying probability fields are 

sourced by other than a 1/r potential.  Of course, we can certainly set the charge 
1
3 0sg =  a.k.a. 

0Sα =  in (15.41) a.k.a. 0h =  in (15.42) to arrive at the very same result we see in (16.1), or as 

we did in (14.30) to arrive at ( ) 1
1 1/ 4E rπ −= −  in (14.31).  But setting the coupling 0sα =  – or 

for that matter setting any coupling precisely to zero – is just a mathematical idealization which 
may be approached but never precisely attained in the real physical world as evidenced by the 
fact that 1/137.036...emα →  and no smaller.  But one could very readily have a constant 

probability density over a given region of space in the physical world.  And, it is an absolute 
certainly that we do have and do observe 1/r potentials in the real physical world: this is the 
precise, very well-studied potential of electrodynamics!  So (16.1) it telling us something very 
deep and physically real about non-linear quantum field theory, and we need to explore this.  We 
shall now begin to do so from a number of different viewpoints. 
 
 Let us start with Quantum Electrodynamics, QED, which is the paradigm of an abelian 
gauge theory.  Going back to (13.21), the QED amplitude is simply ( ) ( )Tr nn

J J Jσ
σπ=M  with 

( ) 1

0n k k iτ
τπ π ε

−
= = +  and with the trace removed and a factor of 1

2  restored because there are 

no ( )2
1
2Tr iλ = -normalized generators.  That is, in QED,  ( ) ( ) 1

1
20

J J k k i Jτ σ
σ τ ε

−
= +M , with 

( )
0

JM  designating that we are taking (13.21) through zero recursions.  Starting with ( )
0

JM , 

one can repeat the calculations of sections 14 and 15, and in either case, one will arrive at a 

potential energy ( ) 1

0 4E rπ −= −  for a Coulomb charge, as we did in (14.31), which then leads to 

the Coulomb force law ( ) 2
0 / 1/ 4E r rπ −∂ ∂ = .  See again [11] chapter I.4.  If we scale in the 

electric charge e which is related to the running coupling by 24 /e cπα = �  with the familiar 

1/137.036...α →  at low probe energy / larger r, then these become ( ) 12 1
0 4E e r rπ α− −= − = −  

along with the inverse-square force law 2
0 /E r rα −∂ ∂ =  of Coulomb. 
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 Comparing ( ) 12
0 4E e rπ −= −  with (15.42), we see that both of these equations are for a 

potential energy E.  And, we see that both of these equations are functions of a running charge 

se g⇔  and a radial length r.  But what (15.42) contains which ( ) 12
0 4E e rπ −= −  does not 

contain, is ( )1
3

0 0sg hP=µµµµ ∇∇∇∇  which is the gradient of the coupled probability density.  So 

mathematically, in non-Abelian, non-linear gauge theory, the coupled probability field 0hP  and 

its gradient ( )0hP∇∇∇∇  are the “new” elements which do not appear at all in a linear theory such as 

QED.  But the reason for this, as we learn from (16.1), is that in QED, ( )0hP = 0∇∇∇∇ .  That is, 

when viewed in the context of a non-linear quantum field theory (15.42), QED has a 

( ) 12
0 4E e rπ −= −  potential because its coupled probability density ( ) ( )0 constanth P =x x .  This 

leads us to conclude: A seemingly-linear quantum field theory such as QED is actually a special 
type of a non-linear quantum field theory in which the coupled probability field 0hP  is constant. 

 
 This is a very fundamental observation.  It tells us that all quantum field theory in the 
observed physical world – even QED – is a non-linear, but that there are special cases such as 
QED which appear linear because the coupled probability field 0hP  is constant.  So while we 

might ordinarily state that QED is a linear quantum field theory, we may with absolute 
equivalence assert that QED is a non-linear quantum field theory for which the coupled 
probability – the dimensionless 0hP  field – is constant.  Either viewpoint ends up with the 

observed potential ( ) 12 4E e rπ −= − .  But the latter view allows us to consider QED in the 

broader context of non-linear quantum field theories, which may be essential, for example, when 
we consider how electrodynamics results from the breaking of (2) (1) (1)W Y emSU U U× → , where 

(2)WSU  indubitably is a non-linear quantum field theory, and (1)YU  is similarly expected to be a 

non-linear quantum field theory once it is made part of a larger group G breaking down  to 
include (1)YU , see, e.g., [28].  In other words, the latter view enables us to view QED as a non-

linear quantum field theory just like all of the other SU(N) gauge theories that one encounters in 
particle physics.  QED is then distinguished from all other phenomenological gauge theories not 
by its being a linear quantum field theory, but by its coupled probability field being constant.  
From this view, all quantum field theories are nonlinear, but there happen to be particular 
quantum field theories for which the probability field is constant, and these are the ones with 1/r 
potentials.  This means that electrodynamics is one such non-linear quantum field theory.  And, 
so too, is gravitation in its Newtonian limit! 

 
This also means that potentials other than 1/r, such as the confinement potentials shown 

in Figures 2 and 3, and presumably the short-range potentials of nuclear interactions, all arise 
from the common feature that their coupled probability fields ( ) ( )0h Px x  are variable over the 

spatial regions being considered.  So it is the spatial behavior of ( ) ( )0h Px x  which drives the 

spatial behavior of the potential ( )E x , and vice versa.  Consequently, this means that when one 

compares one type of interaction to another – electromagnetic, weak, strong, nuclear, hadronic – 
one is in all cases dealing with a common non-linear structure.  The dynamical feature which 
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distinguishes the specifics of one interaction from those of another is the nature of the behavior 
of the probability density ( ) ( )0h Px x , and via (15.42) which applies to any SU(N) interaction, 

this ties directly to the potential ( )E x .  Sometimes we may posit a probability or probability 

density and deduce the potential.  Other times we may posit a potential and deduce a probability 
density and via integration a probability.  But in all cases, non-linear quantum field theory via 
(15.42) fundamentally links a potential E to a probability density P just as assuredly as the 
classical field equation * * *J D F D DG= =  of (1.12) fundamentally links a source J to a gauge 
field G. 

 
The foregoing is not just an analogy.  It is a deep and fundamental feature of quantum 

reality.  Classical theory contains coupled gauge fields gG .  But these are the variables of 
integration in the path integral, so by definition they are stripped away and there is no gauge field 
left in quantum field theory.  Something else takes the place of the gauge field, and (15.42) tells 
us that this is the coupled probability field hP .  And, while the source J does survive the path 
integration into ( ) ( )Tr nn

J J Jσ
σπ=M , the dynamical source object in the quantum field theory 

turns out not be J, but is rather the momentum-space integrated quantum action 

( ) ( )( ) ( )44 / 2W J d k Jπ= ∫ M  which we see, for example,  in (14.6).  And, by the time one 

carries out not only the 4d k  but also the spacetime integrals ( ) ( ) ( )4 4 2
1sd xd yg J x D x y J yσ

σ −∫∫  

as in (14.8) and (15.5), what survives is W ET= − , see (14.14) and (15.18).  If we factor out the 
time T as we did in the section 14 and 15 calculations, then the quantum action source W is 
replaced by a quantum potential source E as in (15.42).  If we were to do some alternative 
calculation that did not factor out time-dependency, then we would remain with W ET= −  which 
is dimensioned as angular momentum a.k.a. action, which is also the dimension of Planck’s 
constant � .   So just as the field gG hP⇒  when going from classical to quantum field theory, 
so too, the source J W⇒ .  To sum up: in quantum field theory, the quantum action W is the 
source of the quantum probability field P, just as in classical field theory the current density J is 
the source of classical gauge field G. 

 
The next several sections will explore and deepen all of these analytical statements, using 

the respective examples of constant isotropic probability densities, isotropic Gaussian probability 
densities, and the observed probability densities of single and double slit experiments. 
   
17. Constant, Isotropic Probability Densities and Confining Stable 
Quantum Potentials in Non-Linear Quantum Field Theory 

 
In the last section we considered the special case of a spatially-constant coupled 

probability field 0hP  for which the probability density ( )0 0hP∇ =  and showed how this 

corresponds with an inverse-square potential ( )1/ 4E rπ= − .  As we now start to consider a 

variety of non-zero densities ( )0 0hP∇ ≠  and thus spatially-varying coupled probability fields 

0hP , it will help to first transform (15.42) from Cartesian into spherical coordinates 
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( ) ( ), , , ,i ix x y z x rθ φ′= → = .  The first step is to expand (15.42) into each of its additive terms 

using the gradient vector ( ), ,i x y z= ∂ ∂ ∂ ∂∇ =∇ =∇ =∇ =  in Cartesian coordinates, thus: 

 

( )
( )( ) ( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

0 0 0

31
2 2

31
2 2

31
2

2

0 2

0 0

1

0 0

0

exp exp exp

2exp cosh2 1 1 1 1
Tr

3 4 3 2exp cosh

2exp cosh

x y z

x x
i i

y y

z z

i hP r i hP r i hP r

i hP r hP rN
E

r i hP r hP r

i hP r hP r

λ λ
π

 ∂ + ∂ + ∂
 
 + ∂ ∂−  = −
 + ∂ ∂
 
 + ∂ ∂  

.(17.1) 

 

Second, since ( ) ( ), , / , / , /i x y z x y z= ∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂∇ =∇ =∇ =∇ =  is a three-vector in physical 

space, it will have the same transformation properties as reciprocals of ( ), ,id dx dx dy dz= =x .  

Specifically, leaving the time as is, dt dt′ = , the invariant differential length element in the 
physical three-space is 2 2 2 2 2 2 2 2 2 2sindl dx dy dz dr r d r dθ θ φ= + + = + + .  So we orient 0r ≥  to 
align with the positive x axis, so that dx dr= .  With the positive z-axis at 0θ = , we define 
0 θ π≤ ≤  to represent the descent angle from this +z axis, and 0 2θ π≤ ≤  to represent right-
handed rotation about the z axis with the positive x axis at 0ϕ = .  We can then pick off the 

components ( ), , sinidx dr rd r dθ θ φ′ =  from the square roots of terms in 2dl .  Then, because 

/ i
i x= ∂ = ∂ ∂∇∇∇∇ , the transformed idx′  will take on the form ( ), / , / sini r r rθ φ θ′∂ = ∂ ∂ ∂ .  Thus, 

throughout (16.1) we may substitute ( ) ( ), , , / , / sini x y z i r r rθ φ θ′∂ ∂ ∂ ∂ → ∂ ∂ ∂ ∂= == == == =  to obtain: 

 

( )
( )( ) ( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

0 0 0

2
0 0

31
2 2

31
2 2

31
2

1

0

0 2

0

0

exp exp exp / sin

2exp cosh2 1 1 1 1
Tr

3 4 3 2exp cosh

2exp / sin cosh / sin

r

r r
i i

i hP r i hP i hP

i hP r hP rN
E

r i hP hP

i hP hP

θ φ

θ θ

φ φ

θ

λ λ
π

θ θ

 ∂ + ∂ + ∂
 
 + ∂ ∂−  = −
 + ∂ ∂
 
 + ∂ ∂  

. (17.2) 

 
Third, keeping in mind that in spherical coordinates 0r ≥ , let us consider only coupled 

probabilities which are isotropic under rotations about r=0.  Thus, we consider the special set of 
coupled probabilities for which ( ) ( )0 0 0hP hPθ φ∂ = ∂ = .  Given that ( ) ( )exp 0 cosh 0 1= = , such 

an isotropic probability further simplifies (17.2) to: 
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( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( )

2

1 0 0 0

2

0 0 0

31
2

2

2

31
2 2

2

2 1 1 1 1
Tr exp 2exp cosh 6

3 4 3

2 1 1 1 1
Tr exp 2exp cosh

3 4 3
2 1 1

1
3 4

i i
r r r

i i
r r r

N
E i hP r i hP r hP r

r

N
i hP r i hP r hP r

r

N
r

λ λ
π

λ λ
π

π

−
 = − ∂ + ∂ ⋅ ∂ +
 

−
 = − ∂ + ∂ ⋅ ∂
 

− −

.(17.3) 

  
where we have used ( )21

2Tr 6 6 1i i Nλ λ = ⋅ −  to separate out a pure 1/r potential which is 

added to the rest of the expression, using 2 1N −  independent coupled probability fields 0
ihP . 

 
Fourth, and finally, the expressions ( ) ( )0 0

i i
r rhP hPλ∂ = ∂  will have an NxN 

dimensionality for SU(N).  A main purpose of section 15 was to obtain an equation for the 
potential which contains the non-abelian probability 0 0

i iP Pλ= , but in the process, we also 

achieved a decomposition of the three-dimensional probability density into each of its one-
dimensional components.  This makes (15.42) distinctly different from (14.32) even without 

0 0
i iP Pλ= .  So to gain an appreciation of the general behavior of (15.42) in a variety of forms 

including (17.2) and (17.3), let us simplify (17.2) to its abelian form akin to (14.32).  The easiest 
way to make sure we match up the overall coefficients is to work from (17.2) and keep in mind 
the correspondences laid out just after (16.1).  Specifically, we reverse-migrate 

22Tr ... 1i i Nλ λ → − , ( )22 1 1N − → , and 0 0P P→  to turn (17.2) into the abelian form: 

  

( )( ) ( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

31
2 2

31
2 2

31
2

0 0 0

0 0

1

0 0

0 2 0

exp exp exp / sin

2exp cosh1 1 1

4 9 2exp cosh

2exp / sin cosh / sin

r

r r

i hP r i hP i hP

i hP r hP r
E

r i hP hP

i hP hP

θ φ

θ θ

φ φ

θ

π

θ θ

 ∂ + ∂ + ∂
 
 + ∂ ⋅ ∂
 = −
 + ∂ ⋅ ∂
 
 + ∂ ⋅ ∂  

. (17.4) 

 
This now corresponds directly to (14.32) transformed to polar coordinates, and in recognition of 

the finding developed throughout section 15 that the ( ) ( )
1 11
6 33

0 04 s sgπα ρ ρ=  in (14.32) all 

represent probability densities deconstructed to the three space coordinates.  We see that for a 
constant probability density ( ) 0, , 0i r iPθ φ′∂ ∂ ∂ ∂ ===== , this will reduce to the electrodynamic 

Coulomb potential  ( ) 11/ 4E rπ −= − , which is identical to the result in (16.1) except that we 

have used a spherical coordinate system and we have accounted for the correspondences laid out 
just after (16.1).  For an isotropic ( ) ( )0 0 0hP hPθ φ∂ = ∂ = , (17.4) reduces to an abelian 

counterpart of (17.3), namely: 
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( )( ) ( )( ) ( )( )31
21 0 0 2 0

1 1 2 1
exp 2exp cosh

4 3 9 r r rE i hP r i hP r hP r
rπ
  = − + ∂ + ∂ ⋅ ∂   

. (17.5) 

 
 Now, in Figures 2 and 3 we showed how the potential (14.32) behaves if we regard 

( ) ( )
1 11
6 33

0 04 s sf gπα ρ ρ≡ =  as a constant frequency.  Regarding ( )
1
3

0sf g ρ=  as a constant was an 

assumption we made at the time to gain a sense for the behavior of this potential, and we saw 
that even at first recursive order, this potential exhibited attributes of confinement.  In the 

interim, we have seen that ( )
1
3

0sg ρ  really needs to be thought of as a probability density along a 

single one of the space coordinates x, y, z.  So prior to (15.23) and thereafter we established that 
for non-abelian gauge theory 1

0 0 0 03! x y zρ µ µ µ≡ ∧ ∧  defines a spatial vector of probability 

densities ( )0 0 0 0, ,x y zµ µ µ=µµµµ  along each of the three space dimensions, which relationship for 

abelian theory simplifies to 0 0 0 0x y zρ µ µ µ≡ .  Because (17.5) is an abelian equation, we may use 

the simpler 0 0 0 0x y zρ µ µ µ≡ .  Therefore, ( )( )( )1 1 1
3 3 3

0 0 0 0s s x s y s zg g g gρ µ µ µ≡ , so the earlier 

treatment assuming ( )
1
3

0 constantsf g ρ= =  corresponds in light of what we have learned since, 

to regarding 
1
3

0sg = constantµµµµ .   Further, at (15.32) we linked this to the gradient of the coupled 

probability field via ( )1
3

0 0sg hP=
��µµµµ ∇∇∇∇  which for abelian theory is simply ( )1

3
0 0sg hP=µµµµ ∇∇∇∇ .  So the 

assumption back at (14.32) that ( )
1
3

0 constantsf g ρ= =  from which we then proceeded to 

develop Figures 2 and 3 corresponds to regarding ( )1
3

0 0sg hP= = constantµµµµ ∇∇∇∇  in (17.4) and 

(17.5).  Further, with the isotropic probability ( ) ( )0 0 0hP hPθ φ∂ = ∂ =  assumed in (17.5), the 

former ( )
1
3

0 constantsf g ρ= =  assumption translates into assuming that ( )0 constantr hP∂ =  in 

(17.5).  So, we shall now examine (17.5) for the condition that ( )0 constantr hP∂ = , which is the 

same condition used in our earlier consideration of (14.32) for ( )
1
3

0 constantsf g ρ= = , which 

was then drawn out in Figures 2 and 3.  This allows an “apples-to-apples” comparison.  Finally, 
because we are considering an isotropic probability, this means that 0hP is a function exclusively 

of r, and not of θ  and φ .   So while 0 0 0 0x y zρ µ µ µ= is expressed in Cartesian coordinates, for this 

isotropic, radial-only-dependent probability field, we have 
1 1 1 1
3 3 3 3

0 0 0 0s x s y s z s rg g g gµ µ µ µ= = = , 

with the consequence that 3
0 0rρ µ= . 

 
Given the above, if we now posit that ( )0 constantr hP A∂ = ≡  where A is a positive, non-

zero, real constant, that means that 0y hP=  will have the general form of a linear equation 

y Ax B= +  with x r=  and with A and B being constants.  To simplify as much as possible, let us 
discard the constant of integration B, and simply posit an isotropic coupled probability field of 
the general linear form with 0B = , thus: 
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0hP Ar= . (17.6) 

 
Clearly, ( )0r hP A∂ = , consistent with our supposition of a constant radial probability density.  

Because 0hP  has a mass dimension of zero and r has mass dimension -1, the constant A must 

have a mass dimensionality of +1.  Now our task will be to link this constant A to a confinement 
potential and to phenomenological strong interaction data, and to see whether discarding the 
integration constant runs into any contradictions.  We do this recognizing that (17.5) is still an 
abelian approximation, but a better one and with more information developed than was (14.32). 
 
 The first thing we may now do is substitute ( )0r hP A∂ =  into (17.5) to write: 

 

( ) ( ) ( )1
1

3
2 2

1 1 2 1
exp 2exp cosh

4 3 9
E iAr i Ar Ar

rπ
  = − + + ⋅   

. (17.7) 

 
Next, so we can study (17.7) in a dimensionless fashion, let us define a dimensionless radial 
coordinate via the to-be-determined constant A with a mass dimension of +1 as such: 

 
R Ar≡  (17.8) 
 
which also means that 1 1r AR− −= .  Therefore, we use (17.8) in (17.7) to write: 
 

( ) ( ) ( )31
2

1
2

1 2 1
4 exp 2exp cosh

3 9

E
iR i R R

A R
π   = − + + ⋅   

. (17.9) 

 
Now, keeping in mind the way in which the potential 1E  in Figures 2 and 3 appeared to be 

confining, we will want to similarly examine the behavior of (17.9) above.   
 
 As with (14.34), this is a complex number, so we again wish to ascertain the 

2

1 1 1*E E E=  and then obtain 
2

1 1E E= ± .  This equation has a similar form to (14.34), but 

here, it may be written as: 
 

( ) ( ) ( ) ( ) ( ) ( )
( )

3 31 1
2 2 2

1
2

1

1 2 1 2 1 2
4 cos cos cosh sin sin cosh

3 9 9 9 9

E
R R R i R R R

A R

R a bi

π

−

  = − + + ⋅ + + ⋅    

= − +

.(17.10) 

 
where: 
 

( ) ( ) ( )
( ) ( ) ( )

31
2 2

2 1 2
3 9 9

1 2
9

3
2 29
1

cos cos cosh

sin sin cosh

a R R R

b R R R

≡ + + ⋅

≡ + ⋅
. (17.11) 
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The decomposition of the probability density into three separate spatial components introduces a 
new term of 2

3  into the real portion of (17.9), which carries contributions from the two 

coordinates ,θ φ  over which the present example is isotropic.  So now, contrast (14.37): 
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

2 2 2 4 4 1 2
9 3 9 9

2 2 21 4

31
2 2

3 31 1
2 2 2 2

3 31 1
2 2 2 2

3
2

1 1

4
81 81 81

2 2 21 4 4
81 81 81

237 4 4
81 27 81

4 4
81 8 212

cos cos cosh

cos cos cosh cos cos cosh

sin sin cosh sin sin cosh

cos cosh

cos cos sin sin

a bi a b R R R

R R R R R R

R R R R R R

R R

R R R R

 + = + = + + ⋅
 

+ + ⋅ + ⋅

+ + ⋅ + ⋅

= + +

+ + + ( ) ( )31
2 2

8
27 cos coshR R  

. (17.12) 

 
Making use of the above in (17.10 while taking 1E  then yields: 

 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3
2

31 1 1
2 2 2 2

237 4 4
81 27 811 1

84 4
81 81 27

cos cosh
4

cos cos sin sin cos cosh

R RE
R

A R R R R R R
π −

+ +
=

 + + + 

∓ . (17.13) 

 
The graph of this equation now appears in Figure 4 below: 

 
Figure 4: The Yang-Mills Potential 1E  of (17.13) at First Recursive Order 

  
We see that this curve exhibits characteristics of confinement and collapse-averting stability, just 
like Figure 2. But the decomposition of the three-dimensional probability density into three 
separate one-dimensional components and the isotropy along the ,θ φ  space coordinates has 
reduced the amplitude of the curve somewhat, moving the minimum of the potential to the right 



Jay R. Yablon 

143 
 

and down from ( ) ( )1, / 1.668,3.118R E Af ≈  in Figure 2 to ( ) ( )1, / 2.623,0.532R E Af ≈  above, 

and somewhat flattened the minimum region from about 2R =  to 4R = .  As with Figure 2, 
however, there is nothing in Figure 4 which gives us a basis upon which to introduce a mass 
scale.  As we did with Figure 3, let us now graph the real portion only, of (17.9).  We may obtain 
this directly from (17.10) with the imaginary terms set to zero, namely: 
 

( ) ( ) ( )( )1 1 2 1 2
1

31
9 9 23 24 Re cos cos coshA E R R R Rπ − −= − + + ⋅ . (17.14) 

 
This function is shown in Figure 5 below: 
 

 
Figure 5: Equation (17.14) for 1ReE , showing a First-Order Confinement Peak at 

peak 8.245R ≅   

 
 Although the amplitude of Figure 5 is significantly reduced from that of Figure 3, as was 
the Figure 4 amplitude reduced from Figure 2, the R-coordinate of the peak appears to have 
stayed essentially the same.  The potential peaked at ( )( ) ( )1,Re / 8.245,85.184R E Af ≈  in Figure 

3.  In Figure 5 it peaks at ( )( ) ( )1,Re / 8.245,9.384R E Af ≈ .  And the next upward sinusoidal 

crossing of the R axis appears near 15.71R≈ , just as in Figure 3.  So the decomposition of the 
probability three-density into three one-densities appears to substantially diminish the amplitude 
of these curves and thus the magnitude of the potential energy, but has very minimal effect, if 
any, on the R-dependent “frequency” aspects of these curves.  It is also interesting to note in 
passing that with the peak in Figure 5 situated at peak 8.245R =  and the minimum in Figure 4 

situated at min 2.623R =  (which Figures are both from the same underlying equation (17.9)), the 

ratio peak min/ 8.245 / 2.623 3.143R R π= = ≈  to the third decimal place.  Of course, with the 
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various sinusoidal activities going on in (17.9), it is not surprising to find the number π  is some 
places, but this ratio is worth keeping this in mind. 
 
 Based on Figure 5 and (17.8), let us now define the approximate number: 
 

peak peak 8.245R Ar≡ ≡ , (17.15) 

 
to be the radial distance at which the first peak occurs in Figure 5.  This means we may now use 
(17.15) to write (17.6) as: 
 

0 peak
peak peak

8.245
r r

hP Ar R R
r r

= = = = . (17.16) 

 
 Now, we want to associate the peak at 8.245R Ar= ≅  with confinement, at least at the 
first recursive order.  There are several steps we take to do this.  First, we require that the only 
domain over which the radial probability density ( )0r hP∂  is not zero, is the domain from 

peak0 8.245R R≤ ≤ ≅ , i.e., from peak0 r r≤ ≤ .  So we effectively regard all of the portions of 

Figures 4 and 5 outside the domain peak0 R R≤ ≤  as having a zero probability density, 

( )0 0r hP∂ = , while all regions inside this domain are regarded to have a constant density 

( )0 0r hP A∂ = ≠ .  

 
 Next, we recall the discussion just prior to (14.42) where we made the association 

2.178 8.245r F RΛ = ⇔ ≅ , that is where we associated the peak potential at peakR  with the length 

rΛ  that is in turn associated with QCDΛ .  Earlier, we simply made this association to arrive at 

some order of magnitude estimates.  Now, we seek to embed QCDΛ  directly into the equations for 

the one-recursion potential 1E .   So let’s do this again: we take the six-quark cutoff 
( )6 .0906QCD GeVΛ =  to be the energy at which the strong coupling grows infinite and 

confinement takes place.  From here simplifying notation to ( )6
QCDΛ ≡ Λ , the associated 

deBroglie length ( )6/ QCDr cΛ = Λ�  is explicitly calculated to be 2.178r FΛ =  in natural 1c= =�  

units.  So we now define: 
 

peak

1
2.178r r FΛ≡ = =

Λ
, (17.17) 

 

peak 8.245R RΛ≡ ≅  (17.18) 

 
By so-identifying the peak in Figure 5 with the QCD cutoff we may rewrite (17.16) as: 
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0 8.245
r r

hP Ar R
r rΛ

Λ Λ

= = ≅ . (17.19) 

 
This means, including 1rΛΛ = , that: 

 

( )1
3

0 0

8.245
s r r

R
g hP A R

r r
µ Λ

Λ
Λ Λ

= ∂ = = = Λ ≅ . (17.20) 

 
Also, from (17.8) and /A R rΛ Λ=  embedded in (17.19) and 1rΛΛ = , we have: 

 
R

R Ar r R r
r

Λ
Λ

Λ

= = = Λ  (17.21) 

 
So with all of this, we return to (17.5) and use ( )0r hP RΛ∂ = Λ  from (17.20), and divide 

both sides by /R R rΛΛ =  which is a variant of (17.21), to obtain: 

 

( ) ( ) ( )21
31

2

1 1 2 1
exp 2exp cosh

4 3 9
E iR r i R r R r

rπ Λ Λ Λ
  = − + Λ + Λ ⋅ Λ   

. (17.22) 

 
Now the QCD cutoff is embedded into (17.22) to provide physical mass and length scales. 
 
 The final step is to ensure that the density of this probability integrates to 1 over the now-

relevant domain of peak0 r r≤ ≤ , that is, to ensure that ( )peak

00
1

r

r hP dr∂ =∫ .  To do this, we now 

introduce a normalization constant N, and normalize (17.16), also using (17.6), (17.17) and 
(17.18) and 1rΛΛ = , to: 

 

0 8.245 8.245
r r

hP NAr NR NR N NR r N r
r rΛ Λ
Λ Λ

≡ = = = = Λ = Λ . (17.23) 

 
This effectively is a definition of N.  Then to ascertain the value of N, we first obtain: 
 

( )1
3 peak

0 0
peak peak

8.245
s r r

R
g hP NA N N

r r
µ = ∂ = = = . (17.24) 

 
And then we evaluate the definite integral: 
 

( )
peak

1peak peak peak
3 peak peak

0 0 peak0 0 0
peak peak 0

1

r
r r r

s r r

R R
g dr hP dr N dr N r NR

r r
µ = ∂ = = = =∫ ∫ ∫ . (17.25) 

 
So from this, we fix the normalization constant also via (17.18) to be: 
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peak

1 1 1

8.245
N

R RΛ

= = ≅ . (17.26) 

 
 So having determined N, and writing (17.23) as 0 /hP NAr NR R RΛ≡ = =  with (17.26) 

applied in the final step, we can achieve this normalization by rescaling: 
 

/ / 8.245R R R RΛ⇒ ≅  . (17.27) 

 
So as a result of the normalization (17.27), the relation in (17.16) is renormalized using (17.17) 
and (17.18) and 1rΛΛ =  via: 

 

0 0 /
r r

hP R R R r hP R R r
r rΛ Λ Λ
Λ Λ

= = = Λ ⇒ = = = Λ . (17.28) 

 
Also, based directly on /R R RΛ⇒  in (17.27), the relation in (17.21) is renormalized via:  

 
R r r

R R r R r
r r
Λ

Λ
Λ Λ

= = Λ ⇒ = = Λ  (17.29) 

 
From the above (17.29), we also deduce: 
 
1 1 1 1

R
r R r RΛ= Λ ⇒ = Λ  (17.30) 

 
 So finally we return to (17.22).  From (17.29) we renormalize with R r rΛΛ ⇒ Λ  and from 

(17.30) we renormalize with 1 1 1r R r− − −
Λ⇒ .  Thus we have: 

 

( ) ( ) ( )1
1

3
2 2

1 1 2 1
exp 2exp cosh

4 3 9
E i r i r r

R rπ Λ

  = − + Λ + Λ ⋅ Λ   
. (17.31) 

 
We then divide both sides through by Λ  while moving over the 4π  and the RΛ .  Then with the 

renormalization complete, in the second line below we substitute R r= Λ  from (17.19) to obtain: 
 

( ) ( ) ( )
( ) ( ) ( )

31
2

1
2

1
2

3
2

1 2 1
4 exp 2exp cosh

3 9

1 2 1
exp 2exp cosh

3 9

E
R i r i r r

r

iR i R R
R

π Λ
  = − + Λ + Λ ⋅ Λ  Λ Λ  

  = − + + ⋅   

. (17.32) 

 
It will be appreciated that the right hand side of the second line of (17.32) is absolutely identical 
to the right hand side of (17.9), the magnitude and real portion of which was graphed in Figures 
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4 and 5.  But what was previously R Ar=  in (17.8) is now R r= Λ , with A replaced by 

QCDΛ = Λ .   On the left hand side of the second line above, as a result of the connections (17.17) 

and (17.18) to Λ  and the renormalization (17.26) to ensure that the probability density integrates 
to 1, we have had the constant divisor A in (17.8) replaced by / / 8.245A RΛ⇒ Λ ≅ Λ , with the 

result that the normalization ultimately bleeds through to a rescaling of the energy by 1 1E R EΛ⇒

.  As to the probability field, the original relationship 0hP Ar=  of (17.6) has been replaced by 

0hP r= Λ  in (17.30).  And finally, following (17.16), and in view of (17.18), we originally set the 

domain for the non-zero probability density to run from ( )0 8.245R Ar RΛ≤ = ≤ ≅ .  With the 

renormalization (17.29), we now set the this domain to commensurately run over 
( )0 8.245R r RΛ≤ = Λ ≤ ≅ . 

 
 Now, although (17.32) is the same function as (17.9) graphed in Figures 4 and 5, because 
it now contains the physical content of QCDΛ  following renormalization, let us again graph this 

to include this new information as to physical scale.  First, we write the magnitude of the second 
line of (17.32), which we can obtain directly from (17.13) with no more than an A→ Λ  and 

/R r rΛ=  substitution, thus: 

 

3
2

237 4 4
81 27 81

1

31 1 1
2 2 2

84 4
81 2 281 7

cos cosh

/ 4
cos cos sin sin cos cosh

r r

r rE r

R r r r r r r r

r r r r r r

π
Λ ΛΛ

Λ

Λ Λ Λ Λ Λ Λ

   
+ +   

   
=

Λ             
+ + +            

            

∓ . (17.33) 

  

As noted prior to (17.17), the mean empirical value of the QCD cutoff is ( )6 90.6QCD MeVΛ =  

with a corresponding 2.178r FΛ = .   So / 4 0.874R MeVπ ΛΛ = .  Thus, for example, when  

14 / 10R Eπ Λ Λ = , this means 1 10 / 4 8.74E R MeVπ Λ= ⋅ Λ = .  So while we still use (17.33) to 

graph the dimensionless range 14 /R Eπ Λ Λ  against the dimensionless domain /r rΛ , we can 

also show the actual physical energies and lengths along the axes which correspond to this plot.  
Since the cutoff is designed to be at peakr rΛ≡  via (17.17), and since 0r ≥ , we also limit the 

domain to 0 r rΛ≤ ≤ .  Thus, as in Figure 4, we may graph the unlike-charge potential: 
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Figure 6: The Yang-Mills Potential 1E  of (17.33) at First Recursive Order (Figure 4 with 

Physical Energies and Length Scales) 
 
 The peak found in Figure 5 at peak 8.245R =  corresponds to the cutoff length 2.178r FΛ =
, and is introduced into Figure 6.  In Figure 6, peak 8.245R =  has a dimensionless amplitude 

14 / 16.953R Eπ Λ Λ = , which via / 4 0.874R MeVπ ΛΛ =  translates to a potential with the 

magnitude 1 14.82E MeV= , at the peak 8.245R =  of Figure 5 which has been set to correspond to 

2.178r FΛ = .  All of these correspondences are clearly shown in Figure 6. 

 
 Now, we went out of our way in the last two sections to also develop the probability field 
and the probability density which go along with Figure 6.  So we should now show those.  
Following normalization the probability field is given by (17.28), namely, 0 /hP r r rΛ= = Λ .  

Therefore ( )1
3 1

0 1/ .459 1/ 2.178s r rg hP r F Fµ −
Λ= ∂ = = Λ = =  is the probability density.  So over 

the domain 0 r rΛ≤ ≤ , this density graphs out to: 

 
Figure 7: Constant Radial Probability Density 
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The total probability density integrated over the relevant domain 0 r rΛ≤ ≤  is equal to 1, as was 

implemented in (17.25).  Figure 7 simply contains an area 1.459 2.178 1F F− × = .  Now we 
integrate over r to arrive at the coupled probability field 0 /hP r r B r BΛ= + = Λ + , where B is a 

constant of integration.  When we began the present exercise in (6.7), we posited the linear form 

0hP Ar=  with 0B = .  If we maintain this, then Figure 7 integrates to 0 /hP r r rΛ= = Λ , which is 

the normalized (17.28).  The integral of the probability density of Figure 7 into a dimensionless 
probability field, with what is now a slope of Λ  is shown below in Figure 8. 
 

 
Figure 8: Dimensionless Probability Field for Constant Probability Density 

1
3

s rg µ  over 

0 r rΛ≤ ≤  
 

Because the probability density of Figure 7 is required to integrate out to 1 as we clearly 
see by the dimensionless area of 1 inside this density, once the integral is taken as in Figure 8, 
then beyond the upper extremity rΛ  of the non-zero probability density domain, the probability 

field is required to also be equal to 1.  This is what fixes the constant of integration to B=0, 
which was the assumption that we sought to test starting at (6.7).  Specifically, while the 
mathematics permits the plot in Figure 8 to be raised or lowered by a constant of integration B, 
the physical interpretation of Figure 7 as a probability density which must integrate to 1 requires 
us to discard the constant of integration so that for the domain beyond rΛ  the probability field 

carries forward this same 1 that is shown in Figure 7.  Finally, it should be made very clear that 
Figures 6, 7 and 8 all describe exactly the same physics from three different views.  Figure 6 
shows the real magnitude 1E  of the potential of (17.33), while Figure 7 shows its associated 

probability density and Figure 8 the associated probability field, all as a function of radius r.   
There is a one-to-one isomorphic mapping among Figures 6, 7 and 8.  If any of these are 
changed, then the other two are changed as well. 
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Now, let us review what we may learn about analytical, non-linear quantum field theory 
from the results in this section.  We began at (17.6) by positing a constant probability density 

( )0 constantr hP A∂ = ≡  with A being real and non-zero and positive.  But because ( )0r hP∂  is a 

probability density, it operates under the very important constraint that its integral over r must be 

equal to unity, ( )00
1r hP dr

∞
∂ =∫ .  So by positing that the probability density is a positive real 

constant, and by positing that the probability density is a probability density, we are inherently 
and necessarily positing that the probability density is constant over a finite, bounded domain of 
the radial coordinate r.  Why?  Because the domain of r runs over 0 r≤ ≤ ∞ .  If the probability 
density ( )0r hP∂  were to be constant over the entire domain from 0 r≤ ≤ ∞ , then in order for it 

to integrate to ( )00
1r hP dr

∞
∂ =∫ , we would have to have constant 0A = = , and in that instance, 

we would have a zero probability density everywhere except at 0r = , which is the problem we 
reviewed in the last section for a 1/r potential.  To visualize this, just look at Figure 7 and 
suppose that we were to have ( )0r hP∂ = Λ  not over 0 r rΛ≤ ≤ , but over the entirety of 0 r≤ ≤ ∞
.  What would happen?  As we stretched rΛ  further to the right and had it approach rΛ → ∞ , the 

value of Λ  would diminish in order to maintain a total area of 1 within the Figure 7 rectangle.  
And at rΛ = ∞ , the constant probability density would necessarily become the constant zero 

probability density we examined in the last section, and no longer be a constant positive 
probability density.  So, a positive, non-zero constant probability density necessarily implies a 
radially-bounded probability density. 

 
Now, it is one thing to posit a positive, constant radially-bounded coupled probability 

density, and quite another to assemble a physical system what has such a probability density.  
After all, at bottom, we are still doing physics, not just mathematics.  What Figure 6 illustrates is 
that if one is going to have a physical system with a positive, constant radially-bounded coupled 
probability density, it will be necessary to assemble a suitable potential energy distribution to 
hold that probability distribution in place.  Figure 6, and equation (17.33) which is derived from 
positing a constant, non-zero ( )0r hP∂ = Λ , tells us what that potential must be.  Specifically, in 

order to have ( )0 constant 0r hP∂ = Λ = >  over the bounded domain 0r rΛ≤ ≤ , we are required, 

as seen in Figure 6, to have a potential well which “pulls” all of the physical fields constituting 
the probability density together, and creates a “least action” or “least potential” environment in 
the domain from about 1.75R =  to 4R= .  If the fields were to try to wander to a larger 
distance, say 6R =  or 8R = , they would need to acquire extra energy to do so.  If they were to 
try to compress themselves to a smaller distance, say .5R = , they would need to acquire extra 
energy to do so.  By least action principles, the elements of a system will move toward and 
congregate near positions that can be maintained with a minimum of energy.   

 
So the potential in Figure 6 provides the geodesic, least action environment which 

physically enables the probability density to remain constant and bounded in the manner of 
Figure 7.  Because it is a stable, confining potential, the potential of Figure 6 “holds together 
both ends at the middle,” and tells us about the energetics of the physical environment which is 
required to support the posited ( )0 constant 0r hP∂ = Λ = > .  So, while we can posit any 
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probability distribution we want, we cannot actually realize that probability distribution in the 
physical universe without creating the potential energy environment to assemble and maintain 
that probability distribution.  Figure 6 which is equation (17.33) tells us the energies we need to 
maintain Figure 7.  But more generally, (17.1) in Cartesian coordinates a.k.a. (17.2) in spherical 
coordinates tells us the energies required to maintain whatever probability distribution we may 
wish to posit, with whatever radial and angular distributions we may wish to posit, because for 
any posited probability distribution, there is an associated quantum potential which can be 
deduced from these equations.  And these two equations, (17.1) and (17.2) contain non-abelian 
probability fields 0P  and so provide a complete set of tools to do the exact same development we 

did here, for, e.g., the SU(3)c group of QCD, and thus to understand with precision, to first 
recursive order, the dynamics within a hadron that cause quarks and gluons to be confined and 
also subsist in a stable system, i.e., to live in a space outside of which their probability densities 
are zero and to not collapse together in the nature of the ultraviolet catastrophe and atomic 
spiraling that so-plagued physicists at the opening of the 20th century.  As stated at the end of the 
last section, in non-linear quantum field theory, probability densities and potential energies go 
hand in hand, with a one-to-one isomorphic mapping between them. 
 
18. Asymptotic Freedom and Asymptotic Confinement: Fitting and 
Extending the QCD Running Coupling Curve 

 
While the probability density of Figure 7 and its isomorphically-related potential energy 

curve of Figure 6 clearly show features of confinement and stability, we have not yet discussed 
the third critical aspect of QCD, which is asymptotic freedom.  As is well known, the running 
strong coupling 2 / 4s sgα π=  becomes very large and indeed asymptotically approaches infinity 

for small probe energies below about 1GeV, and becomes relatively flat (asymptotically free) for 
large probe energies in the deep TeV area and beyond.  Via the deBroglie relation /E c= � � , 
this is inverted when talking about length rather than energy as we are doing in Figures 6 through 
8: the running strong coupling 2 / 4s sgα π=  becomes very large and tends toward infinity while 

approaching the larger radial lengths r rΛ→  from smaller lengths, and flattens out approaching  

very short length scales 0r → .   To provide a common point of reference, we reproduce below, 
Figure 9.4 from PDG’s [24] which illustrates all of this based on a range of the most-current 
empirical data, and make note that we have based Figures 6 through 8 on 

( ) ( )6 90.6 3.4QCD MeVΛ = ±  for six quarks and thus used the length equivalent 2.178r FΛ =  to 

bound the probability distribution.  Which is to say, we have worked from the view that 
2 / 4s sgα π=  asymptotically approaches infinity at around 90.6MeV , which is about one order 

of magnitude to the left where 1Q GeV=  is shown on Figure 9 below.  The prevailing view is 
also that the curve in Figure 9 will tend to asymptotically flatten moving to the right beyond the 
1000GeV shown below to higher and higher energies. 
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Figure 9: The Running Strong Coupling ( )/s Q c rα = �  (reproduced from PDG’s [24], 

Figure 9.4) 
 
 So, the question now is, precisely how does the potential of Figure 6 and the bounded 
constant probability density of Figure 7 connect with the ( )/s Q c rα = �  curve of Figure 9?  

Here, it is important to keep in mind that Figures 6 through 8 as well as much of the development 

here is expressed in terms of a coupled proper probability density ( )1
3

0 0s r rg hPµ = ∂ , and more 

generally ( )1
3

0 0sg hPµµµµ = ∇= ∇= ∇= ∇ .  That is, we have a bare probability field 0P  and a bare probability 

density 0µµµµ  which then couples through a dimensionless running charge 
1
3

sg h= , see (15.43), 

which is related to the strong coupling by 2 / 4s sg cα π= �  (or generally, to any given interaction 

coupling g via 2 / 4g cα π= � ).  So, for the constant probability density we have developed here, 
the interrelationships, rather simply, are: 
 

( )1
3

0 0s r rg hPµ = ∂ = Λ , (18.1) 

 
or alternatively: 
 

( )
11
63 1

0 0 034 r s
r s s r

s

g
g c P P

g
µ π α −− ∂= Λ = Λ = ∂ +� , (18.2) 

 
where in the final expression, we have also applied the differential equation (15.45) to (18.1). 
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In other words, deepening the earlier discussion from (14.44), the bare radial probability 
density 0rµ  will run in inverse proportion to the sixth root of the sα  illustrated in Figure 9 above, 

because ( )
11
63 4s sg πα= , and by (18.1), ( )

11
63

0 4r s sgµ πα−= Λ = Λ .  Where sα → ∞  asymptotically 

in the neighborhood of 2.178r FΛ = , the bare probability density will asymptotically tend toward 

zero, 0 0rµ → .  This means that the potential of Figure 6 effectively causes any field quantum to 

have a near-zero probability of situating near 2.178r FΛ = .  But, if any field quantum should 

happen to situate near 2.178r FΛ = , it will be very-highly-coupled so as to maintain the coupled 

probability density at the constant Λ  per (18.1).  This also means that the bare probability of 
where one might find a field quantum is maximized at 0r = , but that at 0r =  the coupled 
density still remains asymptotically constant because sα  approaches its asymptotically-flat 

minimum value.  (We shall for now ignore any GUT effects that might come into play near 
1510 GeV probe energies and especially any effects that may arise at the scale 2

PGm c= �  of the 

Planck mass Pm , and will return to consider possible GUT effects at the very end of this 

discussion.)   In order to obtain the differential equation which precisely governs the behavior of 
the bare probability field 0P  as a function of r and sg , we rewrite (18.2) as: 

 
1
30

0

1 1
0

3
s

s
s

P g
P g

r g r
−∂ ∂= + − Λ

∂ ∂
. (18.3) 

 
The bare 0P  obtained through this equation is the bare counterpart to the coupled 0hP  illustrated 

in Figure 8.   
 
Of extremely high importance, all of the forgoing provides us with the tools we need to 

actually fit the running QCD curve of Figure 9 very precisely to some very simple mathematical 

functions by focusing on the bare probability density 0rµ  given in (18.1) by 
1
3

0s rg µ = Λ .  We 

make use of two well-established theoretical premises to do this, while at the outset neglecting 
any GUT effects:  First, based on asymptotic freedom, we assume that approaching 0r →  from 

0r >  the curve in Figure 9 flattens completely, i.e., that / 0s Qα∂ ∂ →  as 0r → .  Second, we 

assume when approaching /r r cΛ→ = Λ�  from r rΛ<  that the slope of sα  asymptotically 

becomes infinite, /s rα∂ ∂ → ∞ .  Simply put: we accept and utilize the commonly-held twin 

premises a) that asymptotic freedom is really asymptotic along the r or Q axis for 0r →  and 
Q → ∞ , and b) that confinement really is asymptotic along the vertical sα  axis as one 

approaches /r r cΛ→ = Λ�  from smaller r, i.e., as Q → Λ  from higher Q when moving to the 

left of the domain in Figure 9.  Via 
1
3

0s rg µ = Λ , these twin premises tell us that 0rµ  must be flat 

for 0r →  and that 0rµ  must have a slope of negative infinity for r rΛ→ .  Mathematically, this 

narrows the scope of plausible ( )0r rµ  because ( )0r rµ  can only be a function for which 

0 / 0r rµ∂ ∂ =  as 0r →  and 0 /r rµ∂ ∂ → −∞  as r rΛ→  from smaller r.  So now the question is 

well framed: what set of mathematical functions have these required properties to simultaneously 
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facilitate asymptotic freedom and asymptotic confinement?  As it happens, the most basic 
mathematical function which fits these two requirements is a simple ellipse.  And the simplest 
ellipse is a circle.  So let us now see if we can find a way to fit the running coupling in Figure 9 
to what is effectively a mathematical ellipse or even a circle. 

 
First, we go to (18.1), but because we want to find Sα  and (18.1) only contains the sixth 

root of Sα , let us raise everything to the sixth power.  Thus we may write 2 6 6
0s rg µ = Λ , or, with 

24 /s sg cπα = � , in natural units: 

  
6 6

0 / 4s rα µ π= Λ . (18.4) 

 
Now we are dealing with 6

0rµ  rather than just 0rµ , but this too should have the same 

requirements as 0rµ : a flat slope as 0r →  and a slope of negative infinity as r rΛ→  from 

smaller r.  So let us now set up the ellipse for 60rµ .  And to keep things very simple, let us use 

the simplest ellipse of all, a circle.  So, for a circle of constant fixed radius 0R   we have the 

familiar 2 2 2
0x y R+ = , or 2 2

0y R x= − .  Let us now make the proportionality associations 
6

0/ 4 RπΛ ∝ , 6
0r yµ ∝  and r x∝ .  And to simplify further, let us set 0 1R = .  So we first write 

the very simple, Pythagorean relationship for a right triangle with a hypotenuse of 1 which 
defines the unit circle:  
 

21y x= − . (18.5) 
 
We shall now fit this to the QCD curve in Figure 9.   
 

By (18.4) 6
01/ 1/s r yα µ∝ ∝ .  So the relationship that now becomes of interest based on 

(18.5), including /x r r r RΛ→ → = , is: 

 

( )2 2

1 1

11 /
s

Rr r
α

Λ

= =
−−

. (18.6) 

 

We note that in the form ( )2
1/ 1 /v cγ = − , this exact same mathematical function – the 

inverted circle – sets another asymptotic limit in the natural material world, namely that of the 
speed of light.  Indeed, rΛ  above takes on the exact same mathematical character as r rΛ→  as 

does the speed of light c as v c→ .  This is how we set up the asymptotic limit for confinement.  
By deBroglie, we can also substitute /r c Q′= �  where Q′  has a mass dimension of +1.  The 
reason for Q′  rather than Q will become momentarily apparent.  So now (18.6) becomes: 
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( )2

1

1 1/
s

Q
α =

′−
. (18.7) 

 
This function (18.7) will have two asymptotes: a vertical asymptote at 1Q′ =  as 1Q′ →  from 

right to left, and a horizontal asymptote approaching 1sα =  from above as Q′ → ∞ .  So as a final 

step to move the asymptotes onto the vertical and horizontal axes at 0Q′ =  and 0sα = , we 

simply displace this curve one unit to the left and one unit down, by rewriting (18.7) as: 
 

( )( )2

1
1

1 1/ 1
s

Q
α = −

′− +
. (18.8) 

  
Now, let graph (18.8) and compare it to Figure 9: 
 

 
Figure 10: The Running Strong Coupling sα  Modelled from (18.8) based on the Unit Circle 
 

This looks very much like it has the same form as the empirical PDG data curve in Figure 
9.  And in fact it would be the exact same curve should it be possible to match up the height of 
Figure 10 with Figure 9 and then rescale Figure 10 along the horizontal axis to get the shapes of 
the curves to match. So, let us do just that.  We match up the heights, and then stretch the curve 
of Figure 10 along the Q′  axis to the degree required to match Figure 9.  Then we move the 
stretched Figure 10 curve left/right and up/down as needed to superimpose it data point-to-data 
point over Figure 9.  What we obtain is Figure 11 below, with the curve of Figure 10 in the blue 
dashed line superimposed over the empirical PDG curve of Figure 9: 
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Figure 11: Superimposition of Figure 10 Theoretical Curve over Figure 9 Empirical Curve 

for sα   
 
 The possible match is clear, and we also now see clearly that Q′  bears a logarithmic 
relation to Q, that is, 1/ log ln / ln10Q r Q Q′ = ∝ = .  If we write this simply as lnQ f Q′ ≡  
where f is a data “fitting” constant to stretch the horizontal axis on move it onto a logarithmic 
rather than linear scale, if we then replace ( ) ( )1 lnQ f Q A′ + ⇒ + in (18.8) to permit horizontal 

movement of the whole curve via an unknown, to-be-fitted constant A, and if we finally replace 
1 B→  at the end of (18.8) to permit vertical movement of the whole curve by an also unknown 
and to-be-fitted constant B, then (18.8) now becomes: 
 

( )
2

1

1
1

ln

s Q B

f Q A

α = −
 −  + 

. (18.9) 

 
As we shall now show, with suitable choice of the three fitting parameters f, A and B, (18.9) can 
be fitted to an exact match with the empirical running PDG data of Figure 9 for ( )s Qα  within all 

the indicated experimental error-bars.  What is especially significant about the fit in Figure 11 
beyond the fact that it does fit, is that this curve provides definitive predictions as to how the 
strong coupling will continue to run in the region above 1TeV, and based just on what is seen in 
Figure 11 above, the curve is now extended out to somewhat over 100TeV.  In fact, we shall 
return to this point shortly, because now that (18.9) can indeed be fitted to Figure 9 over the 
entirety of the domain and range of Figure 9, it should be possible to use (18.9) to extend Figure 
9 way beyond the domain and range of the data that it contains.   
 

Shortly, we shall indeed use this to extrapolate Figure 9 to both higher and lower Q.  But 
first let us backtrack to our starting point and fully develop the logarithmic fitting of the radial 
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probability density.  By (18.4) 6 6
0 / 4 1/r s sµ πα α= Λ ∝ .  So without the horizontal or vertical 

shifting, we combine (18.4) and (18.6) together and use 1/ 1/ lnr Q f Q′= =  to write: 
 

2 26 6 6 6
6 2

0

1
1 1 1

4 4 4 4 lnr
s

r
R

r f Q
µ

πα π π πΛ

   Λ Λ Λ Λ= = − = − = −   
  

, (18.10) 

 
Now, taking the sixth root and also including 1/ 1/ lnr Q f Q′= = , we arrive at the following for 

the bare radial probability density 0 0r r Pµ = ∂ : 

 

( ) ( )
1 1
6 61

6 1
1 6
6

2 2

20
0

4 1
4 1 1 1

ln
r

r

r
P R

r fr Q

π µπ
Λ Λ

   
∂ = = − = − = −   Λ Λ    

, (18.11) 

 
Next, since Q has dimensions of energy, we set ( )0ln ln /Q Q Q→  where 0Q  is some suitably 

chosen scale against which to measure Q, so that the quantity inside the natural log is 
dimensionless.  But, of course, ( )0 0ln / ln lnQ Q Q Q= − .  So, also defining f frΛ′ ≡  and 

0lnA f Q′ ′≡ − , we can extend (18.11) to: 

 

( ) ( )
11
661

6 1
1 6
6

1 1
6 6

22

20
0

0

2 2

0

4 1
4 1 1 1

ln ln

1 1
1 1

ln ln ln

r
r

r
P R

r fr Q fr Q

fr Q fr Q f Q A

π µπ
Λ Λ Λ

Λ Λ

  
∂ = = − = − = −   Λ Λ −   

   
= − = −   ′ ′− +  

, (18.12) 

 
This square root now is of the exact same form as the square root in (18.9) for ( )s Qα , except 

that it has f frΛ′ ≡  and 0lnA f Q′ ′≡ − .  But the f and A in (18.9) were simply unknown data-

fixing constants.  So we can replace f f ′→  and A A′→  in (18.9) to write: 
 

( )
2 2

0

1 1

1 1
1 1

ln ln ln

s Q B B

f Q A fr Q fr Q

α

Λ Λ

= − = −
   − −   ′ ′+ −   

. (18.13) 

 
Then, we restructure (18.13) into: 
 

( ) ( )

2

0

1 1
1

ln lns Q B fr Q Qα Λ

 
= −   + − 

, (18.14) 
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which means finally, that the multiple alternative expressions of (18.12) can now be 
supplemented to directly include ( )s Qα , as follows: 

 

( ) ( )

( )( )

11
661

6 1
1 6
6

1 1
6 6

1
6

22

20
0

0

2 2

0

4 1
4 1 1 1

ln ln

1 1
1 1

ln ln ln

r
r

s

r
P R

r fr Q fr Q

Q B
fr Q fr Q f Q A

π µπ

α

Λ Λ Λ

−

Λ Λ

  
∂ = = − = − = −   Λ Λ −   

   
= − = − = +   ′ ′− +  

, (18.15) 

 

 The simplest way to graph this is with ( )
1

1 6
6 2

04 / 1r P Rπ ∂ Λ = − .  This is illustrated 

below in Figure 12 along with all of the other interrelationships embedded in (18.15): 

 
Figure 12: The Bare Probability Density Fitted to the Empirical ( )/s Q c rα = �  Data of 

Figure 9 
 
 Here, we see the running coupling ( )/s Q c rα = �  represented in terms of the bare radial 

probability density 0 0r r Pµ = ∂ , such that ( )
1
6

0 4 4r s Bµ πα π −= Λ + , or  via 24 s sgπα =  and 

( )0r hP∂ = Λ  from (17.28) and some rearrangement: 

 

( ) ( )
1
62

0 0 4r r shP g Bµ π∂ = + = Λ . (18.16) 
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The constant coupled probability density function of Figure 7 for ( )0r hP∂ = Λ  looks the same as 

before, but when expressed in terms of rµ  it also acquires the fitting term 4 Bπ  used simply to 

set the height of sα  in Figures 10 and 11. 

 
The final matter to point out, of course, is that because 0r P∂  is a probability density, it 

must normalize to 1 when integrated over its entire domain 0 r rΛ≤ ≤  a.k.a. 0 1R≤ ≤ , that is, we 

must have 00
1

r

r P dr
Λ ∂ =∫  a.k.a. 

1

00
1RP dR∂ =∫  in Figure 12.  It can be found via numerical 

calculation by computer that the definite integral:  
 

1
61 2

0
1 0.952354R dR− =∫ , (18.17) 

 
which makes visual sense when noting that Figure 12 basically contains a unit square with a 
shaved corner on the upper right.  So if we go back to the R-based expressions in (18.15) and use 

/r R rΛ∂ = ∂  and 1rΛΛ =  and integrate over the domain of 0 1R≤ ≤  we obtain: 

 

( ) ( )
1
6

1 1
6 6

1 1 1 2
0 00 0 0

1 0.952354 1 1
1 .624592

1.601044 4
R RP dR dR R dR

N
µ

π π
∂ = = − = = = ≡∫ ∫ ∫ , (18.18) 

 

which defines a normalization constant ( )
1
61.60104 4 / 0.952354N π= = .  Then, we normalize by 

multiplying everything in (18.15) beyond the first two terms by N to ensure that 
1

00
1RP dR∂ =∫ .  

We then factor out the ( )
1
64π  which then appears in front of every term, and again use 

/r R rΛ∂ = ∂  and 1rΛΛ = , with the net result: 

 

( )( )

11
1 66
6

1 1
16 6
6

222

0 0
0

2 2

0

1 1 1 1
1 1

0.952354 0.952354 0.952354 ln ln

1 1 1 1
1 1

0.952354 ln ln 0.952354 ln 0.952354

R r

s

R r
P

r fr Q fr Q

Q B

fr Q fr Q f Q A

µ

α

Λ Λ Λ

−

Λ Λ

  −∂ = = = − = −    −   

+   
= − = − =   ′ ′− +  

. (18.19) 

 
When established in this way, Figure 12, subject to precise empirical determination of the 

various fitting parameters, becomes an alternative way to express the phenomenological running 
coupling curve ( )s Qα  of Figure 9 in terms of (the sixth root of) a circle, which is one of the 

simplest objects in the mathematical world.  Physically, this centers around the expression 

( )2
1 /r rΛ− .  Contrasting with ( )2

1/ 1 /v cγ = −  which set sets the speed of light c as a 

natural limit in the material world, we see that (18.19) places the QCD cutoff 1/rΛ = Λ  into a 

precisely analogous role as the speed of light, as a natural, material limitation.  And, of course, 
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if we write the mathematical crux of (18.19) as ( )( )26 2
00.952354 1r Rµ + = , we see once again – 

as is often the case – that the Pythagorean theorem sits in yet another guise at the root of the 
inner workings of the material universe. 

 
Finally, as we discussed following (18.9), because of the clear fit in Figure 11, it should 

be possible to graph the curve of Figure 10 which is equation (18.8) over a greatly-extended 
domain and range, and then fit a limited piece of this curve from about 1 GeV to 1000 GeV and 
from 0.4sa ≈  to 0.1sa ≈  to the PDG curve of Figure 9.  The theoretical curve we shall graph is 

(18.8) with ( )ln /Q f Q′ = Λ  and with f f′ → , /Q Q→ Λ , 1A′ →   and 1B →  in (18.13),  

namely:  
 

( )
( )( ) ( )( )( )2 2

1 1
1 1

1 1/ 1 1 1/ ln / 1
s Q

Q f Q
α = − = −

′− + − Λ +
. (18.20) 

 
Specifically, in Figure 13 below, we extend the PDG curve of Figure 9 one order of magnitude to 
the left, i.e. over to 110 100GeV MeV− = , and we also extend it downward to include the 0sα =  

axis.  We then use the fitting parameter f to fit this to the PDG curve of Figure 9 by stretching the 
curve horizontally as needed to create a tight fit over about 1 GeV to 1000 GeV and from 

0.4sa ≈  to 0.1sa ≈ .  We also bring to bear additional data from [9.24a] through [9.24d] of 

PDG’s [24] for the QCD cutoffs ( )fnΛ  for 6,5,4,3fn =  quark flavors, by showing what would 

be the confinement asymptotes for each of these ( )fnΛ .  This is all illustrated in Figure 13 below:   
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Figure 13: Fitting of the PDG QCD Curve of Figure 9 to Extended Domain and Range for 

( )/s Q c rα = � , based on the Theoretical Function (18.20) 

 
 Now let’s discuss Figure 13 in some depth.  We see the PDG data from Figure 9.4 of [24] 
which is reproduced in Figure 9 here, occupying a very small corner at the lower-left of Figure 
13.  When magnified, this corner has the same fit between the empirical PDG data and the 
mathematical curve of (18.20) as is illustrated in Figure 11.  But of course, this curve extends 
that data well beyond the domain or range of Figures 9 or 11, so that the PDG curve fits to a 
small yet important corner of the theoretical curve of (18.20).  Of special interest is the 
extrapolated curve toward the vertical axes on the left.  It is very desirable to know the 
magnitude of the Q at which the vertical confinment asymptote reaches infinity.  If the PDG 

curve of Figure 9 is accurate as we must assume it is, and if the ( )fnΛ  for 6,5,4,3fn =  in [9.24a] 

through [9.24d] of PDG’s [24] are accurate as we also must assume they are, then these are not 

two disconnected pieces of empirical data.  They are interrelated such that one of the ( )fnΛ  in 
[9.24a] through [9.24d] of [24] must be the asymptote of Figure 9.4 of [24].  And this in turn 
should confirm from yet another view, the number of quark flavors that exist in nature.  What we 
see from the extrapolation in Figure 13 is that the PDG data, when extended with (18.20), moves 
definitivcely to the left of the 3,4fn =  asymptote candidates, so that we must have either 5 or 6 

quark flavors.  But, this curve even moves to the left past the 5fn =  asymptote candidate right 

around 1.5sα ≈ .  Since there is still a long way to go from 1.5sα ≈  to sα = ∞ , it look highly 
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plausible that in fact it is ( ) ( )6 90.6 3.4 MeVΛ = ±  which is the asymptote for this curve.  And 

this, of course, fits perfectly with our in fact observing six quark flavors in nature.  So when we 
in fact engage in the data fitting represented in Figure 6, the first step is to set ( )6Λ = Λ  in 

(18.20).  Then, at ( )6Q = Λ = Λ , we will have ( )( )6
sα Λ = ∞ .  From there, we choose the fitting 

parameter f such that the remainder of the curve passes properly through the empirical PDG data 
of Figure 9.   
 

Having set the vertical asymptote to ( )6Λ = Λ  and having set f to yield the proper fit so as 
to pass through the PDF data in Figure 13 by graphically compressing or expanding the 
horizontal aspect of the (18.20) curve as needed (our next task will be to numerically determine 
f), all that remains is to explore the asymptotic freedom region.  The use of B=1 in (18.20) for the 
more general height-fitting parameter B of (18.9) ensures that 0sα →  as Q → ∞ .  So now the 

question is whether this also accords with empirical data.  Left to its own devices, the curve 
which uses B=1 will tend to 0sα →  as Q → ∞ .  But this is just mathematical.  We know that 

physics intervenes, because at around 1510Q GeV≈  we expect a GUT to bring together the 
running coupling of the strong, weak and electromagnetic interactions, and we expect that near 
the Planck energy, these will all meet up as well with the gravitational coupling and will reverse 
course and start to increase in magnitude.  So, physically, we do not expect to ever reach 0sα = , 

because other things will intervene by then, including the exceedingly high-energy fluctuations 
of quantum gravitation in the geometrodynamic vacuum. This means that must expect Figure 15 
to lose its predictive ability as to sα , possibly near 1510Q GeV≈ , and definitely near 

191.22 10Q GeV≈ × .  
 
So the way to determine if we are correct to use B=1 as the vertical fitting parameter in 

(18.20), is not to expect sα  to ever become zero, but to study the empirical behavior of sα  in 

whatever energy domains become experimentally-accessible at TeV energies and higher.  When 
studied more closely, Figure 13 reveals that at 1Q TeV= , sα  is slightly less than .  

Close study also reveals that at 61 10Q PeV GeV= = , we have , and that at 
91 10Q EeV GeV= = , we have .  So by mapping out the running of sα  at deeper and 

deeper probe energies, one can confirm whether the fit using B=1 is the correct fit or whether 
1B <  by some very tiny amount.  In the event that B=1 is confirmed to be correct, and given that 

setting ( )6Λ = Λ  for the vertical confinement asymptote obviates the need for any horizontal 
fitting via the parameter A′  in (18.9) which is set to 1A′ =  in (18.20), we have by the analysis 
and fitting of Figure 3 already determined that 1A B′ = =  insofar as horizontal and vertical 
fitting is concerned and as seen in (18.20) and how it graphs out in Figure 13.  Any fitting with 
A′  other than 1 is absorbed into how we define f f′ → .  So the fitting parameter f in (18.20) is 
the only parameter which remains to be empirically fitted via empirical data.  This f truly is an 
empirical parameter, and this is the parameter which causes the curve of Figure 13 to compress 
or expand (scale) as a logarithmic function of Q.  Only the empirical data can determine the 
proper numerical value of f, and this now becomes a key number to determine with experimental 
data.  So let us now do just that. 

0.08sα ≈
0.035sα ≈

0.020sα ≈
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Starting with (18.20), our immediate objective is to use empirical data to determine the 

value of f.  To do this, we fit (18.20) to two data points which then uniquely determine f and as a 

result, the entirety of the mathematical  curve.  The first data point to which we fit the 

curve is the vertical confinement asymptote, which we set to ( )6 90.6MeVΛ = Λ = , right at the 
mean of the empirical data reported in [9.24a] of [24].  The second data point we use is the very 
same one that is used in Figure 9.4 of [24] which is Figure 9 here, namely, that ( ) .1185s ZMα = , 

wherein we take the Z-mass to be 91.876ZM GeV=  based on the mean empirical data reported 

to be  at [25].  This is the common choice of convention for defining the 

running strong coupling.  So, we place ( )6 .0906GeVΛ = Λ =  in (18.20), and then we sample 
various numeric values for f in (18.20) until finding a value for f which fits ( ) .1185s ZMα =  at 

 to five decimal places beyond ( ) .1185s ZMα = , that is, such that 

.  The value we determine for f via this empirical fitting is: 

 
1

5.6105908
f = . (18.21) 

 
We then use this and ( )6 .0906GeVΛ = Λ =  in (18.20) to write:  
 

( )
( )( )( ) ( )2 2

1 1
1 1

1 1/ ln / 1 ln / .0906
1 1/ 1

5.6105908

s Q
f Q Q GeV

α = − = −
  − Λ +

− +   
  

. (18.22) 

 
 Now, we simply graph (18.22) above, and to permit close comparison to the empirical 
data, we superimpose this over Figure 9.  The result is below in Figure 14: 

( )s Qα

( )91.1876 21ZM GeV=

( )91.1876 21ZM GeV=

( ) .118500000s ZMα =
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Figure 14: Plot of (18.22) for  fitted to ( )6 .0906GeVΛ = Λ =  and ( ) .1185s ZMα =  at 

91.876ZM GeV= , Superimposed on Figure 9 from PDG  
 
 In the above, we have used (18.22) as fitted to ( )6 .0906GeVΛ = Λ =  and 

( ) .1185s ZMα =  at 91.876ZM GeV= , to determine ( )s Qα  at several Q values, specificallly, 

1GeV, 1.77683m GeVτ = , 4GeV, 6GeV, 8.25GeV, 20GeV, 40GeV, 60GeV, the defined 

( )s ZMα  at 91.876ZM GeV= , 200 GeV, 400GeV, 600GeV and 1TeV.  And as stated at 

(18.21), this fitting yields the empirical .  We then plot each of the ( )s Qα  

determined at these several Q by placing a  dot over the PDG Figure and labelling the 
associated ( ), sQ α  ordered pair next to each dot.  We have generally chosen at each order of 

magnitude 0,1,2n =  to plot the , ,  and  data 

points, with certain exceptions.  The execptions are: we plot right at 1.77683m GeVτ =  rather 

than the nearby , because there have been direct and explicit studies conducted of ( )s mτα
, see, e.g., Figure 9.2a in [24]; we plot at  rather than 10 MeV because the PDG 
drawing shows an explicit empirical data point at this locale, and this is the lowest-Q DIS jet 
point plotted by PDG; and we plot at 91.876ZM GeV=  rather than the nearby 100GeV because 

the former is part of the curve definition (the other part being ( )6 .0906GeVΛ = Λ = ).  We then 

( )s Qα

1/ 5.6105908f =
•

1 10nGeV× 2 10nGeV× 4 10nGeV× 6 10nGeV×

2GeV

8.25MeV≈
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connect these dots with a bezier curve plotter to yield the blue dashed curve overlaid on the PDG 
curve, to provide a sense for the smooth curve of (18.22) which connects these dots in 
comparison with the PDG interpolated / extrapolated curve.   
 
 Generally, we find that (18.22) fits the empircal data within many of the error-bars as 
shown in  Figure 14.  Of course the curves match exactly at 91.876ZM GeV=  because they are 

both defined such that ( ) .1185s ZMα = .  From 1.77683m GeVτ =  to 91.876ZM GeV=  the 

predicted Bezier curve is slightly higher PDG’s interpolated curve, yet it passes directly through 
some key empirical data points.  At 1.77683m GeVτ = , (18.22) predicts that ( ) 0.3209s mτα = .  

This is slightly below the mean of  shown in Figure 9.2a of [24], yet well within 

the error bars (and more-so than the PDG curve).  It is also noted that three of the ten studies 
plotted in Figure 9.2a of [24] (Baikov, Davier and Boito) are substantially above the mean, and 
that the other seven (Beneke, Caprini, Maltman, Narison, Boito and SM review) are below the 
mean and clustered more consistently.  If one discards the three above-mean studies as statistical 
outliers which they seem to be when relative clustering of the seven below-mean studies are 
considered, then the predicted ( ) 0.3209s mτα =  appears vary close to the new mean, and is in 

fact right in the center of the Caprini study.  So all told, the predicted fit at ( ) 0.3209s mτα =  is 

supportable by the empirical data. 
 

The next point of interest is the predicted ( )8.25 0.2015s GeVα ≈ = .  Although this is 

somewhat higher than the lattice QCD prediction and at the high end of the nearby heavy 
quarkonia study, this data point fits very closely to the high center of DIS jets study.  In fact, in 
general, the predicted blue-line curve similarly fits well within the high-center of all of the next 

three DIS jets data, and just below the center of the DIS jets data near .  

Further, the ( )40 0.1396s GeVα ≈ =  prediction sits at the very center of the ee jets and shapes 

data as well as within the high error bars for most of the other ee data.   
 
As to the pp jets, the predicted curve fits fairly well within this data from about 60GeV to 

400GeV.  Above 400 GeV, the predicted sα  drops more sharply than is indicated by the final 

three data points from the pp jets, but not to a degree that rules out the accuracy of the prediction 
in this domain.  For example, at 400 GeV, the prediction is ( )400 0.0914s GeVα ≈ = .  At this 

very same data point, the pp data ranges from a low of 0.088sα =  to a high of  with a 

mean of about , which puts the prediction below the mean but well within the error 

bars.  Certainly, under all circumstances  will diminish further from here.  So if we 

extrapolate the 0.088sα =  low at 400GeV over to 600GeV, the predicted 

 also appears to be highly feasible.  And indeed, if one were to pass the 

interpolated PDG curve through the mean of the final four pp points before the very last point at 
about ( )900 0.089s GeVα ≈ = , and exclude this final point as an outlier, then the predicted curve 

appears to be supported by the low end of the pp data as well.   

( ) 0.33s mτα =

( )40 0.1396s GeVα ≈ =

0.104sα =
0.096sα =

sα

( )600 0.0857s GeVα ≈ =
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Finally, returning to the low-Q domain at the left end of the curve, it is of interest to 

observe that the predicted plot point ( )1 0.4008s GeVα =  veers the predicted curve sharply to the 

left of the extrapolated PDG curve.  This is required to get over to the asymptote at 
( )6 .0906GeVΛ = Λ = , and it can already been seen by looking very closely at this same region 

of Figure 11, and seen also in Figure 13.  As we start to study data such as the predicted 

( )1 0.4008s GeVα = , we are entering a region where perturbation theory simply no longer 

applies, and one might surmise that the sharper uptick in the PDG extrapolated curve versus the 
predicted curve is something of an artistic flourish to show that this curve will become vertically 
asymptotic.  However, if one hews tightly to the two empirical data points at ( ) 0.3209s mτα =  

and ( )8.25 0.2015s GeVα ≈ =  in the PDG Figure, rather than to the interpolation between those 

points which is not tied to specific empirical data points, then the leftward movement of the 
predicted curve to make its way over to ( )6 .0906GeVΛ = Λ =  actually does gain support from 
these two empirical data points. 

 
So in total, the predicted curve of (18.22) and Figure 14 does appear to be supported and 

is certainly not ruled out, by the weight of empirical data.  If this predicted curve is taken to be a 
correct representation of how nature behaves, then in general the PDG extrapolated / interpolated 
curve is slightly on the lower between 1.77683m GeVτ =  and 91.876ZM GeV=  and slightly 

higher above ZM .  These deviations are systematically interrelated because ZM  is used as a 

defining data point and so becomes something of a “fulcrum” for the rest of the curve.  And, by 
virtue of selecting ( )6 .0906GeVΛ = Λ =  as the other data item to establish the curve, which ( )6Λ  

drags the vertical confinement asymptote well to the left of the ( )fnΛ  asymptotes for 5,4,3fn = , 

see Figure 13, we see that the uptick drawn in the PDG curve is too extreme, and needs to veer 
more to the left.  As to the entire curve, this tells us that the predicted curve has a curvature 
which is slightly gentler than the curve shown in the PDG extrapolation / interpolation.   
 
 All of this gives us the foundation to now reflect on physics at GUT and Planck scale 
energies.  As already discussed at length, Figure 6 based on (17.33) contain a deep potential well 
which stabilizes the syem to which it relates and confines the probabilities within the system so 
that that are all between 0r rΛ≤ ≤ .  The coupled probability density is that of Figure 7, which is 

the constant probability density postulated for study prior to (17.6) and eventually illustrated in 
Figure 7 after normalization and fitting to  1/ rΛΛ = .  That this should be a constant over the 

whole domain 0 r rΛ≤ ≤  does not cause any consternation at least insofar as confinment is 

concerned, because as later shown in Figure 12, the bare probability density 0 0 0r r Pµ = ∂ →  

goes sharply to zero at the same time that sα → ∞  because of the inverse relationship they bear 

in (18.4) based on the constant Λ .  In other words, very near r rΛ→ , the sharp rise in the 

potential well of Figures 4 and 6 drives the bare probability density down to near zero, which is 
exactly what is to be expected from least action principles. 
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 But what about 0 0r r Pµ = ∂  as 0r → ?  Here too Figures 4 and 6 show a sharp rise in the 

potential, which one expects will also drive the bare probability density 0 0 0r r Pµ = ∂ →  as 

0r → .  But this is not so: in Figure 12, 0 0 1r r Pµ = ∂ →  as 0r → , notwithstanding that the 

potential 1E → ∞  as 0r → , as is clearly seen in Figures 4 to 6.  Of course, the fact that 

0 0 1r r Pµ = ∂ →  as 0r →  is rooted in one of the two premises prior to (18.4) namely, that of 

asymptotic freedom; that as 0r → , 0sα →  asymptotically.  In other words, we built in a 

constant bare probability density 0 0 1r r Pµ = ∂ →  and 2
0 0 0r r r Pµ∂ = ∂ →  as 0r →  from the start, 

in order to build in asymptotic freedom.  But then we used the non-linear quantum field 
equations (17.13) amd (17.33) to deduce the potentials associated with the implied asymptotic 
freedom, and discovered that deep into the small-scale zone where / .125R r rΛ= ≈  the potential 

rises sharply which would undoubtedly cause us to have 0 0 0r r Pµ = ∂ → , and not 0 0 1r r Pµ = ∂ →  

as 0r → .  So the non-linear equations of quantum field theory – via the steep rise in the potental 
near / .125R r rΛ= ≈  – are themselves contradicting the premise of asymptotic freedom!   

 
Let’s get right to the point: Figure 6 is telling us that there is asymptotic freedom up to a 

point, and that that point is in the area of about / .125R r rΛ= ≈ .  It is telling us that at around 

/ .125R r rΛ= ≈ , the asymptotic freedom ceases, because the probabilities via the steeply rising 

potential will be barred by least action from taking on any substantial density when 
/ .125R r rΛ= < , and that the probability densities will have approach zero as / .125R r rΛ= 
 .  

As directly as possible: Figures 4 and 6 are telling us to expect new physics in which sα  is not 

asymptotically free, as / .125R r rΛ= < .  The question we now ask is this: at what Q is Figure 6 

predicting that should we expect this new physics?  Previously, we were not equipped to answer 
this question.  But now that we have fitted the QCD curve and found in (18.21) that the fitting 
parameter 1/ 5.6105908f = , we do have the ability to ask about the Q associated with 

/ .125R r rΛ= ≈ .  As we shall now see, .13186R =  corresponds to a GUT energy of 
1510Q GeV=  , and .10798R =  corresponds to the Planck energy 191.22 10Q GeV= × .  So 

Figure 6 in view of the fitting of Figure 14 via 1/ 5.6105908f =  is predicting new physics 
precisely in the GUT-to-Planck energy domain.   This is exactly what we expect to see a priori, 
so let us now examine specifically how this comes about. 
 
 If we compare (18.6) with which we started the current development to (18.22) which is 
fitted to the PDG curve in Figure 14, we see inside the square root term that what orginally 
started as the radial coordinate /R r rΛ=  eventually became ( )( )1/ ln / 1f Q Λ + , i.e., that the 

latter occupies the same position in the square root that was inititially occupied by the former, 
which is also the same posotion in the same square root occupied by /v c in special relativity 
wherein the speed of light becomes a material limitation.  The 1 at the end of (18.22) is beside 
the point here; it is just used to shift the curve to the down so that the vertical and horizontal  
confinement and freedom asymptotes approach the vertical and horzontal axes rather than 
approach one unit away from the axes.  So let us represent this migration of the original R by: 
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( )
1

~
ln / 1

r v
R

r f Q cΛ

= =
Λ +

 (18.23) 

 
Clearly, when /Q Λ =1, we have ( )ln / 0Q Λ = , and so 1R=  and r rΛ= , which is the desired 

correspondence.  And when we have  1/ 5.6105908f =  as use this as in (18.22) we can fit the 
PDG curve fairly within the empirical error bars over the 1 GeV to 1 TeV domain as seen in 
Figure 14.  We include the similarity to /v c as a reminder that r rΛ→  from below, “sub-

radially,” has the same effect in this square root as v c→  from below, “sub-luminally,” in 
special relativity. If we use (18.23) to go backwards from (18.22), then with the vertical shift we 
have: 
 

( )
2

1
1

1
s Q

R
α = −

−
. (18.24) 

 
  It is simple to invert (18.23) and rewrite this as: 
 

1 1 1
exp 1 exp 1

r c
Q

f R f r r
Λ  = Λ − = Λ − ≡    ′   

�
 (18.25) 

 
where in the final term we have defined 1/r Q′ =  in natural 1c= =�  units.  Because Q is clearly 
an observable energy as we see in Figure 14, this means by deBroglie that r ′  is the associated 
observable length scale.  We may also restructure (18.25) via 1rΛΛ =  and defining /R r rΛ′ ′≡ , 

into the form: 
 

1 1 1
exp 1 exp 1

rr
R

r f r f R Q
Λ

Λ

′ Λ   ′ ≡ = − = − =  
  

 (18.26) 

 
So now we have two different radial coordinates, /R r RΛ=  and /R r rΛ′ ′= .  With one more 

inversion, (18.26) becomes: 
 

( ) ( )
1 1 1

~
1 ln 1 ln / 1 ln /

r v
R

r f R f r r f Q cΛ Λ

= = = =
′ ′− − − Λ

, (18.27) 

 
which is a variant of (18.23) via ( ) ( )ln ln 1/x x= − , with some further alternative terms 

including the /v c similarity.   
 
 Now, it will be appreciated that R and /R Q′ = Λ in (18.26) and (18.27) are simply 

different coordinates against which to plot sα  in (18.24).  Simply put, they are related to one 

another by a general coordinate transformation which we can make explicit by deducing from 
(18.26) that:  
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2

1 1 1 1
exp 1

R
dR dR dR

R f R f R

′∂  ′ = = − ∂  
 (18.28) 

 
Similarly, so too is Q just another coordinate which helps us to plot sα .  From (18.25), Q is 

arrived at from R by the general coordinate transformation: 
 

2

1 1 1 1
exp 1

Q
dQ dR dR

R f R f R

∂  = = −Λ − ∂  
. (18.29) 

 
We will not directly use either (18.28) or (18.29); we simply write those here to illustrate the 
point about how these are simply general coordinate transformations. 
 
 Now, let us return to Figure 6 for the confining, stable potential, rescale that Figure so it 
is expressed in term of the coordinate R over the domain 0 1R≤ ≤ , and show this domain 
simultaneously in all four coordinates R, r, Q and r R rΛ′ ′= . 

 
Figure 15: The First-Order Quantum Potential Well, as a function of Q 

 
Figure 15 raises at least two very intriguing points, one about GUTs and the Planck scale, the 
other about measurements in spacetime on the sub-nuclear scale.   
 

As to the first point about GUT and Planxck scales, because Q bears an exponential 
relationship to 1/ R, as / 2.178R r r FΛ= =  diminishes from 1 down toward 0, at a certain point, 

Q will rise very rapidly.  From right to left, over the domain of approximately 1 0.703R≥ ≥  
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things start slowly, and all we do is get from .0906Q GeV= Λ =  to 1Q GeV=  which starts the 
left side of Figure 9.  The entire domain for the PDG Figure 9 from 1GeV to 1 TeV is covered 
over 0.703 0.376R≥ ≥ .  At the coordinate / .5R r rΛ= = , which is 1.098r F= , the 

corresponding 24.76Q GeV= .  But moving further to the left, the exponential kicks in and 
things become very interesting.  The minimum of the potential is found to be at 0.202R= , 
which is the coordinate 0.440r F= .  But the probe energy for this is now a whopping 

83.67 10Q GeV= × , which is equivalent to 105.37 10r F−′ = × .  This is over 510 TeV  and so is 
way beyond any foreseeable direct experimental observation.  But, because this point is the 
minimum, by least action, one would expect that the bare probability density reaches its 
maximum at this point, and given that the overall context for this analysis is a constant coupled 
probability density ( )0r hP∂ = Λ , see Figure 8, this would mean that sα  reaches its asymptotic 

minimum.  But now things really get interesting, because the non-linear quantum field theory 
which gives us Figure 15 has somehow managed to tell us that above 83.67 10Q GeV= ×  the 
asymptotic freedom ends, and the running coupling slowly starts to rise again as the bare 
probability diminshes due to a now-rising potential which by least action lessens the probability 
for being in a higher-potential state.  A GUT unifying electroweak and strong interactions is 
expected to emerge at about 1510Q GeV=  which corresponds to 0.132R= , which is 0.28r F=  

but 161.97 10r F−′ = × .  And the potential begins a substantial rise in the region of 0.108R =  
which happens to map to the Planck energy 191.22 10Q GeV= × , which has the coordinates 

.236r F=  and 201.62 10r F−′ = × , namely, the Planck length.  So it is a point of deep fascination 
that Figure 15 together with the fitting 1/ 5.6105908f =  motivated by empirical strong 
interaction data is actually telling us via the rising potential to expect substantially new physics 
to occur in the region of the Planck scale.  
 
 This also tells us that our supposition that asymptotic freedom continues right down to 

0R=  is an incorrect supposition that needs to be revisited, and that that freedom bottoms out in 
the region of 83.67 10Q GeV= ×  which is still way beyond foreseeable detection.  As to how one 
corrects the asymptotic freedom supposition to accord with the clear rise in potential at the 
Planck scale, Figure 12 provides perhaps the best visual example for how to approach this.  

Figure 12 is based on the +x, +y quadrant of the sixth root of a circle 21y x= − .  We 
deliberately built this such that / 0y x∂ ∂ =  at 0x =  to create asymptotic freedom at 0x =  and 
such that /y x∂ ∂ = −∞  at 1x =  to create confinment at 1x = , see (18.5) et seq.  Now, if we want 
the asymptotic freedom to bottom out around the same place that the potential reaches its 
minimum at 0.202R=  i.e., 83.67 10Q GeV= ×  and for sα  to then start to rise and soon 

thereafter meet up with the other three interaction couplings and become asymptotically infinite 
at 0R=  to ensure that the bare probability becomes zero at 0R=  because the 0R=  potential 
in Figure 15 is infinite, we will need a function for which /y x∂ ∂ = +∞  at 0R= .  So in sum, 
whatever function we choose as our mathematical “seed” for the bare probability density, will 
really need to satisfy three constraints: /y x∂ ∂ = +∞  at 0x = ;  / 0y x∂ ∂ =  at 0.202x ≈ , and 

/y x∂ ∂ = −∞  at 1x = .   We leave this to future study, but note that a simple shifting of a circle to 

the right, e.g., using a function such as ( )2
1 1y x= − −  may be too simplistic, because this hits 
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/ 0y x∂ ∂ =  at .5x = , and the potential in Figure 15 appears to provide clear marching orders to 
maximize the probability density near 0.202x ≈ , not .5x = .  Given that a circle is a special case 
of an ellipse, it would be possible to rotate an ellipse such that /y x∂ ∂ = +∞  at 0x =  and 

/ 0y x∂ ∂ =  at 0.202x ≈  and /y x∂ ∂ = −∞  at 1x = , but it is not immediately apparent how one 
would define the probability densities, because the /y x∂ ∂ = +∞  and /y x∂ ∂ = −∞  points then 
have different heights along the y=axis.  Again, as noted, we simply point this out, but leave this 
melding the sα  curve at observable energies with the running coupling curves near the Planck 

scale for the future. 
 
 The one final observation abou the GUT and Planck scales we will make is this:  it was 
noted earlier that because ZM  is used as a defining data point in Figure 14, it becomes 

something of a “fulcrum” for the rest of the curve.  Although we have pointed out how the 
predicted curve of Figure 14 does fit within experimental error bars for much of the data over the 
1 GeV to 1 TeV domain, it still must be noted that the predicted curve in Figure 14 “pivots” 
about the ZM  point such that it is slightly higher than the statistical mean of all the data as 

shown in the PDG curve for Zm Q Mτ < < , and slightly lower for ZQ M> .  If the asymptotic 

freedom does indeed bottom out near 83.67 10Q GeV= ×  – and indeed we know that it will and 
must bottom out at some energy before we get to the Planck scale – then these GUT type effects 
will already make their presence slightly known at lower energies by slightly raising ( )s Qα  in 

the ZQ M>  domain.  So if one were to take Figure 14 and posit that there is some nominal 

increase in the predicted ( )s Qα  in the ZQ M>  domain once these GUT effects are accounted 

for, then along with this slight upward shift for ZQ M> , the fulcrum at ZQ M=  coupled with 

the fixed asymptote at ( )6 .0906GeVΛ = Λ =  will cause a slight downward shift in the predicted 

( )s Qα  curve in the Zm Q Mτ < < , and really in the entire ZQ MΛ < < , domain.  So, to the 

extent that the predicted curve (18.22) graphically illustrated in Figure 14 is found to slightly 
deviate from empirical data as represented in the PDG curve, it appears highly likely that this 
slight deviation may be fully accounted for by the fact that in the predicted curve we are treating 
asymptotic freedom as if it goes on forever right to 0r =  and Q = ∞ , when in fact the more 
realistic physical supposition is that asymptotic freedom goes on only up to a certain, definite Q 
which is less than the Planck energy and – based on Figure 15 – possibly less than the GUT 
energy.  So, in short, any true deviation between the two curves in Figure 14 is likely the result 
of not taking into account Planck-scale and / or GUT effects upon asymptotic freedom when 
computing the predicted curve of Figure 14. 
 
 The second point of intrigue raised by Figure 15 has to do with subnuclear measurement.  
This point is raised simply by noting, for example, that at 1510Q GeV= , which corresponds to 

0.132R= , the first radial coordinate is 0.28r F=  but the transformed radial coordinate via 
(18.26) is 161.97 10r F−′ = × .  Or, for example, by noting that at the Planck energy 

191.22 10Q GeV= × , the first radial coordinate .236r F=  while the transformed radial 

coordinate 201.62 10r F−′ = × , namely, the Planck length.  So the theory has given us two 
coordinates which measure a length.  One is the original radial coordinate r  which came out of 
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the path intergation and its related /R r rΛ= .  The second is the transformed radial coordinate r ′  

defined in (18.26) in relation to r via the parameters 90.6MeVΛ =  and 1/ 5.6105908f =  which 
were used to fit the circle-based QCD curve to the observed QCD data, and which relates to the 
first radial coordinate system of r via the general coordinate transformation (18.28).   
 

Now, we have known for almost a century, since the advent of General Relativity, that a 
coordinate system can be chosen completely arbitrarily, and that the laws of nature mst be 
invariant with respect to any and every choice of coodinates that might be made.  Sometimes a 
coordinate system is chosen because it facilitates a mathematical calculation such as taking an 
integral, for example, the coordinate system 2 2 cosx x uθ θ′ ′′= → = =  which enabled us to do 
the integral in (14.17).  But eventually, we need to find and choose a coordinate system which 
matches up with the clocks and measuring rods and scales that we use to measure what we are 
observing.  And when we observe sub-nuclear interactions, the measurable observable is the 
energy scale /Q c r′= �  and it associated length r ′ .  So it is the transformations (18.28) and 
(18.29) which get us from a length coordinate r which we do not measure directly, to a length 
coordinate r ′  which we do measure directly.  How do we know that we measure r ′  and not r?  
Because the empirical data in Figure 14 tells us so! 

 
A priori, there is no reason why r should not provide the proper measuring rod to 

measure lengths in the sub nuclear scale.  And in fact, r would be a perfectly good representation 
of a directly measurable length if the strong coupling ( )s Qα  ran linearly with Q rather than 

linearly with ln Q .  But we know, for example, that 161.97 10r F−′ = ×  which corresponds to 
1510Q GeV=  is a much better radial measure of the physics at the coordinate 0.132R=  than is  

0.28r F= .  And in the directly observable domain, we know that that .197r F′ =   is a better 
radial measure of the physics we observe at 1GeV than is 1.52r F= ; just as 41.97 10r F−′ = ×  is 
a better measure of the observed physics at 1TeV  than is .819r F= . 

 
  But look at what we have just said: the coordinate r, which is certainly a radial 

coordinate that corresponds – or so we thought – to a meaureable physical length, does not work 
as a direct observable measuring rod on the sub-nuclear scale.  Rather, if we want a coordinate 
that maps to what we measure on the sub-nuclear scale, the empirical data tells us that we must 
choose r ′ .  Again: both r and r ′   are perfectly acceptable and valid coordinate systems.  But 
only one of them, r ′ , is directly equal to a radial length which we observe when we do empirical 
experiments on the sub-nuclear scale.  So we must inquire: what has happened to turn r from a 
perfectly good coordinate which corresponds directly to observable lenghts, into a perfectly good 
coordinate which no longer corresponds to observable lengths and must be transformed into r ′  
to yield an observable length measure?  
 
 What has happened is that in measuring sub nuclear physics, we have crossed an 
asymptotic barrier at 90.6MeVΛ =  and 2.178r FΛ = .  When we take “super-radial” 

measurements at 2.178r r FΛ> = , the original radial coordinate r is a perfectly good measure of 

observable length.  But when we take “sub-radial” measurements at 2.178r r FΛ< = , the physics 

itself – of crossing through the 90.6MeVΛ =  barrier with our measuring instrumentation – 
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requires us to now use r ′  to properly represent the measurements we are taking.  And what 
happens precisely at 2.178r r FΛ= = ?   Studying (18.26), we see that at r rΛ= , we also have  

r rΛ′ = .  So right at rΛ  these two coordinates are identical, r r rΛ′= = .  But as soon as we move 

away from rΛ  in either direction, these two coordinate systems diverge exponentially / 

logarithmically from one another, and the only other place where they meet up again is at 
0r r ′= = .  

 
 Let us try to understand this seemingly-required coordinate transformation from the 
standpoint of a “super-radial” observer – an observer such as ouselves situated in the 

2.178r r FΛ> =  world – taking measurements of “sub-radial” physics in the 2.178r r FΛ< =  

behind the physical asymptotic confinment barrier at 90.6MeVΛ =  a.k.a. 2.178r FΛ = .  For that 

observer, the radial coordinate which correspondd to what is measured is r for 2.178r r FΛ> = , 

r ′  for 2.178r r FΛ< = , and either coordinate at r r rΛ′= = . This is laid out in Figure 16 below:  

                             
Figure 16: Variation of Observed /r c Q= �  in relation to / 2.178r c FΛ = Λ =�  for a 

“Super-Radial” Observer Situated at 2.178r r FΛ> =  
 
So what has transpired at / 2.178r c FΛ = Λ =�  is that nature herself seems to have forced a 

change of the coordinate system which corresponds to the observed radial length observedr , from 

the original r to the r ′ of (18.26).    Of course, r is still a perfectly good coordinate; it is simply 
not a coordinate which any longer corresponds to the radial lengths which are observed via the 
relation /r c Q′ = �  based on Figure 14.  So the question which now occurs is this:  is any other 
physical precedent for this sort of situation in which nature herself, as the results of crossing 
some physically-meaningful, observable barrier, seems to force a change in the coordinate 
system needed to describe what is observed?   
 
 Actually, the answer appears to be yes: refraction of light at a surface between two unlike 
media is very good analogy to what is seen in Figure 16.  If we view the confinement asymptote 
at / 2.178r c FΛ = Λ =�  as analogous to the top surface of a body of water over which the water 

surface interfaces with the air, then a light ray at a first non-normal angle 1θ  will, upon striking 
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the surface, be altered to so as to refract to a second angle 2 1θ θ≠ .   The incoming r for the light 

rays will become physically altered to a different r ′  just as in Figure 16 above.  Although one 
usually describes this by using one set of coordinates and simply changing the angle in those 
coordinates at the interface, one could alternatively describe refrection by leaving the angle 
unchanged and instead simply rescaling the coordinates at the interface.  The only difference is 
that for ordinary refraction, assuming a constant medium, the angle does not keep varying as one 
goes deeper into the medium but rather stays constant, whereas in Figure 16, via (18.26), the r ′  
rapidly becomes exponentially smaller.  As with refraction, it is possible in Figure 16 to talk 
about what “would have been” the line for observedr  if the rΛ  asymptote had not interceded, just as 

one can talk about the angle at which light would have travelled had it not struck the water and 
been refracted.  That “would have been” line in Figure 16 is the “ghost” r line.  And the ghost r ′  
curve shows what the observed radius would have been had the rΛ  asymptote interceded even 

further out than it did.  It should also be noted that although r ′  in Figure 16 has a sharp upward 
slope at r rΛ= , this trend only continues for a limited range and domain.  If one were to look at 

this curve for r rΛ� , it would be seen that this curve veers sharply to the right right around 

/ 200r rΛ′ ≈ , the then approachs a horizontal asymptote which is fixed by the fitting constant 

1/ 5.6105908f =  at ( )exp 1/ 273.3054407f = . 

 
 If the viewpoint of a “super-radial” observer is akin to that of a person situated in the air 
and observing light refract once it strikes the water, then one can equally adopt the viewpoint of 
an observer who is underwater and viewing refraction from that perspective.  The equation 
which describes this is the inverted relationship (18.27), and this is graphed in Figure 17 below. 

                                
Figure 17: Variation of Observed /r c Q= �  in relation to / 2.178r c FΛ = Λ =�  for a “Sub-

Radial” Observer Situated at 2.178r r FΛ< =  
 

Here, we might imagine that the “observer” is situated with a quark confined inside the 
asymptote at 2.178r r FΛ< = , trying to design up a coordinate system which not only describes 

what is seen inside the nuclide, but also, maps over to what is seen to be beyond the confinement 
horizon.  Again, while any coordinate system one might choose to use to describe this physics is 
equally valid, this does not mean that every coordinate system has a direct linear relationship to 
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something observable. If the radial length which someone measures with instrumentation is 

observedr , then the only radial coordinate coordinater  which matches up with what is observed is one 

for which coordinate observed/ 1r r∂ ∂ = , or, without an integration constant, coordinate observedr r= .  In Figure 

16 for the super-radial observer, coordinate observedr r=  is the 45 degree line toward the upper right 

where r rΛ> .  In Figure 17 coordinate observedr r=  is the 45 degree line in the middle of the Figure 

where r rΛ< .  Note that Figure 17 is just Figure 16 flipped around the line at 45 degrees.  It 

should also be notedthat the r curve, although headed to the right at r rΛ=  will start to veer 

sharply upward, and will then approach a vertical asymptote fixed by the fitting constant 
1/ 5.6105908f =  at ( )exp 1/ 273.3054407f = . 

 
 All of this suggests that it may be fruitful to view the confinement asymptote of a nuclide 
at 2.178r r FΛ= =  as a physical boundary at which a medium change occurs, just as it does 

when light strikes water or glass or some other diffractive medium.  Although one is permitted to 
choose any coordinate system one wishes, if one wishes to describe the effects of this medium 
change using coordinates for which coordinate observed/ 1r r∂ ∂ = , one is required at the interface to 

switch between the r and r ′  coordinates via the relationships (18.26) and (18.27), which may be 
couched as the general coordinate transformations (18.28) and (18.29).  So the observable 
physics of a nucleon at the physical barrier 2.178r r FΛ= =  forces a general coordinate 

transformation upon any observer who wishes to emply coordinates for which 

coordinate observed/ 1r r∂ ∂ =  in that observer’s frame of observation.  Again: any choice of coordinates 

is just as valid as any other choice.  But, if we ourselves decide that we prefer a coordinate for 
which coordinate observed/ 1r r∂ ∂ = , for all observedr  whether large or small, then nature herself – right at 

the physical barrier at 2.178r r FΛ= =  – will force us to make the transformations (18.26) 

through (18.29) illustrated by Figures 16 and 17.    
 
 Referrig back to (18.22) and Figure 14, one final point should also be made before 
concluding this section:  we have observed, for example in (18.25), and after (18.6) and (18.19), 

that /R r rΛ=  within the radical 21/ 1 R−  is exactly analogous to /v c within the radical 

( )2
1/ 1 /v cγ = −  which is central to special relativity, and that in each circumstance, there is an 

asymptotic limit being set which is associated with an observed physical limitation.  In the case 

of 21/ 1 R− , one has a confining potential and quarks are not allowed to cross a radial 

boundary at rΛ .  In the case of ( )2
1/ 1 /v cγ = −  one has a confining limitation which bars 

material bodies from ever reaching or exceeding the speed of light.  In this analogy, the super-
radial observer of Figure 16 may be analogized to a super-luminal observer and the sub-radial-
observer of Figure 17 may be analogized to a sub-luminal observer, while (18.26) through 
(18.29) are analogized to coordinate transformations which relate between what is observed by a 
superluminal observer and what is observed by a sub-luminal observer.   
 

Now, to be very clear, this is only an analogy.  And a radial coordinate r has a different 
physical meaning than a velocity /v r t= ∂ ∂  which measures a change in the radial coordinate r 
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in relation to a change in the time coordinate t.   And even if this analogy has some deeper 
physics behind it, there is no a priori reason to conclude that (18.26) through (18.29) would in 
fact be the form of the coordinate transformations which relate superluminal to subluminal 
observations, that 1/ 5.6105908f =  would be the empirical fitting constant for super/sub 
luminal transformations, and that Figures 16 and 17 would be the correct visual pictures for this.  
Nevertheless, with all of these caveats, it is a matter of intrigue that the speed of light c and the 
QCD cutoff 1/ rΛΛ =  are each understood to be material, physical limitations which exist in 

nature, and that they each enter into critical physics equations in the same way: 21/ 1 R−  for 

the mathematical root of the running QCD curve fitted in Figure 14, and ( )2
1/ 1 /v cγ = −  

through special relativity.  This at least raises the prospect of studying the material barrier posed 
by the speed of light and long-thought to bar superluminous material transport, as a sort of 
medium change analogous to the nuclear confinement surface or to a refraction surface between 
varying media.  Then, we may embark to enquire about the transformation laws which nature has 
so far hidden from human comprehension, as between the subluminal and the superluminal 
universe. 
 
19. Gaussian Probability Densities in Non-Linear Quantum Field Theory 
 
 The next example of a quantum probability density we shall consider is a Gaussian 
probability distribution.  But in preparation for that, this is a good time to take stock of what the 
examples reviewed thus far teach about the nature of probability and probability densities in non-
linear quantum field theory. 
 

In classical field theory, the “field” is a coupled gauge field gGσ  which has a mass 

dimension of +1.  A field strength tensor defined according to [ ] 2 ,F G ig G Gµν µ ν µ ν = ∂ −   , see 

(1.5), may then be thought of as the spacetime “field density” of this coupled classical field.  
This has a mass dimension of +2.  And finally, the “source” of this field is a current density 

,J F i G F D Fµ σν σν σν
σ σ σ − = ∂ − =  , see (5.15) et seq.  This has a mass dimension of +3.  

Quantum field theory has an identical structure, but with different mass dimensionalities.  In 
quantum field theory, the “field” is a dimensionless coupled “probability field” 0hP .  When this 

field is time-independent and isotropic and varies linearly with radial distance and stops its 
ascent at a given rΛ , its character is illustrated in Figure 8.  The quantum “field density” is the 

spacetime gradient of the probability field ( )0hPµ∂  and it has a mass dimension +1.  In the 

situation where the quantum probability field is that of Figure 8, the radial field density is that of 
Figure 7.  And, in quantum field theory, the “source” of the quantum field is ( )W J  obtained 

from path integration.  This source has dimensions of action, which is energy×time.  In 1c= =�  
units, this action source is also dimensionless.  But if we remove the time dependency as we did 
in sections 14 and 15, then the quantum field source is a potential energy which has a mass 
dimension of +1.  For the first recursive order of a non-linear quantum field theory, this potential 
is 1E  in (15.42).  And for the linear quantum probability field of Figure 8 and the constant field 

density of Figure 7, the magnitude 1E  of that first-recursive-order potential is illustrated in 
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Figure 6 and later, Figure 15.  Further, it is because the source of Figure 5 has a definitive peak 
in the potential at peak 8.245R ≅ , we identify this with the six quark QCD cutoff length at 

2.178r FΛ =  and therefore concentrate all of the probability density of Figure 7 inside the 

0 r rΛ≤ ≤  range, as was all developed in the last section.  So what does all of this teach us about 

non-linear quantum field theory in general, and even more so, about the nature of “probability” 
in physics?    
 
 Let us first talk about probability, and dimensionality in probabilistic systems.  While in 
colloquial language one often hears talk that the “probability” of some “event” or “outcome” is 
P, where 0 1P≤ ≤ , it is important when dealing with probabilistic / stochastic physics to keep 
firmly in mind that such talk is really referring to a probability density.  The probability itself is 
then the cumulative integral of all of the probability densities, and this integral sums over the 
domain of the density to the dimensionless number 1.  For a discrete probability system – let us 
use the specific example of rolling a pair of dice with a probabilistic result from 2 through 12 – 
the “dimensionality” of the probability density is measured in an “event” or “outcome” space.  
One might say by analogy to physics that the probability density has an “outcome 
dimensionality” of +1.  For the pair of dice, the outcomes are the discrete, closed event group 
wherein one rolls a number from the closed set of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.  As is well 
known, the probability density for each of these successive outcomes in the outcome space of 
outcome dimensionality +1 is 1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36 and 1/36.  
And of course, when summed over the entire event space, the cumulative distribution all sums to 
a probability of 1.  This rather simple, but very illustrative example of the discrete “probability 
field” for rolling a pair of dice, is shown in Figure 18 below. 

                                             
Figure 18: The Discrete Cumulative Probability Field for Rolling a Pair of Dice – A Simple 

Example  
 

In non-linear quantum field theory, the probability field, such as the field shown in Figure 
8, is the exact analog of Figure 8, because it too is a cumulative distribution.  The only difference 
is that the physical field in Figure 8 continuous and linear, while the physical field of Figure 18 
is discrete and so contains step functions.   In Figure 18 the x-axis has the dimensionality of an 
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“outcome”, while in Figure 8 the x-axis has dimensionality of a radial position in physical space.  
Yet, this radial position space is really just another type outcome space, with the outcome simply 
measured by a continuously-variable spatial position rather than the discrete sum of the two die.  
Specifically, if we take the gradient of Figure 18 in the outcome space, we obtain the familiar 
1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36 and 1/36 outcome density curve with the 
peak at 1/6=6/36 for the outcome “7,” while if we take the radial gradient ( )0r hP∂ of Figure 8 we 

arrive at Figure 7 which says that the “outcome” of a field quantum being detected at 1r F=   has 
the same probability density as the “outcome” wherein the field quantum is detected at 2r F= , 
or indeed, as the “outcome” wherein the quantum field is detected at any other radial position 
over the outcome continuum measured by 0 r rΛ≤ ≤ . 

 
What is most important to understand based on Figure 18 in comparison to Figure 8 is 

that the probability field in quantum field theory is not an outcome density field, but is the 
cumulative integral over outcome densities.  Again, the quantum probability field is a 
dimensionless cumulative distribution.  As the integral over outcomes, its value at the highest 
part of the domain along the outcome axis must always be equal to unity.  At the outcome of a 12 
roll of the dice, the probability field is equal to 1.  At the outcome of r rΛ=  in Figure 8 for a 

constant density physical probability field, the probability field is 1.   
 
It is important to be cognizant of this, because nature of all cumulative probability fields 

is such that they must always starts at zero at the minimum extremum of the domain and become 
equal to 1 at the highest extremum of the domain, and because this vastly narrows the sorts of 
mathematical functions which are suitable to be used as physical probability fields.  For a 
continuously-varying probability density, the probability field must asymptotically approach 1 at 
the upper domain extremum.  This means that 0hP  as a function of a dimensionless R must be 

some type of sigmoid function such as the logisitic function ( ) ( )( )0

1
exp1 RhP R

−
= −+ , the 

Gompertz function ( ) ( )( )0 exp exphP r R= − − , the arc tangent ( ) ( )( )0 2 arctan /hP R R π= , the 

hyperbolic tangent ( ) ( )0 tanhP R Rh = , and the error function ( ) ( )0 erf RhP R =  which is of 

particular interest as the integral of a Gaussian normal distribution.  See, e.g., [29].  Indeed, it 
will be recognized that the probability field in Figure 18 is itself also a sigmoid function, albeit a 
discrete sigmoid.  Alternatively, for a probability density which has a discontinuous variation, 
i.e., a cutoff in the density such as the one shown in Figure 7, 0hP  will then have a similar 

character to ( )0 /hP r r r rΛ= = Λ  in Figure 8.  Here, there is a broader set of possible mathematics 

functions which one may choose from, with the caveat that the function 0hP  must be a 

probability field, and so must start at zero on the leftmost-extremum of its domain and end up at 
one on the rightmost portion of its domain.  That exhausts the mathematical options: there are 
only two types of mathematical functions which are suitable as quantum probability fields: 
sigmoid functions for a continuous probability density, and other functions with cutoffs designed 
to range from zero to 1 between the low and high extrema of their domains for a density with a 
discontinuous first derivative such as the one in Figure 7. 
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We have seen at first recursive order how an isotropic probability density which is 
constant over the radius 0 r rΛ≤ ≤  as shown in Figure 7, using the abelian equation (17.5), will 

yield a potential 1E  in (17.32) the magnitude of which is given in (17.33) and graphed in Figure 

6.  By way of contrast, let us again start with (17.5), but now, let us consider the illustrative 
probability field ( ) ( )0 erf RhP R = , which means that the probability density is a Gaussian 

normal distribution.  Here, because we are starting with a sigmoid probability field which 
asymptotically approaches at 1 at the extremal maximum of infinity, we may assure right at the 
outset that the probability will be normalized to 1. 

 
So, we start with ( ) ( )0 erf RhP R =  and its associated Gaussian.  Mathematically, we will 

base the probability density on the function ( ) ( ) ( )2 21/ exp /y x xσ π σ= − , for which 

( ) ( )2 21/ exp / 1ydx x dxσ π σ
∞ ∞

−∞ −∞
= − =∫ ∫ , and for which σ  is the standard deviation.  But we 

will be operating in spherical coordinates and will wish to associate x with the radial coordinate 
0r ≥ .  Because these Gaussians are symmetric about x=0, we can double the function for y and 

integrate only over the positive domain.  Doing so, we instead use 

( ) ( ) ( )2 22 / exp /y r rσ π σ= − , for which ( ) ( )2 2

0 0
2 / exp / 1ydr r dxσ π σ

∞ ∞
= − =∫ ∫ .  The 

standard deviation is still σ  and the probability density still integrates to 1, but we have 
discarded the 0r <  portion of the domain because of the coordinate choice.   In Figure 7 we 
knew to set r rΛ=  as the cutoff for the probability density, because in Figure 5 we had already 

found that there was a natural peak in potential at peak 8.245R ≅  which we then identified with rΛ

.  So knowing what we now know, let us use rΛ , not as a cutoff, but as the standard deviation for 

this Gaussian.  So with the educated choice rσ Λ= , we now postulate an isotropic probability 

density which has its peak at r=0 and a radial behavior over the domain 0r ≥  given by: 
 

( )
2

0 2

2
expr

r
hP

rr π ΛΛ

 
∂ ≡ − 

 
. (19.1) 

 
Then, we simply calculate the other physics that is associated with this, especially, the quantum 
potential ( )1E r  from (17.5). 

 
 As to the integral of (19.1), we know as just pointed out that: 
 

( )
2

0 02 00 0

2
exp 1r

r
hP dr dr hP

rr π
∞ ∞ ∞

ΛΛ

 
∂ = − = = 

 
∫ ∫ . (19.2) 

 
So the cumulative dimensionless coupled probability field as a function of radial coordinate r is: 
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( )
2

0 20

2
=erf exp

r r
hP r dr

rr π ΛΛ

 ′ ′= − 
 

∫ . (19.3) 

 

It is also worth keeping in mind that the Gaussian ( ) ( ) ( )2 21/ exp /y x xσ π σ= −  will 

become the Dirac delta function ( ) ( ) ( )2 2

0
lim 1/ exp /x xσ σ

δ σ π σ
→

= − , that is, in the limit where 

the standard deviation approaches zero.  Once again, because this Gaussian is centered about x=0 
and we will wish to use this in spherical coordinates for which 0r ≥  we can likewise define a 

“half-delta” by doubling everything whereby ( ) ( ) ( )2 2

0
lim 2 / exp /r rσ σ

δ σ π σ
→

= − , with the 

recognition that 0r ≥  cuts off half the area under the curve.  Thus, ( )
0

1r drσδ
∞

=∫  as is 

required.  Consequently, we will want to have available based on (19.1), the half-delta function: 
 

( ) ( )
2

0 20 0

2
lim lim expr rr r

r
r hP

rr
δ

πΛ
Λ Λ→ →

ΛΛ

 
= ∂ = − 

 
. (19.4) 

 
 With these preliminaries, we simply use (19.1) in (17.5) to specify the one-recursion 
potential: 
 

2 2 2

2 2 21

1 1 2 1
exp 2exp cosh

4 3

2 1 3
exp exp exp

9

r r r r r r

r r
E i i

r r r r rπ π ππ Λ Λ Λ Λ Λ Λ

       
 = − +

     
− − −     
     

+ ⋅                    

.(19.5) 

 
It is then simpler to use the dimensionless /R r rΛ≡  and 1rΛΛ =  to rewrite this as: 

 

( ) ( ) ( )2 2 21 21 2 1
4 exp 2exp cosh

3 9

1 3
exp exp expR R R R

E
Ri

R
Ri

π π π
π − − −

      
 = − + + ⋅        Λ        

.(19.6) 

 
Similarly now we graph the magnitude of this energy.  First, we write the above as: 
 

( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2

1

2 2

1

2

2 1 3
exp exp exp

2 1 3
e

2 1 2
cos cos cosh

3 9 91
4

1 2
si xp exn sin cos xphp

9
e

9

R R R R R R
E

R
i R R R R R R

R a bi

π
π π π

π π π
−

     + + ⋅            
= −  Λ       + + ⋅             

− − −

− − −
 

= − +

, (19.7) 

where: 
 



Jay R. Yablon 

181 
 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 1 2
cos cos cosh

3 9 9

1 2
sin sin cos

2 1 3
exp exp exp

2 1 3
exp exp exph

9 9

a

b

R R R R R R

R R R R R R

π π π

π π π

    ≡ + + ⋅           
− −



    ≡ + ⋅           
− −



−

−

. (19.8) 

 
The square magnitude, contrast (17.12), is then: 
 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( )
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  +
  +
 +  

.(19.9) 

 
Using this in (19.7) then yields: 
 

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( )

2 232

2 22 1

237 4 4
81 27 81

1 1 8 4
27 81

4
81

23

2 22 1

cos cosh

4 cos

exp exp

exp excos
cosh

sin si

p
exp

exp expn

E
R

R R R R

R R R R
R R

R R R R

π π

π π

π

π π

π −

+ +

  

− −

− −= +
  Λ +
 + 

−


−
−

∓ , (19.10) 

 
We then graph (19.10) using the negative root, which is shown below in Figure 19: 
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Figure 19: Graph of Equation (19.10) Revealing Apparent -1/R Potential for Gaussian 

Probability Density  
 
 We see immediately that this looks just like an ordinary -1/R potential for an abelian 
gauge theory such as Quantum Electrodynamics?  Might it be just that?  The key term driving 
(19.10) ( )2expR R− .  It is clear that in all regions where ( )2exp 0R R− → , equations (19.6) and 

(19.10) will both reduce to 1 / 1/ 4E RπΛ = −  a.k.a. 1 1/ 4E rπ= −  which is the Coulomb 

potential.  And ( )2exp 0R R− →  for both 0R→  and for / 3R r rΛ= >≈ .   So because rσ Λ=  is 

the standard deviation, this means 0R→  and 3r σ>≈ .  Indeed, it is helpful to look at a graph 
for ( )2expR R−  which is shown below and illustrates all of this: 

 
Figure 20: Graph of ( )2expR R−  which Drives (19.6) and (19.10) and Figure 19 

 

The peak in this function occurs at 1/ 2R=  a.k.a. / 2r rΛ= . 
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 So if Figure 19 and thus equation (19.10) yields the potential 1 1/ 4E rπ= −  except for in 

the regions where ( )2expR R− in Figure 20 is further from zero, the next question is this: by 

what order of magnitude does ( )2expR R−  when it is in its non-zero range cause the Figure 19, 

equation (19.7) potential to deviate from 1 1/ 4E rπ= − ?  To answer this, we may use (19.10) to 

define a deviation parameter 1 14 / 1 4 1R E r Eπ π∆ ≡ − Λ − = − − , so that: 

 

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( )

2 232

2 2

237 4 4
81 27 81

8 4
27 81

4
81

2 1

23

2 22 1

cos cosh

cos c

exp exp

exp exp
exp

exp exp

os 1
cosh

sin sin

R R R R

R R R R
R R

R R R R

π π

π π

π

π π

+ +



− −

− −
−

−

 ∆ = + −
  +
 + − 

. (19.11) 

 
We will have 1 1∆ + →  when ( )2exp 0R R− → , so ∆  measures the difference between the entire 

parenthetical expression above and 1, i.e., the fractional deviation of (19.10) from a 1/r potential.  
A graph of ∆  shows that: 

 
Figure 21: Fractional Deviation of (19.10) and Figure 19 from a -1/R Potential 

  

Just like ( )2expR R−  in Figure 20, this deviation peaks at 1/ 2R=  a.k.a. / 2r rΛ= .  So 

within about 1 standard deviation rσ Λ=  of the peak at / 1/ 2R r rΛ= = , Figure 19 and thus 

(19.10) deviates from the Coulomb potential 1 1/ 4E rπ= −  by no more than .015 out of 1, or by 

less than two percent.  Over the limited domain where this deviation from a -1/r potential occurs, 
the potential slightly decreases, that is, the potential in Figure 19 is slightly lower than it would 
be if it was a strict -1/r potential.   
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   All of this brings us full circle back to, and is very informative about, our examination 
in section 16 of constant probability, zero probability density fields in non-linear quantum field 

theory.  We saw in (16.1) that for 0 constanthP = , ( )22
1 1 / 4E N rπ= − − , which becomes 

1 1/ 4E rπ= −  when we go over to abelian gauge theory as in (14.31).  At the time of finding 

(16.1), we had not yet established that 0 constanthP =  is a cumulative probability field, as we 

subsequently did see in Figure 8 and in the discrete analogy of Figure 18.  So this means not only 
that 0 constanthP = , but that 0 1hP =  at r → ∞ .  And because we are using radial coordinates for 

which 0r ≥ , we must also have 0 0hP =  at 0r =  (at which ( )1 1/ 4 0E π= − = −∞  becomes 

singular also, as has long been known), because a cumulative probability starts at zero at the 
minimum domain extremum and ends up at unity at the maximum domain extremum.  So, how 
do we start with 0 0hP =  at 0r =  and end up with 0 1hP =  at r → ∞  all while maintaining 

0 constanthP = over the entire domain  0r < ≤ ∞ ?  There is only one way to do this: the coupled 

probability density ( )r hP∂  for a pure 1 1/ 4E rπ= −  potential must be a Dirac “half-delta” 

precisely at 0r = , so that 0hP  can instantaneously step up from 0 to 1 right at 0r = . 

 
 This is why we pointed out at (19.4) that the Gaussian probability (19.1) becomes a half-
delta ( ) ( )0

0
limr r
r

r hPδ
Λ

Λ →
= ∂  in the limit where we take 0rσ Λ= → , or 1/rΛΛ = → ∞ .  The only 

way in the context of non-linear quantum field theory to have a potential which is precisely 

1 1/ 4E rπ= −  over the entire non-zero domain 0r < ≤ ∞  without any deviation, is to have a 

probability density: 
 

( ) ( )0r rhP rδ
Λ

∂ = . (19.12) 

 
So ( )0 0r hP∂ =  for 0r > , but not at 0r = .  Then, we will have a coupled, dimensionless  

probability field: 
 

0 00 at 0;      1 constant for 0hP r hP r= = = = > . (19.13) 

    
And then, via (16.1) and (14.31), we will have a potential: 
 

( )
abelian22

1

1 1
1  for 0

4 4
E N r

r rπ π
= − − ⇒ − >  (19.14) 

 
This means the potential is undefined at 0r = , not because ( )1 1/ 4 0E π= − = −∞  at 0r = , but 

because the probability density ( ) ( )0r rhP rδ
Λ

∂ =  has an infinite spike of total area 1 at 0r =  and 

so the relationship (19.14) does not apply at 0r =  because ( )0 0r hP∂ ≠  at 0r = .  In this sense, 
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we counteract the singularity ( )1 1/ 4 0E π= − = −∞  at 0r =  by having a controlled singularity 

( ) ( )0r rhP rδ
Λ

∂ =  for the probability density at 0r = . 

 
 Now, let’s talk about the observable physics associated with all of this.  The Coulomb 
potential 1/ 4E rπ= −  has been well-known ever since work in the late 18th century by Henry 
Cavendish and Charles-Augustin de Coulomb.  And, this potential has always been taken, 
without any apparent empirical contradiction, to be precisely 1/ 4E rπ= −  over all measurable 
radial distances outside the charge density, i.e., where the charge density is zero.  It has been 
learned in the intervening centuries that this is based on the photon being a massless, luminous 
entity, and that spacetime curvature can impact the radius r due not to anything relating to 

1/ 4E rπ= −  per-se, but to the effects of spacetime curvature upon measurements of length and 
time.  But in flat spacetime, insofar as is known, 1/ 4E rπ= −  for all finite, non-zero r outside 
the charge density. 
 
 We see in (19.14) that a precise 1/ 4E rπ= −  potential over all measurable radial 
distances, in the context of non-linear quantum field theory, presupposes the ( ) ( )0r rhP rδ

Λ
∂ =  

Dirac delta probability density of (19.12).  Via (19.4), this means that the Coulomb potential 
presupposes the Gaussian probability density (19.1) with 0rΛ = , where rΛ  is a previously-

“invisible” parameter which is precisely set to zero.  But while Dirac deltas are sometime-helpful 
mathematical entities, it seems unrealistic to expect that the real physical world will present us 
with probability densities which are infinitely tall and infinitesimally narrow, enclosing a total 
area of 1.  This is a mathematical idealization.  In the real physical world, we expect that rΛ  will 

be very small, but not precisely equal to zero.  For example, if rΛ  in, say, Figure 19 were to be 

based on 2.178r FΛ =  which is in turn based on ( )6 .0906QCD GeVΛ = ,  then Figure 19 would 

represent a potential which is extremely close to 1/ 4E rπ= −  over all r, but with a very slight 
reduction in the potential from 1/ 4E rπ= −  on the order of up to 1.5 percent within 1 standard 

deviation of / 2 1.54r FΛ = .   So, if we are willing as a matter of physics to entertain the 

possibility of horizontally stretching the Dirac delta such that 0rΛ =  instead becomes rΛ  = “very 

small but finite,” then the physical potential of quantum electrodynamics would become that of 
Figure 19.  As seen in Figures 11 and 12, within about 1 standard deviation of  

/ 2 / 2 1.54r Fσ Λ= = , this deviates ever-so-slightly from Coulomb’s 1/ 4E rπ= − . 

 
 In fact, if one steps back, the deviation from a strict -1/r potential which occurs in Figure 
19 and which is highlighted in Figure 21 ought not to be at all surprising.  It has long been 
understood that the strict -1/r potential of Cavendish and Coulomb only applies outside the 
region in which the source charge is distributed.  Inside the charge distribution, the potential is 
not expected to be -1/r, but rather something else. So if we use a probability density 

( ) ( )0r rhP rδ
Λ

∂ =  from (9.4) which is a Dirac delta right at 0r = , then every spatial location for 

which 0r >  will be outside the ( )r rδ
Λ

 spike, and so the potential will be Coulomb’s -1/r for all 

0r > .  On the other hand, if we spread the Gaussian out from being a spike by using a 
probability density (9.1) in which rσ Λ=  is very small but finite, then in the domain close to 
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rσ Λ= , one is no longer “outside” the source charge, but rather, is right in the middle of the 

source charge.  Therefore, it is to be expected that the potential will measurably deviate from that 
of Coulomb within a few σ  of rΛ .  Once we go more than a few standard deviations beyond 

rσ Λ= , ( )0 0r hP∂ →  in (19.1).  This takes us effectively outside the charge density, and 

contemporaneously, brings us into a region where the -1/r potential now applies just as much as 
does the charge density ( )0 0r hP∂ = .  So the quantum field equation (17.5) which becomes 

(19.5) when applied to (19.1) inherently takes account of all of this, by causing the potential to 
deviate from -1/r where the probability density for the source charge is measurably non-zero, and 
by causing the potential to return to -1/r where the probability density for the source charge 
becomes zero – or to be precise – where our measuring instrumentation is no longer able to 
detect the extremely tiny extent to which ( )0r hP∂  is not zero outside of a few standard 

deviations from 0r = . 
 
 Given all of this, let us make several postulates, leading to a possible experimental test to 
confirm the ever-so-slight modification to the Coulomb potential as very close quarters, as 
predicted by Figure 19 and highlighted in Figure 21.  First, just as there is a QCDΛ  associated 

with the QCD strong interaction, we postulate some QEDΛ  associated with the QED 

electromagnetic interaction.  There will then be a related radial length /QED QEDr hcΛ = Λ  via the 

deBroglie relation.  Either 0QEDrΛ = , or QEDrΛ = “very small but finite.”  Because the former 

requires a physical Dirac delta for the probability density, and we take the view that nature 
entertains no such singularities as a matter of physics, we shall now adopt the first postulate that: 
 

very small but finiteQEDrΛ = . (19.15) 

 
Next, if we adopt this first postulate, then the question becomes, what is the precise 

magnitude of QEDrΛ ?  Either QED QCDr rΛ Λ= , or 
Λ QED Λ QCDr r≠ .  That is, either the cutoff / standard 

deviation length for QED is the same as the one for QCD, or it is different.  If it is different, then 
there is some heretofore unknown QEDΛ  which represents yet another fundamental constant of 

nature.  But nature is economical, and one should consider the prospect that QED QCDr rΛ Λ= .  So, 

we now ask, would QED QCDr rΛ Λ=  make sense, or at least, would this not run into any apparent 

contradiction with known theory and data?   
 
What we learn from Figure 6 is that a confining potential appears when the coupled 

probability density ( )0 QCD ΛQCD1/ constantr hP r∂ = Λ = = .  What we learn from Figures 19 

through 21 is that a very-close-to -1/r potential emerges when the coupled probability density is 

the Gaussian ( ) ( )2 2
0 2 / exp /r hP r r rπΛ Λ∂ ≡ −  of (19.1), where rΛ  may or may not be 

synonymous with QCDrΛ , which is question under consideration at this moment.  And what we 

learn from (16.1) and (14.31) and (19.4) is that this very-close-to -1/r potential will become the 
precise 1/ 4E rπ= −  potential of Coulomb when the Gaussian coupled probability density 
becomes a Dirac delta.  So when one boils this all down, we see that in the context of non-linear 
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quantum field theory, the difference between a confining potential and a -1/r potential is the 
difference between a constant coupled probability density in which QCDrΛ  is a sharp cutoff, and a 

Gaussian coupled probability density in which 
ΛQEDr  is the standard deviation of the Gaussian 

rather than a sharp cutoff.  But there is no apparent contradiction in having the same 

QED QCDr rΛ Λ=  be a cutoff for ( )0r hP∂  in QCD, and the standard deviation for a Gaussian 

( )0r hP∂  in QED.  Furthermore, while QED of course applies to the electrodynamic interactions 

of electrons, it also applies to the electrodynamic interactions of quarks which have 2 1
3 3,Q = + −  

for the up and down quark respectively.  And for quarks which are confined within QCDrΛ  or 

some radial length close to this, it would certainly make some sense if QED QCDr rΛ Λ= .  Then, once 

this is done, there would be no reason to have an exception for the electron, because 
electrodynamic interactions are electrodynamic interactions, whether the fermions involved are 
quarks or leptons.  So, we shall now adopt the second postulate that: 
 

ΛQED Λ QCD QED QCD, i.e., r r= Λ = Λ . (19.16) 

 
If this second postulate – which we now propose to empirically test – is true, then 

although QCDΛ  comes onto the physics radar and is derived when studying strong interactions, it 

also plays a role in QED by establishing the standard deviation 
ΛQCDrσ =  for the Gaussian 

coupled probability (19.1), which we take in lieu of ( )r rδ
Λ

 with 0rΛ =  in (19.4) to be the 

coupled probability density for QED by the first postulate (19.15).  Then, (19.10) which is 
graphed out in Figure 19 predicts a very slight modification to Coulomb’s law centered within 

one standard deviation 
ΛQCDrσ =  of 

ΛQCD / 2 1.54r F= .   

 
This can be empirically tested if one can devise an experiment, or find within existing 

experimental data, the up to 1.5% modification to the Coulomb potential shown in Figure 21 
close to a 1.54 Fermi separation.  Keeping in mind that the Bohr radius 4

0 1/ 5.29 10ea m F= = × , 

we see that this is not a difference that would ever be detectable on the atomic scale.  This can 
only be detected when two charged fermions are brought together with separations on the nuclear 
scale.  It would seem to be quite a challenge for multiple reasons to ever get two electrons 
compressed to a 1.54 Fermi separation.  Consequently, it appears that the best way to detect this 
predicted parts-per-million modification to the Coulomb potential – which is rooted non-linear 
quantum field theory – is by studying the electromagnetic interactions of quarks.  The challenge 
for this sort of experiment is that although quarks will naturally have the requisite separation on 
the order of 1 Fermi which is required to test this, they are confined.  So it would be necessary to 
in some way to be able to study the electromagnetic interactions of quarks within the nucleus and 
see if their Coulomb potential varies from, and is lower than, what is expected from a strict 

1/ 4E rπ= −  potential by about 1.5% at an approximate 1.54 Fermi separation. 
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20.   Single and Double Slit Probability Densities and Guiding Potentials in 
Non-Linear Quantum Field Theory 
 
 Richard Feynman referred to the double slit experiment as “a phenomenon which is 
impossible . . . to explain in any classical way, and which has in it the heart of quantum 
mechanics. In reality, it contains the only mystery [of quantum mechanics].” [30]  And indeed, 
the double slit experiment was recently ranked at #1 among “Science's 10 Most Beautiful 
Physics Experiments” at [31].  Having reviewed how to apply the quantum field equation (15.42) 
which in spherical coordinates is (17.2) to the several examples of a constant probability field 
(section 16), a constant probability density (sections 17 and 18) and a Gaussian probability 
density including a Dirac delta (section 19), it is time to turn our attention to the single and 
double slit experiments.  When viewed in light of, e.g., equation (17.2) which relates the 
quantum probability density of a source or sink to a quantum potential 1E in the first recursive 

order of non-linear quantum field theory, the single and double slit experiments teach us some 
very deep and previously unseen insights into the nature of quantum reality. 
 
 We start with equation (17.4) in spherical coordinates for the probability density 

( ), , 0r hPθ φ∂  in Abelian gauge theory to study both single and double slit diffraction in the context 

of non-linear quantum field theory.  Figure 22 below is a schematic illustration of the envisioned 
simple experimental configuration upon which we shall base the discussion to follow.  We use 
this Figure 22 for either of a single or a double slit experiment as illustrated.  We regard the slits 
as elongated rectangular slits, with the elongation normal to the page.  We assume that the radial 
distance r from the slit(s) to the detector is much greater than the size and spacing of the slits, 
and we show a circularly-concave detector so that each locale on the detector is at substantially 
the same constant distance 0 constantr r= =  from the detector.  We regard r to be an observable, 

macroscopic separation which could be conveniently measured, for example, in meters or 
centimeters. We denote the center of the detector by 0x = , so that the circumferential length 
from there to any other locale on the detector will be 0x rθ=  in radian measure.  So for single slit 

diffraction the intensity will be vary in approximate proportion to 2 2 2sinc sin /x x x=  in 
accordance with the formulation of Fraunhofer diffraction (note: ( ) ( )sinc sin /x x x≡ ), while for 

double slit diffraction the intensity in the central region may be approximated by 2cos x, and 
overall the single slit envelop contains this so the complete double-slit diffraction intensity varies 

with the product ( )22 2sinc cos sin cos /x x x x x= .  It is also noted that the sinc2 function is the 

Fourier transform of the triangular function, in other words, that if  2( ) sinc ( )f x ax= , then 

( ) ( )2ˆ ( ) ( ) 1/ tri /ixpf p f x e dx a p aπ∞ −

−∞
= =∫ .    



Jay R. Yablon 

189 
 

                                           
Figure 22: Schematic Illustration of Single and / or Double Slit Diffraction  

 
These two diffraction configurations are of great interest for many reasons.  But they are of 
particular interest here because the intensities ( )2sinc x∝  for single slit and 2 2sinc cosx x∝  for 

double slit are synonymous with the probability densities ( ), , 0r hPθ φ∂ .  That is, when we observe 

the intensity spread for photons or electrons or any other field quanta striking the detector, we 
are directly observing the probability densities ( ), , 0r hPθ φ∂  which appear in (17.4).  Thus, it 

becomes possible to via (17.4) derive a commensurate quantum potential 1E  in the first recursive 

order of non-linear quantum field theory.  So our goal in this section is to do exactly that for both 
single and double slit diffraction, and then to use these results together with those of the last few 
sections to arrive at a better understanding of quantum field theory and the role of probability in 
quantum field theory, in general. 
 

Now, to keep things simple, let us set constantr =  so as to represent the fact that all 
points on the detector are at approximately the same distance from the slit(s).  Even for a flat 
detector, so long as the size and spacing of the slits is much less than r, we can approximate the 
locales near the center of the detector as being approximately equidistant from the slit(s).  So, if 
we situate the slit(s) in Figure 22 at 0r = , and the detector at 0r r=  where 0r  is much larger than 

any either the slit width or the slit spacing, we may regard 0 constantr r= =  in the mathematical 

equations.  So we start with (17.4) and do the following:  First, we set 0r r≡  and then move 0r  

from the 1/r portion of the equation over to the left side.  Now, both sides of this equation are 
dimensionless.  Here, we are no longer looking at the probability density ( ), , 0r hPθ φ∂  and the 

potential 1E  as a function of r, because the probability density is projected right onto the detector 

itself, and all points of the detector are assumed to be approximately equidistant 0r r=  from the 

slit(s).  Since there is no r-variation in the probabilities striking the detector in Figure 22, the 
radial ( )0 0r hP∂ =  along the detector.  Similarly, because the elongated slit(s) are aligned 
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vertically perpendicularly to the page, we know that for the detector regions of interest which 
subtend a very small φ , we will also have ( )0 0hPφ∂ = .  Finally, we make use of the deBroglie 

relation 2 /mc c r= �  to define an energy parameter 0 0/c rΛ ≡ �  which is associated with the 

length 0r .  Specifically, we define 0 0/c rΛ ≡ � , or in natural units and inverted, simply 0 01/r = Λ
.  All of this allows us to specialize (17.4) for the configuration of Figure 22 to (compare (17.5) 
for the radially-dependent 1E ):  

 

( )( ) ( ) ( )1
0 0 0

0

1 1
6 exp 2exp co

3

9

1

2
s

2
h

4

E
i hP i hP hPθ θ θπ

   = − + ∂ + ∂ ⋅ ∂     Λ     
. (20.1) 

 
So now let’s turn to the single and double slit probability densities ( )0hPθ∂ . 

 
 As pointed out earlier, for single slit Fraunhofer diffraction in which the detector is at a 
distance from the slit which greatly exceeds the slit size, the intensity, which is proportional to  
the probability density ( )0x hP∂ , will vary with ( )2 2 2sinc sin /x x x= .  Because 0x rθ=  in Figure 

22, x θ∝ , and therefore ( )0hPθ∂  in (20.2) will also vary with ( )2sinc θ .  Now, we need to pin 

this down more exactly.  Because ( )0hPθ∂  is a probability density, it is necessary that 

( )0 1hP dθ θ
∞

−∞
∂ =∫ .  Therefore, let us assign: 

 

( ) 2
0 sinc

2 2

A A
hPθ θ

π
 ∂ =  
 

, (20.2) 

 
where A is some constant number that determines the width of the diffraction pattern.  We 
choose this definition because it correctly normalizes to: 
 

( ) 2
0 sinc 1

2 2

A
hP d A dθ

θθ θ
π

∞ ∞

−∞ −∞

 ∂ = = 
 

∫ ∫ , (20.3) 

  
and also because A enables us to vary the width of the diffraction pattern.  Physically, the 
wavelength λ  of the signal being diffracted in relation to the width a of the slit will determine 
the value of A.  For this discussion, it is not necessary to formalize this relation, though for a 
rough qualitative correspondence, we note that the diffraction width will narrow as A increases, 
and will also narrow with decreasing λ  and increasing a, so that /A a λ≈ . 
 
 To simplify the mathematical and graphical development, let us now transform θ  to a 
different dimensionless coordinate X, defined according to: 
 

2
A X

θ π≡ . (20.4) 
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Because 0x rθ=  in Figure 22, this new coordinate X is related to the x with length dimension in 

Figure 22 according to: 
 

0
0

2 r
x r X

A

πθ= = ; alternatively, 
02 2

A Ax
X

r

θ
π π

= = . (20.5) 

 
Making use of (20.4) as well as ( )/ 2 XAθ π∂ = ∂  deduced from (20.4) as well as (20.5), we may 

rewrite (20.2) as: 
 

( ) ( ) ( )2 2 2
0 0

0

sinc sinc sinc
2 2 2 2 2 2X

A A A x A
hP hP A A X

rθ
θ π

π π π π
  ∂ = ∂ = = =  

   
, (20.6) 

 
which contains the somewhat less-cluttered equation: 
 

( ) ( )2
0 sincX hP Xπ∂ =  (20.7) 

 
with the very simple normalization: 
 

( ) ( )2
0 sinc 1X hP dX X dXπ

∞ ∞

−∞ −∞
∂ = =∫ ∫  (20.8) 

 
It is for these reasons that X presents an attractive coordinate choice for carrying out the 
mathematical and graphical development.  Indeed, including (20.5), Figure 23 below shows the 
well-known configuration of the single slit diffraction probability density given by (20.7).  We 
see that another attractive feature of the X coordinate is that minima occur at integer values of X. 

 
Figure 23: Probability Density / Intensity for Single-Slit Diffraction 
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 For a double slit, as we noted at the outset, what is now ( ) ( )2
0 sincX hP Xπ∂ =  for a 

single slit is the envelope for what we now take to be a ( )2cos B Xπ  oscillation within the 

envelope, where B is an independent parameter from A in the definition / 2X Aθ π=  in (20.4).  

Mathematically, the definite integral ( ) ( )2 22sinc cos 1X B X dXπ π
∞

−∞
=∫  independently of the 

value of B.  Therefore, we may assign 
 

( ) ( ) ( )2 2
0 2sinc cosX hP X B Xπ π∂ =  (20.9) 

 
to the probability density ( )0X hP∂ , and thereby be assured that the integral: 

 

( ) ( ) ( )2 2
0 2sinc cos 1X hP dX X B X dXπ π

∞ ∞

−∞ −∞
∂ = =∫ ∫  (20.10) 

 
as is required for a normalized probability density.  Of course, (20.1) in which we will want to 
make use of this contains ( )0hPθ∂ .  So, using ( )2 /X A θπ∂ = ∂  deduced from (20.4) and well as 

(20.4) itself and 0/x rθ =  from Figure 22, we may write (20.9) as: 

 

( ) ( ) ( ) ( )2 2 2 2
0 0

2 2

0 0

2
2sinc cos 2sinc cos

2 2

2sinc cos
2 2

X hP hP X B X A BA
A

x x
A BA

r r

θ
π θ θπ π    ∂ = ∂ = =    

   

   
=    

   

. (20.11) 

 
This contains the equation: 
 

( ) ( )

( ) ( )

2 2 2 2
0 0

0 0

2 2

sinc cos sinc cos
2 2 2 2 2

sinc cos

X

A A A x x
hP hP A BA A BA

r r

A
X B X

θ
θ θ

π π π

π π
π

      ∂ = ∂ = =       
       

=

, (20.12) 

  
which should be contrasted with its counterpart (20.6) for a single slit.  The new parameter B 
determines the number of peaks within the overall domain 0 1X≤ ≤ , and indeed, the number of 
overall peak within any unit spread of X, e.g., there are B peaks from 1 2X≤ ≤ , from 2 3X≤ ≤  
etc., with the peak at the very center shared between the 1 0X− ≤ ≤  and the 0 1X≤ ≤  domains.  
So, as a concrete example, if we graph (20.9) for  B=10, the curve is as follows: 
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Figure 24: Probability Density / Intensity for Double-Slit Diffraction, B=10 Example 

 
We see that there are in fact 10B =  peaks within each unit of domain, and that the center 

peak is shared and thus “double-counted” for both 0X <  and 0X > .  Contrasting this with the 
single slit Figure 23, we see a doubling of the amplitude owing to the coefficient of 2 that is 
needed in the normalization (20.10) versus the implied coefficient of 1 in (20.8).  Physically, this 
results in a doubling of the overall height of the envelope owing to there now being twice as 
many slits – two rather than one – through which the diffraction signal may pass.  And we 
directly see how parameter B affects peak packing within the envelope.  The overall spread of 
the envelope, as noted earlier, is determined by the parameter A which roughly varies as 

/A a λ≈  with the slit width a and the signal wavelength λ .  Denoting the spacing between the 
two slits as d, because increased B leads to a proportionate increase in the density with which the 
peaks are packed within the envelope, we know that both increased d and decreased λ  also 
increase this packing density.  So while it is not essential to the development here, we may also 
write down the rough correspondence /B d λ≈ . 

 
Now let’s use (20.1) to calculate the potential 1E  in the first recursive order of non-linear 

quantum field theory.  For single-slit diffraction we use (20.6) in terms of the mathematically-
simplifying X coordinate in (20.5) to obtain: 

 

( ) ( ) ( )2 2 21

0

1 1
6 exp sinc 2exp si

3
nc cosh sinc

4 9 2 4 4

E A A A
i X i X Xπ π π

π π π π
     = − + + ⋅       Λ       

.(20.13) 

 
For double-slit diffraction we use (20.12) in (20.1) also in X, to obtain: 
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( ) ( )

( ) ( ) ( ) ( )

2 2

1

2 2 2 20

6 exp sinc cos
1 1

4 9
2exp sinc co

3
s cosh sinc cos

2 2

A
i X B X

E

A A
i X B X X B X

π π
π

π
π π π π

π π

  +   
  = −

  Λ  + ⋅         

.(20.14) 

 
Now as we have done three times previously, contrast (14.35), (17.10) and (19.7), we 

wish to obtain and then graph the real magnitude 1 1 1*E E E= ±  for each of (20.13) and 

(20.14), using some realistic exemplary values for A and B.  In Figure 24 we used 10B =  for 
illustration, so to maintain consistency, we continue with 10B = .  As to A, we go back to (20.4) 
and write this as ( )2 /A Xπ θ= .  As we see in both Figures 23 and 24, the coordinate X is 

designed among other things to place the first minimum of the diffraction envelope at 1X = , so 
that the width of the central peak is equal to 2 along the X axis in the domain from 1 1X− ≤ ≤ + .  
So via (20.5) in the form of , over the domain of the central peak we have

1 / 2 1Aθ π− ≤ ≤ +  , or: 
 

2 2

A A

π πθ− ≤ ≤ + . (20.15) 

  
Now,  is the angle illustrated in Figure 22, and A in the above lends itself to being discussed in 
degrees rather than radians.  First, even if the central peak was to be spread over the entire 180 
degrees (  radians) emanating from the Figure 22 slits, we would have .  
So for anything to even make sense, we must have .  For , (20.15) becomes 

, which represents a full 180 degree spread for the central peak, which we 
denote by 180Θ = ° .  For  we would have a 90Θ = °  degree spread for the central peak, 45 
degrees on each side of the vertical centerline of Figure 22.    is the parameter for a 

60Θ = °  total spread,  for 45Θ = ° ,  for a 30Θ = °  spread.  So with  there 
is a one-degree spread on each side of the centerline totaling 2Θ = °  of peak spread, and with 

 there is a total spread of 1Θ = °  with .5 degrees on either side of the centerline.  Thus, 
with reference to Figure 22, if we use  to denote the total angular spread of the entire 
central peak which sits in the domain 1 1X− ≤ ≤ +  in Figures 14 and 15, we deduce from (20.15) 
that, in general: 
 

deg rad

720 4
A

π°= =
Θ Θ

. (20.16) 

 
Consequently, to make things more physically meaningful, we now use (20.16) above to 

replace 4 /A π= Θ  with a direct measure of the peak spread angle Θ  in each of (20.13) and 
(20.14).  So for single slit diffraction, also moving 4π−  to the left side, we now have: 

 

( ) ( ) ( )2 2 21 2 1 2
3 9 9

0

2 1
4 exp sinc exp sinc cosh sinc

3E
i X i X Xπ π π π

    − = + + ⋅       Λ Θ Θ Θ     
, (20.17) 

 

/ 2X Aθ π=

θ

π= / 2 / 2π θ π− ≤ ≤ +
4A≥ 4A=

/ 2 / 2π θ π− ≤ ≤ +
8A =

12A=
16A = 24A= 360A =

720A =
2θΘ =
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while for double-slit diffraction we obtain: 
 

( ) ( )

( ) ( ) ( ) ( )

2 21 2 1
3 9

0

2 2 2 22
9

4
4 exp sinc cos

2 2
exp sinc cos cosh sinc co

3
s

E
i X B X

i X B X X B X

π π π

π π π π

 − = +  Λ Θ 

  + ⋅     Θ Θ   

. (20.18) 

    
 To obtain the real magnitudes for each of the above, as previously done at (14.35), 
(17.10) and (19.7), we define each of a and b according to 1 04 /a bi Eπ+ ≡ − Λ .  For the single slit 

(20.17) this means that: 
 

( ) ( ) ( )

( ) ( ) ( )

2 2 22 1 2
3 9 9

2 2 21 2
9 9

2 1
cos sinc cos sinc cosh sinc

2 1
sin sinc sin sinc cosh sinc

3

3

a X X X

b X X X

π π π

π π π

    = + + ⋅       Θ Θ Θ     

    = + ⋅       Θ Θ Θ     

, (20.19) 

 
and therefore that: 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2

2 2 284 4
9 27 27

2 2 2 2 2 21 4
81 81
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3

3

a bi a b

X X X

X X X

X X

π π π

π π π

π π

+ = +

    = + + ⋅       Θ Θ Θ     

    + + ⋅       Θ Θ Θ     

   + + ⋅   Θ Θ   
( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 24
81

2 2 24
81

sinc

2 1
cos sinc cos sinc cosh sinc

2 1
sin sinc sin sinc cosh si

3

3
c

3

n

X

X X X

X X X

π

π π π

π π π

 
  Θ 

    + ⋅       Θ Θ Θ     

    + ⋅       Θ Θ Θ     

. (20.20) 

 
This reduces down to: 
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( ) ( )

( ) ( )

( ) ( )
( )

2 2 2
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81 27 81
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2
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27 81
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3

n

3

si c
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X X

X X

X

X X

π π

π π
π

π π

+ = +

  = + +     Θ Θ   

    
    Θ Θ      +     Θ      + +     Θ Θ     

. (20.21) 

 
So when we use (20.21) in (20.17) such that 1 04 /a bi Eπ+ ≡ − Λ , we now use the square root 

of the above, which has ±  roots, obtain the real magnitude for the single-slit potential, namely: 
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( ) ( )
( )

2 2 237 4 4
81 27 81

1 2 24
81

0 2

2 28 4
27 81

2
cos sinc cosh sinc

2 14 sin sinc sin sinc

cosh sinc
2 1

cos sinc cos inc

3

3

s

X X

E
X X

X

X X

π π

π π π
π

π π

  + +     Θ Θ   

    − = ±     Λ Θ Θ      +     Θ      + +     Θ Θ     

.(20.22) 

 
 As to the double-slit (20.18), defining 1 04 /a bi Eπ+ ≡ − Λ , we start with: 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
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 = +  Θ 

  + ⋅     Θ Θ   

 =  Θ 

  + ⋅     Θ Θ   

. (20.23) 

 
This means that: 
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oX B X X B Xπ π π π
   ⋅     Θ Θ   

,(20.24) 

 
which reduces to: 
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. (20.25) 

 
So when we use (20.25) in (20.18) such that 1 04 /a bi Eπ+ ≡ − Λ , we use the square roots of the 

above obtain real magnitude for the double-slit potential, namely: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

2 2 2 2 237 4 4
81 27 81

2 2 2 24
81

2 2 2 28 4
27 81

4

4 2
cos sinc cos cosh sinc cos

4 2
sin sinc cos sin sinc cos

4 2
cos sinc cos cos sinc

3

cos

E

X B X X B X

X B X X B X

X B X X B X

π

π π π π

π π π π

π π π π

−
Λ

  + +     Θ Θ   

    
    Θ Θ   = ± +

     + +     Θ Θ    

( ) ( )2 22
cosh sinc cos

3
X B Xπ π








 
×   Θ 

. (20.26) 

 
 So let us now graph the respective single and double slit potentials (20.22) and (20.26).  
In both cases, we have some flexibility to choose the angle Θ  which was defined so as to 
measure the overall spread of the central peaks in Figures 23 and 24 about the centerline of 
Figure 22.  Simply for illustration, let us continue to choose 30 / 6πΘ = ° =  and use this for both 
the single and double slit potentials, so that the potentials we obtain will match up with the 
probability densities graphed in Figures 23 and 24.  So for the single slit potential of (20.22), 
using 30 / 6πΘ = ° = , which is 4 / 24A π= Θ =  when expressed in terms of the original 
envelope spread parameter A, we now obtain: 
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    − = ±     Λ      +          + +     
     

.(20.27) 

 
As to the double slit potential of (20.26) we continue to use 30 / 6πΘ = ° =  for consistent 
illustration.  At the same time, we choose 10B =  also for illustration, which means that we are 
choosing to have 10 peaks within each unit of domain including the double-counting of the very 
center peak at 0X = .  Using 30 / 6πΘ = ° =  and 10B =  in (20.26), for the double-slit we 
obtain: 
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 
×   

 

.(20.28) 

 
 Now, before we graph the illustrative 30 / 6πΘ = ° =  single slit potential (20.27) and the 
illustrative 30 / 6πΘ = ° = , 10B =  double slit potential (20.28) there are two points which we 
first need to discuss.   First, consulting with Figures 23 and 24, the probability peaks are the 
places to which the maximum number of photons, electrons, etc. congregate during single or 
double slit experiments.  How do we know this?  We observe it in our experiments, directly.  By 
least action principles, all of the maximum probability locations in Figures 23 and 24 must 
therefore correspond to the minimum energy locations in the potential.  How do we know this?  
Because particles moving in a potential will be drawn toward and thus congregate near the 
minima in the potential.  Second, in general, the magnitude of a spatially-varying potential such 
as  is not itself a physical observable.  A voltage, for example, has no independent meaning.  

This is also one of the consequences of gauge symmetry.  What does have observable meaning is 
a difference of potential, that is, a voltage drop between point A and point B. 
 
 Keeping both of these points in mind, first, it turns out that when one graphs (20.27) and 
(20.28), the choice of the positive root ±  when taken with the – sign on the left side 1 04 /Eπ− Λ  

correctly matches up the maximum probability locations to the minimum potential locations.  In 
other words, we get the correct least-action mapping of probability to potential by choosing the 
positive roots in (20.27) and (20.28), which maintains the overall negative sign.  Second, it turns 
out that 1 04 / 1Eπ Λ ≈ − throughout most of the curve, and only drops definitively below -1 at the 

probability density peaks closest to the center of the X axis.  Because it is the relative difference 
between two potentials, i.e., the voltage drop which is observable, we will also add 1 to each of 
the inverted potentials, to make zero the “ground” potential, and to thereby have the probability 
density peaks correspond to a “voltage drop” below zero.  So, choosing the positive roots to 
maintain the overall negative sign, and then adding 1 to set zero to ground, we rewrite the single- 
slit (20.27) and the double-slit (20.28), respectively, as: 
 

1E
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     

,(20.29) 
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 Graphing the single slit potential of (20.29) for which 30 / 6πΘ = ° = , which corresponds 
directly to the single slit probability density graphed in Figure 23, we have: 

 
Figure 25: Single-Slit Potential for 30 / 6πΘ = ° = , Equation (20.29) 
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If we wish to see the behaviors for the envelope in the domain 1X >  we need to zoom out from, 

i.e., widen the aspect ratio for the vertical axis.  Doing this, we graph the exact same function 
shown in Figure 25, but from a wider vertical view: 

 
Figure 26: Single-Slit Potential for 30 / 6πΘ = ° = , Equation (20.29), Wide View 

 
So we see how the potential draws the field quanta of Figure 23 toward their maximum 
probability positions via least action, which we shall discuss in further depth momentarily.  
Figure 25 shows how the definitive minimum of the potential is at 0X = , and Figure 26 shows 
the secondary minima at just shy of 1.5X =  and 2.5X = , matching up with all of the 

probability density maxima in Figure 23.   
 
 Now let’s graph the double-slit potential of (20.30) for which 30 / 6πΘ = ° =  and 10B = .  
This corresponds directly to the probability density graphed in Figure 24.  Here we have the 
potential corresponding directly to the double-slit probability density graphed in Figure 24: 
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Figure 27: Double-Slit Potential for 30 / 6πΘ = ° = , 10B = , Equation (20.30) 

 
As with Figure 25, the potential minima away from 0X =  are much smaller in magnitude than 
the minima near the center.  So we again draw a wider view of the above for the vertical axis.  
 

 
Figure 28: Double-Slit Potential for 30 / 6πΘ = ° = , 10B = , Equation (20.30), Wide View 

 
Here too, the potential draws the field quanta of Figure 24 toward their maximum probability 
positions via least action, which we shall discuss in further depth momentarily.  Figure 27 shows 
a series of dominant minima near 0X =  which reduce as X  increases, and Figure 28 shows the 
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smaller, further minima under magnification.  Here too, these potential minima match up with all 
of the probability density maxima in Figure 24. 
  

Now, let us use some actual physical assumptions to calculate the magnitude of the 
voltage drops associated with the single and double slit experiments.  The single and double slit 
voltage drops in Figures 25 through 28 are expressed in terms of 1 01 4 /Eπ+ Λ , where  has 

dimensions of energy and is defined prior to (20.1) by 0 0/c rΛ ≡ � , where 0r  is defined in Figure 

22 as the approximate distance from the slit(s) to the detector, which includes macroscopic 
distances.  So let’s now choose a macroscopic distance 0r , and to keep things simple, let’s 

choose .  Once we make this final illustrative physical assumption (the other illustrative 
assumptions were 30 / 6πΘ = ° =  and 10B = ), we need to calculate the deBroglie energy 

 associated with one meter.  As we laid out prior to (14.42), one can use the 

shortcut  in  natural units without ever having to use  and c 

explicitly in the calculation.  Because  and , the natural units shortcut 
can be written as .  Or .  Or 

finally, .  This means that the energy equivalent of 1 meter, 

is: 
 

7
0 0/ 1.973269631 10c r eV−Λ = = ×� . (20.31) 

 
 So, now referring to Figure 25, close inspection reveals that the minimum at 0X =  has 
the four-digit value 1 0min

1 4 / 1.8309Eπ+ Λ = − , or 1 0min
2.8309 / 4E π= − Λ .  At the same time, 

wherever 1 0max
1 4 / 0Eπ+ Λ =  at the potential maxima which are the probability density 

minima, we have 1 0max
/ 4E π= −Λ .  So because it is the drop in potential which is observable, 

and not the potential itself, we can calculate that the single-slit voltage drop at 0X =  is: 
 

8 27
1 1 0min max

1.8309 / 4 2.8750 10 4.6063 10E E eV Jπ − −− = − Λ = − × = − × , (20.32) 

 
where we also include the eV to Joules unit conversion 191 1.6022 10eV J−= × .  At the same time, 
referring to Figure 27, close inspection reveals that the minimum at 0X =  has the four-digit 
value 1 0min

1 4 / 81.3854Eπ+ Λ = −  or 1 0min
82.3854 / 4E π= − Λ .  Once again the potential 

maxima are at 1 0max
/ 4E π= −Λ .  So here, the double slit voltage drop at 0X =  is: 

 
6 25

1 1 0min max
81.3854 / 4 1.2780 10 2.0476 10E E eV Jπ − −− = − Λ = − × = − × . (20.33) 

 
These are the largest voltage drops which occur for a slit experiment at 1 meter.  For the smaller 
peaks away from 0X = , the voltage drops are smaller, as seen in Figures 25 through 28.  
Because the absorption of a field quantum on a detector inherently creates a photovoltaic 
reaction, it may well be possible to detect these predicted voltage drops by measuring the 
photovoltaic drop between peaks and troughs in the probability density while field quanta are 

0Λ

1r m=

1 1/r c r= =Λ = �
11 5.067 731163F GeV−= 1c= =� �

151 10F m−= 91 10GeV eV=
15 7 110 5.067 731163 10m eV− − −= × 6 11 5.067 731163 10m eV−= ×

71 1/1.973 269 631 10m eV−= × 0r =
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accumulating at the detector, keeping in mind that 1E  is the potential at the approximation of 

the first recursive order in non-linear quantum field theory.  Due to the isomorphic 

( ) ( )0 1hP E⇔ x∇∇∇∇  mapping between the probability density for a given Θ  and B over a range of 

q, a, d and E input parameters, another confirmation is to show that the photovoltaic behaviors at 
the detector are dependent solely on the values of Θ  and B for the detected probability 
distribution, and are otherwise invariant with respect to q, a, d and E. 
 

It is worth noting that the maximum voltage drop (20.33) for the double slit experiment is 
44.4510 81.3854 /1.8309=  times as large as the maximum drop for (20.32) for the single slit 
experiment.  Part of this – like the doubling of the probability density peak from Figure 23 to 
Figure 24 – is accounted for by having two slits rather than one.  But most of this is accounted 
for because the total voltage drop when integrated over the entire domain, i.e., the total area 
between the horizontal axis and the potential curve, must also be twice as large for a double slit 
potential as for a like-slit, like-signal-energy single-slit potential.  Because the double slit 
potential drops comprise a series of very narrow spikes seen in Figure 27 while the single slit 
potential drop seen in Figure 25 does not lose total area due to the sharp spikes, the lost area 
under the horizontal axis of the double slit potential needs to be recouped, and this occurs by the 
distinctively larger voltage drop which occurs for the double slit potential in the narrow spikes 
where there is any drop at all. 
 
 Now we return to Richard Feynman who we quoted at the start of this section to see what 
the foregoing teaches us about one of the great mysteries of quantum theory, namely, the 
interference pattern of Figure 24 which we obtain in the double slit experiment, notwithstanding 
that photons reach and hit the detector one at a time.  This goes to the heart of wave-particle 
duality, because the interference pattern of Figure 24 can be and was fully accounted for for 
many years by a wave model of light with constructive and destructive interference yielding the 
peaks and troughs in Figure 24.  The mystery arose when it was discovered that light exists in 
quanta which each have an energy hf  for light of a given frequency f, and that they reach a 
detector one at a time, and that the pattern of Figure 24 thus builds itself up one photon at a time.  
This can be visually seen, for example, in widely-available pictures such as Figure 29 below 
which is reproduced from [32], and in visual simulations such as [33] which highlight that this is 
not only a phenomenon for photons, but for electrons and even for composite particles such as 
hadrons. 
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Figure 29: Buildup over Time of Double-Slit “Interf erence” Pattern (Reproduced from 

[32]) 
 
Because Figure 24 is the constructive / destructive interference pattern for light waves at a 
distance from a double slit, but because this pattern builds up one field quantum at a time as 
shown in Figure 29, this cannot be the result of constructive and destructive interference even 
though the patterns are the same.  This must be the result of “something else,” and to this day, 
the nature of the “something else” which is responsible for the buildup in Figure 29 which leads 
to the interference-like probability density for Figure 24 is not really understood. 
 
 Here, we obtained in equation (20.30) and graphed in Figures 27 and 28, a double slit 
quantum potential 1E  in the first recursive order of non-linear quantum field theory.  The 

minima of the potential in Figures 27 and 28 match up with the maxima in the double slit 
probability density of Figure 24.  The same holds true with the single slit potential (20.29) 
graphed in Figures 25 and 26, for which the minima match up with the maxima in the single slit 
probability density of Figure 23.  If the “something else” which explains why field quanta build 
up into the interference pattern of Figure 29 is to be some quantum field theory version of the 
geodesic principle of least action, then the quantum potentials of Figures 27 and 28 for a double 
slit configuration, and of Figures 25 and 26 for a single slit configuration, may well be that 
“something else” which explains the type of buildup shown in Figure 29 which looks like a wave 
interference pattern but cannot be so because it is built up one quantum at a time. 
 
 So, let us now pose the central question: take a single photon with an energy 

/E hf hc λ= =  or a single electron or proton or neutron or meson with energy /E hf hc λ= =  
and fire that field quantum through a double slit.  Figure 24 shows the probability density for 
where that field quantum will strike the detector.  That probability density happens to be the 
probability density for constructive and destructive wave interference, even though there does 
not appear to be any way for a single field quantum to interfere with itself.  So the question: why 
will the field quantum strike the detector with a probability density given by the interference 
density of Figure 24, even though there seems to be no basis for explaining the one-at-a-time 
buildup of Figure 29 as an interference phenomenon?  Restated: what is the physical cause and / 
or explanation for the observed fact that singly-fired field quanta will build themselves up over 
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time as shown in Figure 29 into the interference pattern of Figure 24, when the buildup of Figure 
29 appears to remove interference itself as the cause and / or explanation? 
 
 This question brings us to the center of philosophical challenges which have confronted 
physicists over the past century.  There exist schools of thought which maintain that one cannot 
even ask the question “what is the physical cause” for the interference-like buildup of Figure 29, 
because as an epistemological matter, one cannot know anything definite about the location or 
momentum of a field quantum unless and until that field quantum has struck a detector and been 
detected.  In other words, Figure 29 gives us epistemological certainty, because each dot tells us 
that a field quantum has struck the detector at the position indicated by the dot.  But to ask how 
it is that the dots came to build up in the overall interference pattern of Figure 29 which when 
made smooth and continuous is that of Figure 24, these schools of thought will maintain, is a 
question which has no answer, because it requires one to talk about what happens to the field 
quantum while it is in flight to the detector which is epistemologically unknowable.  
 
 But the quantum field potential 1E  of equation (20.30) graphed in Figures 27 and 28 

raises the prospect that this school of thought can be reversed, and that one can ask “what is the 
physical cause” for the interference-like buildup of Figure 29 and can ask what happens to the 
field quanta while they are in flight to the detector and can obtain an answer / explanation rooted 
in the highly conservative physics principles of least action and geodesic motion.  Least action 
principles, in their simplest form, state that a particle moves through space, over time, the way it 
does, because it is supposed to.  Because it follows the simplest, most direct path of least 
resistance.  Because it seeks a path which requires it to expend or have to acquire, as little energy 
as possible.  When there is a potential involved, least action principles state that a particle seeks 
the minimum of the potential.  And because the potential of Figures 27 and 28 has its minima 
right at the locations where the probability density of Figure 24 has its maxima, the answer to the 
question “what is the physical cause of the interference-like double slit probability buildup” of 
Figure 24 appears to be rooted in the potential of Figures 27 and 28:  Field quanta build up, one 
at a time, into the interference-like probability density of Figure 24, because they follow least 
action principles and seek to find to minima of the “guiding potential” of Figures 27 and 28. 
 
 Although it is attractive to think that the double-slit probability density can perhaps be 
explained on the basis of least action principles based on a guiding potential like those of Figures 
27 and 28, putting this explanation rigorously into place is not as simple as it may seem at first.  
This is because the single and double slit quantum potentials (20.29) and (20.30), which are 
rooted in (20.13) and (20.14) which are in turn rooted in (20.1) which in turn derives from the 
generalized spherical coordinate potential (17.4), are not quite the same as the classical potentials 
such as the Coulomb potential ( ) 1

1 1/ 4E rπ −= −  which we studied in section 16 and further in 

section 19 in relation to sources ( )r rδ
Λ

 in (19.4) which are Dirac deltas.  These 1E  are quantum 

potentials of an analytical, non-linear quantum field theory, not classical potentials, and it now 
becomes crucial to understand the difference between these two types of potential. 
 
 To explore this question, we continue to consider the double slit probability density of 
Figure 24, and its associated quantum potential of Figures 27 and 28.  These figures were 
developed to illustrate the particular case where the overall spread of the major envelope running 
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from 1 1X− ≤ ≤  is given by the angle 30 / 6πΘ = ° = , and where there are 10B =  probability 
peaks over each unit of the X domain including double counting of the very center peak at 0X =
.  This is actually the reverse of how one usually discusses double slit experiments:  Usually, one 
starts by stating four parameters: type of field quantum q (e.g., photon, electron, hadron, etc.), 
slit width a, slit separation d, and the energies / wavelengths /E hf hc λ= =  of the field quanta q 

being fired through the slits.  Based on these four parameters, and taking 0r  in Figure 22 to be 

very much larger than either of a or d, we will end up seeing some pattern on the detector with 
some Θ and some B.  Here, we have postulated that one has chosen some specific but 
unspecified set of q,  a, d and E parameters such that 30 / 6πΘ = ° =  and 10B = , which then 
produces the pattern of Figure 24 on the detector.  That is why, as noted after (20.3) and (20.12), 
it is not essential to the development here to formalize the specific q, a, d and E which lead to 

30 / 6πΘ = ° =  and 10B = , or which lead to whatever Θ  and B one may observe on the 
detector. 
 
 In fact it is very important to have organized the approach to the slit experiments in this 
non-specific way as to q, a, d and E, because of the fact that there is a non-unique relation 
between the “input parameters” q, a, d and E, and the output parameters Θ  and B.  Specifically, 
for any posited Θ  and B, there are a variety of q, a, d and E which will lead to the posited Θ  
and B being observed on the detector.  One can make a change, for example, in a and / or d, and 
then make a compensatory change in E, so as to produce precisely the same Θ  and B.  And, one 
can even change the type of field quantum which is being fired at the detector, and by a 
compensating change in a, d and E, one can maintain the exact same Θ  and B.  Put into 
invariance language, we may say that any given Θ  and B output parameter pair will be invariant 
with regards to certain changes in the input parameters q, a, d and E, which changes in the input 
parameters can be specified with mathematical precision.  And, as we see in comparing the 
double slit probability density of Figure 24 with the double slit quantum potential of Figures 27 
and 28, there is also a one-to-one isomorphic mapping between probability density.  We see the 
same thing comparing the single slit Figure 23 with Figures 25 and 26, and we saw this also in 
sections 16 through 19 for other probability densities and potentials including the -1/r potential, 
confining potentials, and Gaussian and Dirac delta probability densities.  So this means that not 
only is the double slit probability density invariant with regards to certain changes in the input 
parameters q, a, d and E, but so too is the quantum potential!  That is, we can change q, a, d and 
E, and so long as we do so carefully and cleverly, we can leave the quantum guiding potential 1E  

invariant.  Put differently, any given Θ  and B – which means any given double slit probability 
distribution ( )0X hP∂  and its isomorphically-associated quantum potential 1E  – will map on a 

one-to-many basis over to a range of q, a, d and E which will produce ( )0X hP∂  and 1E which are 

parameterized by Θ  and B , without any change.  As pointed out after (20.33), because of this 
isomorphic ( ) ( )0 1hP E⇔ x∇∇∇∇  mapping between the probability density for a given Θ  and B 

over a range of q, a, d and E input parameters, the quantum field equations which lead to results 
such as (20.32) and (20.33) could be confirmed by showing that the photovoltaic activities at the 
detector are dependent solely on the values of Θ  and B for the detected probability distribution, 
and are otherwise invariant with respect to q, a, d and E. 
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 Where the challenge arises in understanding how even without any overt interference 
occurring, the quantum potential 1E  serves to “guide” the field quanta toward the observed 

interference-like probability distribution, is not in the invariance reviewed in the last paragraph, 
but in the fact that while some changes in change q, a, d and E will leave Θ  and B and therefore 

( )0X hP∂  and 1E  invariant, there are other changes in q, a, d and E which will not.  For example, 

it is well-known that if one makes a slight change in the energy of the field quanta being fired at 
the double slit, and / or changes the slit configuration itself without changing any other input 
parameter in a compensatory manner, or changes the type of field quanta being fired without a 
compensating change elsewhere, that the probability distribution ( )0X hP∂  will also change.  

This means due to the isomorphism between ( )0 1X hP E∂ ⇔ , that the potential 1E  will also 

change.  Now, as to the input parameters q, a, d and E which affect the isomorphic 

( )0 1X hP E∂ ⇔ , two of these parameters, q and E are intrinsic to the field quanta themselves.  

The q parameter tells us what type of field quanta is being fired, e.g., photon, electron, proton, 
neutron, meson, helium nucleus, hydrogen atom, carbon molecule, etc.    And the 

/E hf hc λ= =  parameter tells us about the energy of those field quanta.  The other two 
parameters a and d are the slit width and the slit separation, and these are completely 
independent of, i.e., extrinsic to, the type of field quanta being fired through the double slit.   
 

But all four of the input parameters q, a, d and E would appear to be independent of, i.e., 
extrinsic to, the potential energy 1E , at least if we think of 1E  as a potential in the classical sense 

as a preexisting background field which is not affected – or is at most minimally affected – by 
the objects which travel through the potential.  Here, in non-linear quantum field theory, 
something very different is going on than what we see for a classical potential:  We can change 
the type of field quantum q or its energy E, and by so doing, we will change the isomorphic 

( )0 1X hP E∂ ⇔  which results from the overall q, a, d and E parameter set.  And so, the change in 

q or E will change the guiding quantum potential 1E .  Even more unusual if we think in terms of 

a classical potential, is that we can even change a and d, which are the slit width and the slit 
separation, and that this too will cause a change in the guiding potential 1E , again because it will 

change the probability density ( )0X hP∂ and because of the isomorphism ( )0 1X hP E∂ ⇔ .  In 

classical theory, there is no way in which one would expect a potential to be changed because of 
the changing of a slit configuration.  Yet in quantum field theory, changing the slit configuration 
definitively changes the guiding quantum potential 1E .  This is what we must now understand if 

we are to place the prospect that 1E  is a guiding potential for the field quanta, onto a rigorous 

basis. 
 
 As just discussed, the non-linear quantum potential 1E  appears to very different 

character from a classical potential.  In classical field theory, potentials are regarded as being 
background fields which are not affected by the particles which travel through them, except 
perhaps at very nominal order due to the fields of the particles themselves.  But in quantum field 
theory, a quantum potential such as 1E  is not preconfigured.  It only becomes configured when a 

quantum particle (a single field quantum) travels through that the quantum “vacuum.”  When this 
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happens, both the particle itself and the configuration of spacetime in nearby locales, and even in 
distant locales, coact in their entirety to “light up” the potential which then dynamically gives 
rise to the probability distribution observed at a sink (e.g., detector), because the travelling 
quantum is itself disturbing and changing the quantum vacuum and giving rise to the potential. 
Specifically, once the potential is lit up, in rather Bohm-ian fashion (referring to David Bohn), 
the field quantum simply propagates through the quantum vacuum so as to find the lowest 
potential in a geodesic / least action / least potential sort of manner, and strikes (sinks at) the 
detector after so doing.  Then, after that quantum particle has travelled through the potential 
which is partially induced by that particle type and particle energy and partially induced by 
everything else in the universe, and is detected, the vacuum potential goes back into a latent, 
non-configured state, awaiting the arrival of the next quantum particle to travel through the 
vacuum and do the same thing.   
 

In sum, this is a case of the travelling particle itself acting as an “observer” to the vacuum 
in which it is travelling by disturbing the vacuum and causing the vacuum to respond by 
configuring its vacuum potential.  Then, the field quantum follows a least action path through the 
potential to which it itself has given rise, to its final detected location on the detector.   After 
enough field quanta have each traversed the vacuum in this way, and have followed paths of 
least action based on the self-created potentials 1E of Figures 27 and 28, the accumulated result 

accrued one quantum at a time as in Figure 29, will be the probability distribution of Figure 24.  
As to any individual field quantum, we cannot predict precisely where this will land on the 
detector, except probabilistically via Figure 24.  But this is not because of any quantum-
epistemological bar to knowing what happens while the field quantum is in flight toward the 
detector for why the probability distribution of Figure 24 is an interference pattern even though 
there is no discernable interference when we consider one quantum at a time.  It is because of the 
statistical distribution which it is most convenient to ascribe to the field quanta as they are being 
fired from the source and as they make their way through the slits over a range of trajectories and 
positions which are described statistically, rather than particle-by-particle, in the same fashion as 
the 19th century probabilities which were used to describe the kinetic motions of the particles in a 
gas.   
 

Now, it might be intuited how this sort of self-creation of a guiding potential via the 
interaction of a field quantum with the vacuum could explain how a travelling field quantum 
might affect the quantum probability and the potential based its own energy and type, i.e., based 
on the input parameters E and q.  But the real quantum theory-based mystery is how it is that 
changing the slit configuration, which is part of the configuration of spacetime in nearby locales, 
can also affect a change the potential, since the slit configuration is independent of the particle 
type or its energy.  This turns out to be rooted in the fundamental and qualitative difference 
between a quantum action W or a quantum potential E in W ET= , and a classical action or a 
classical potential.  Let talk about the quantum potential E rather than the quantum action W 
because that is what we have in Equation (20.30) which is used to graph Figures 27 and 28.   

 
A classical potential is a one-body potential sourced by a classical object which is posited 

to be situated in a particular location at a particular time (which it will be appreciated already 
raises quantum issues of “uncertainty”).  But even more importantly, the classical potential is 
used to calculate in a “controlled” or “sterile” environment where anything else which might 
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influence a particle travelling through the potential other than the one body generating the 
potential, is segregated out and ignored.  As soon as the controls are relaxed – for example, when 
one starts to consider a three-body problem, or worse, a many-body problem – it becomes much 
more difficult if not impossible to actually do a useful calculation.  In sum, classical field theory 
idealizes away the effects of all but the single localized source creating the potential and the 
single localized particle posited to be travelling through the potential, and when there is a 
deviation from these idealizations, classical field theory rapidly loses its ability to make useful 
quantitative predictions without inordinate heavy lifting.  To be sure, there are some classical 
simplifications which do enable multiple sources to be treated accurately.  For example, a 
uniform spherical distribution of multiple charges can be idealized to a single charge at the 
center of the sphere which has a charge that is the sum total of all the charges, and the Coulomb 
potential may them be applied to anything travelling outside the sphere.  But these require very 
clear symmetry assumptions and lose their predictive capacity as soon as the postulated 
symmetries are removed. 

 
In contrast, the quantum potential in the path-integrated W ET=  is the precise opposite 

of a classical one-body potential.  It is an all-body potential.  And W is an all-body action.  To 
get to W ET=  one has already path integrated over all of the possible configurations of the 
classical field via the measure DG, see (11.4), so all possible field configurations are included.  
To then get to 1E  in (15.42) or all of its progeny such as (20.30) which is used to graph Figures 

27 and 28, one has further Fourier integrated over all possible momenta via the measure 4d k , 
and one has also integrated over all of spacetime for both the source and the sink via the measure 

4 4d xd y, see (15.9).  So the 1E  in (15.42) already contains implicit “quantum knowledge” about 

the spacetime of which it is a function, because it was arrived at in the first place by integrating 
over all possible spacetime, energy-momentum, and field configurations.  The quantum potential 

1E  is therefore not the product any one particular source as is a potential in classical field theory.  

Rather, it is the product of any and all sources and sinks and configurations of matter and energy 
throughout all of space and time.  This, of course, includes any nearby slit configurations. 

 
While 1E  is an all-body potential, this does not mean that we feed everything in the 

universe at all times and places into the equation such as (15.42) or (17.2) or their progeny which 
determine 1E , or that 1E  is somehow omniscient enough to possess quantum knowledge of 

everything that has ever happened are will happen anywhere.  Rather, it means that whatever 
probability densities ( )0X hP∂  we do feed in to determine 1E  via the isomorphic mapping 

( )0 1X hP E∂ ⇔ , and whether this probability density is the known probability density for a 

source or the known probability for a sink (at a detector), we will come away with an associated 
quantum guiding potential 1E  that fully explains and indeed is the physical result of the observed 

probability density for the source, or the physical cause of the observed probability density for 
the sink, via the isomorphic mapping ( )0 1X hP E∂ ⇔ .  Using the examples already developed 

here, let us see exactly how this works. 
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First, as we saw in section 19, suppose we posit the source probability density 

( ) ( )0r rhP rδ
Λ

∂ =  of (19.12), which is a Dirac half-delta defined in (19.4) right at 0r = , and 

which is zero everywhere else.  Then, as seen in (19.14) which we started to see at (16.1), the 
quantum guiding potential ( ) 1

1 1/ 4E rπ −= −  turns out to coincide precisely with the Coulomb 

potential.   That is, the isomorphic ( )0 1X hP E∂ ⇔  which we generalize to ( ) ( )0 1hP E⇔ x∇∇∇∇  

becomes a probability density ( ) ( )0r rhP rδ
Λ

∂ =  mapping to a potential ( ) 1
1 1/ 4E rπ −= − , that is, 

it becomes the mapping ( ) ( ) 11/ 4r r rδ π
Λ

−⇔ − .  This is the correspondence of non-linear 

quantum field theory, to classical field theory.  A source which is a Dirac half-delta right at 0r =
, yields a potential ( ) 11/ 4 rπ −−  which is finite everywhere but at 0r = , which is the precise 

same place where we have posited the controlled singularity ( )r rδ
Λ

.  The source at ( )r rδ
Λ

 is the 

physical cause of the ( ) 1
1 1/ 4E rπ −= −  Coulomb potential.  Further, in classical theory, if we 

had multiple charge sources, one would model this by placing multiple deltas ( )1rδ
Λ

x , ( )2rδ
Λ

x , 

( )3rδ
Λ

x etc. at various positions 1 2 3, ,x x x  etc., and each of these sources would then generate 

Coulomb potentials ( ) 11/ 4 rπ −−  centered at 1 2 3, ,x x x .  Then the overall potential would be a 

linear superposition of the individual potentials.  
 
But in non-linear quantum field theory this works differently.  As our second example, 

we also saw in section 19 that if we posit a source probability density which is the half-Gaussian 

( ) ( ) ( )2 2
0 2 / exp /r hP r r rπΛ Λ∂ = −  of (19.1), this will map over via the ( ) ( )0 1hP E⇔ x∇∇∇∇  

isomorphism to the quantum potential (19.5) / (19.6) which has the real magnitude (19.10) and 
which is graphed in Figure 19 and deviates from a strict ( ) 11/ 4 rπ −−  Coulomb potential in the  

/ 2rΛ  region to the degree illustrated in Figure 21.  So now, the source probability density is a 

Gaussian, which unlike the Dirac delta, has a non-zero spatial expanse.  But to deduce its 
potential 1E  graphed in Figure 19, we simply plug the Gaussian probability density (19.1) into 

the generalized radial relationship (17.5) and out pops the isomorphically-corresponding 
potential  of (19.5) for which we graph the “almost -1/r” magnitude in Figure 19.  When we refer 
to the Figure 19 potential as an “all-body” potential, what we are saying is that the Gaussian 
(19.1) is not an idealized, localized half-delta ( )r rδ

Λ
, but has a spatial expanse most of which is 

concentrated within a few standard deviations of rΛ , and all of which spreads out in its “tail” 

throughout the domain from 0 r≤ ≤ ∞ .  Once we specify the “entire body” of the Gaussian 
source probability density (19.1) as one holistic entity with finite, unrestricted spatial expanse, 
we immediately pop out the associated “all body” potential which accounts for the entire 
Gaussian from body to tail, and find a small deviation from -1/r in the body, and a virtually 
unchanged -1/r potential throughout the tail.  So, as long as we are able to specify the entire body 
of the probability density for which we wish to ascertain a quantum potential, we can indeed 
deduce the entire potential and do not have to go about this task piecemeal as we would in 
classical theory. 
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Our third example was that the constant isotropic coupled probability density explored in 
section 17, which led to fitting the running strong coupling curve ( )s Qα  in section 18.  Here, we 

posited a constant coupled probability field 0hP r= Λ in (17.28) following normalization, for 

which the associated probability density ( )0r hP∂ = Λ  is constant over the domain 0 r rΛ≤ ≤  as 

illustrated in Figure 7.  Here, via the isomorphism ( ) ( )0 1hP E⇔ x∇∇∇∇ , we obtained the quantum 

guiding potential of (17.33) graphed in Figure 6 and further studied in Figure 15.  Here, we begin 
to really see the nature of 1E  as a guiding potential.  How so?  As noted earlier, it is one thing as 

a mathematical exercise to posit a constant density ( )0r hP∂ = Λ  over the domain 0 r rΛ≤ ≤  

which drops to ( )0 0r hP∂ =  for r rΛ> ; it is quite another to specify the physics which will hold 

together the density ( )0r hP∂ = Λ  within 0 r rΛ≤ ≤  and not allow that any of the probability 

density to “leak out” beyond r rΛ> .  Here is where the physics of the Figure 6 and 15 potential 

goes hand in hand with the probability density.  The potential in Figures 6 and 15 makes it 
impossible for any field quantum to move to r rΛ> , because the potential 1E  at the first-

recursive order rises to a maximum at rΛ , and because of the expectation that the potential actual 

physical potential E∞  to infinite recursive order will itself grow asymptotically to infinity.  The 

postulation of ( )0r hP∂ = Λ  within 0 r rΛ≤ ≤  carries with it, isomorphically, the confining 

potential needed to physically-enforce itself through the natural tendency of physics systems to 
tend toward least action.  Here, the “entire body” is the density ( )0r hP∂ = Λ  within 0 r rΛ≤ ≤ , 

and the all-body potential which enforces the entire density configuration ( )0r hP∂ = Λ  is the one 

in Figures 6 and 15. 
 
So, what we really do in section 17 is postulate a probability density which is confined to 

0 r rΛ≤ ≤ , and the quantum field equations themselves then pop out the potential required to 

enforce that confinement!  This provides the physical, least action, guiding potential necessary to 
explain and cause confinement.  And beyond confinement and the resulting fitting of the QCD 
running coupling in Figure 14, and beyond the fact that the potential itself as studied in Figure 15 
points toward new physics precisely at the GUT and Planck scales where new physics is to be 
expected, the key lesson taught by the potential in Figures 6 and 15 is that field quanta such as 
quarks do not become confined just because we posit their confinement.  They become confined 
because the positing of confinement carries with it an associated potential which enforces 
confinement via principles of least action.  And this means more globally that notwithstanding 
all of the conceptual and epistemological challenges presented by the quantum reality that has 
been discovered and developed over the past century and longer, physics is still physics; it is not 
magic.  One who practices physics as a discipline still must find the causal reasons which 
explain why we observe what we observe, and least action principles remain a very central and 
important cause for the natural behaviors that we observe, even in the quantum domain.   

 
So now we return to the double slit experiment of the present section, armed with the 

understanding that in non-linear quantum field theory, a coupled probability density goes hand-
in-hand with a quantum potential with which it is isomorphic, which completely causes and / or 
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is caused by every aspect of the fully specified coupled probability density.  And it is in the 
context of the double slit experiment that this all comes into full bloom.  To illustrate this, let us 
return to the detector apparatus schematically laid out in Figure 22, apply this specifically for the 
double slit experiment, and superimpose both the guiding potential of Figure 27 in the region 
where the field quants propagate from the slits to the detector, and the probability density of 
Figure 24 which is ultimately viewed at the detector following a buildup of field quanta at the 
detector in sufficient numbers to fill in the one-at-a-time strikes of Figure 29 and bring about a 
curve with a the continuous appearance of double slit wave interference.  We illustrate all of this 
in Figure 30 below: 

 

 
Figure 30: The Guiding Potential 1E  and the Consequent Probability Density ( )0X hP∂  for 

the Double-Slit Experiment 
 
Now, as we did for confinement just discussed, we posit the probability density ( )0X hP∂  

seen at the detector.   But even here, for a quantum treatment of the double-slit experiment, 
physics is still physics; and it is still not magic.  We still require a causal explanation of why it is 
that the individual field quanta aggregate together to produce the observed interference-like 
probability density, just as we required a causal explanation for what held together the confined 
system with a posited density ( )0r hP∂ = Λ  over 0 r rΛ≤ ≤  and found the guiding potential of 

Figures 6 and 15 to do so.  We see that sufficiently far from the slits themselves, the guiding 
potential 1E  creates what may be thought of as least action grooves in the vacuum which cause 

the individual field quanta to strike the detector with the observed probability density.  To use a 
physical analogy, these are in the nature of “bobsled tracks.”  Not every bobsled will register the 
same time in a race, and not every bobsled will end up in the same place at the end of a race, but 
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the bobsled tracks do definitively establish the probability density curve for where any particular 
bobsled is more likely and less likely to end up. 

 
However, lest one think that Figure 30 yields a fully classical way to explain the double 

slit experiment and removes all of the quantum challenges from the required explanation, rest 
assured, it does not.   Unlike a classical potential, the potential “grooves” do not preexist in the 
vacuum.  If one changes the field quanta q or if one changes the energy E of the field quanta 
without a compensatory change to another of the q, a, d and E parameters, then the guiding 
potential itself will change.   This does not happen with a classical potential.  Even more 
quantum-indicative, if one changes the slit size a or the slit separation d without a compensating 
change to another parameter, then the guiding potential itself will again change.  This most 
certainly does not happen with a classical potential.   

 
But the non-classical aspects of quantum theory do not come into play via an 

abandonment of cause and effect or via relinquishing the requirement to explain why the 
observed probability densities are what they are on some causal foundation.  Nor do they come 
into play via an abandonment of least action / geodesic principles as the mechanism to explain 
the causation of why things happen the way they happen and why the field quanta statistically 
end up where they end up.  Nor do the non-classical aspects of quantum theory come into play 
by taking the epistemological view that what a field quantum does while it is propagating has no 
meaning and that the only meaningful thing we can say about an individual field quantum is 
where and when it observably struck a detector.  Figure 30 enables us to talk very definitively, 
and indeed classically albeit statistically, about the behaviors of individual field quanta as guided 
by a potential during propagation which directly causes the observe probability distribution at the 
detector. 

 
The non-classical aspects of quantum theory do come into play when it comes to 

understanding the non-linear guiding potential 1E  itself, and how this potential itself arises in 

response to, i.e., is caused by, the q, a, d and E parameters in double slit experiments.  
(Physically, one should always keep in mind that E∞  deduced to infinite recursive order is the 

physical guiding potential in the real universe and 1E  deduced here is just the potential 

containing the first non-linear order of recursion.)  One might very well fire a number of field 
quanta, say, electrons, through a given double slit configuration, and end up with what is seen in 
Figure 30.  Then, one might do nothing other than change the energy E of a new set of electrons.  
Thereafter, the observed probability density ( )0X hP∂  will change, and the isomorphically 

mapped guiding potential 1E  will change, and all of this change will be a causal result of the 

change in the electron energy.  This means that a first electron A with energy AE  will actually 

give rise to and propagate through a different guiding potential than a second electron B with 
different energy BE .  In a very quantum, non-classical sort of maneuver, the propagating field 

quantum itself is affecting and changing the vacuum in which it is propagating, almost as if a 
bobsled managed to inform the bobsled course as to which particular bobsled was riding through 
the course, with the bobsled course then reconfiguring its bobsled tracks accordingly.  Similarly, 
one might leave all else the same, but change the electron to photons, and again, the vacuum 
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itself will be influenced by the fact that it now has a photon rather than an electron riding 
through, and will lay out a different guiding potential than the one that guides the electron.   

 
And, the non-classical aspects of quantum theory do come into play in superlative terms, 

when one does nothing more than change the slit width a or the slit spacing d without any other 
change.  Here too, if one changes the slit configuration in the middle of an experiment, then the 
observed probability density ( )0X hP∂  will change and its guiding potential 1E  will change in 

consequence, all because of the change to the slit configuration.  This is a truly non-classical sort 
of phenomenon, and it suggests that the quantum vacuum actually has “quantum knowledge” as 
to the nearby slit configuration and updates its knowledge when the slit configuration is changed.  
But this is understood by keeping in mind that the nonlinear quantum field equations which 
generally relate ( ) ( )0 1hP E⇔ x∇∇∇∇  on an isomorphic basis are arrived at following a path 

integration over all classical fields DG∫ , following an integration over all momenta 4d k∫ , and 

following a integration over all of spacetime for both the source 4d x∫  and the sink 4d y∫ .  By 

Huygens, all points along the front of a signal propagation can be viewed as the source of a new 
signal propagation.  For a freely-propagating wave, this is often a triviality, because constructive 
and destructive interference serve to cancel each other out.  But when a source emits a signal and 
then that signal travels through a slit, by Huygens we can re-source the source to the slit, and 
thereby regard the slit as the source which was integrated over 4d x∫ .   

 
So from this viewpoint, by Huygens, the source of a double slit experiment is the double 

slit itself.  The probability density at this source has .5 of its cumulative probability situated at 
the first slit, and the other .5 of its cumulative probability situated at the second slit.  This then 
maps via ( ) ( )0 1hP E⇔ x∇∇∇∇  to a related quantum potential.  Meanwhile, the sink of a double slit 

experiment which was integrated over 4d y∫  is the detector.  This displays the probability 

densities illustrated in Figure 30 which are caused by the potentials also illustrated in Figure 30.  
What Figure 30 does not display explicitly, is the 1 .5 .5= +  probability at the source slits, and the 
related potential.  Mathematically, to marry the source to the sink via the propagation and bridge 
the wave view to the particle view of quantum field theory, one may start with classical wave 
theory, specify the probability densities over the entire continuum for both the coordinates r and 

Xθ → , and then use the non-linear quantum field equations for ( ) ( )0 1hP E⇔ x∇∇∇∇  to deduce the 

( )1E x  which guides a field quantum all the way from source to sink.  At that point, although we 

have taken advantage of classical wave theory to specify ( )0hP∇∇∇∇  and then deduce ( )1E x , the 

( )1E x  so deduced now provides a least-action foundation for guiding individual field quanta 

over to the detector such that statistically, they will display the observed interference-like pattern 
of the double slit experiment.    

 
That is what we have in effect done in this section, by starting with the wave-densities 

(20.7) and (20.9) for the single slit and double slit sink graphed in Figures 23 and 24, 
respectively; and then deriving the associated 1E  guiding potentials (20.29) and (20.30) graphed 
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in Figures 25 through 28.  At this point, we are equipped to pass over to the particle view, 
because now, as shown in Figure 30, these guiding potentials 1E  provide a least action 

foundation to guide individual field quanta through their propagation so as to statistically 
aggregate at the detector sink in the interference-like probability pattern shown at the bottom of 
Figure 30 for the double slit experiment.  However, the non-classical features of quantum theory 
remain, but not in an abandonment of cause and effect or relinquishing of the need to explain 
why we observe what we observe by least-action principles.  They remain insofar as the vacuum 
itself gives rise to the guiding potential used to propagate any particular field quantum from the 
source to the sink, by interacting with and thereby having quantum knowledge of and being 
affected by: a) the type of field quantum that is propagating through the vacuum; b) the energy of 
that field quantum; and c) the configuration of the nearby slits which by Huygens become the 
sources.  So each field quantum while propagating, coupled with the nearby slit configuration: a) 
induces (causes and creates) the guiding potential in the vacuum which will then influence its 
own propagation from source to sink; b) propagates from source to sink under the least action 
influence of the self-induced and slit-induced guiding potential based on interaction with and 
quantum knowledge within the vacuum, and c) strikes the sink detector in the observed 
interference-like probability distribution as a causal consequence of having travelled through the 
self-induced and slit-induced guiding potential. 

 
In this way, nonlinear quantum field theory differs from classical field theory because in 

classical field theory the potentials are sourced by a localized source and are taken to be virtually 
or completely unaffected by what travels through those potentials; while in quantum field theory 
a guiding potential arises in a vacuum in definitive response to both the individual field quanta 
propagating through the vacuum and to the quantum knowledge held by the vacuum about the 
surrounding spacetime including such matters as slit configurations, such that the propagation of 
an individual field quantum follows a path of least action in relation to its self-induced and slit-
induced guiding potential.  In both quantum and classical field theory, individual field quanta 
propagate as they do because of least action principles, including a natural tendency toward the 
minima of a potential, and when one is dealing with large numbers of field quanta the overall 
pattern of field quantum arrival at a sink / detector is described as the statistical accumulation of 
large numbers of statistically-distributed field quanta each pursuing least action paths.  The 
difference between classical and quantum field theory rests solely in the way in which the 
guiding potential comes about.  In classical field theory the potential is preexisting and is taken 
to be totally or virtually unaffected by anything but the source.  This limits the analytical 
predictive reach of classical field theory to sources which are either highly localized as in the 
Dirac deltas which implicitly underlie application of the Coulomb potential, or have high degrees 
of symmetry such as a uniform, spherically symmetric charge distribution, and creates practical 
challenges analytically solving problems involving three or more bodies absent some exploitable 
symmetry.  In quantum field theory the potential is induced in the quantum vacuum in real time 
as field quanta propagate and takes full account of the types of quanta which are propagating, 
what their energies are, and the configuration of the nearby spacetime in the form of slits through 
which the quanta are propagating.  There is no epistemological problem with discussing the 
propagation of individual field quanta from source to sink, and so long as one can 
mathematically specify as source and / or sink in a complete fashion, one will be able to specify 
the isomorphically-associated least-action guiding potential in commensurately complete 
fashion. 
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21. Summary and Conclusion 
 
 This concludes the formal development of this paper, so let us summarize what we have 
learned:  In non-abelian gauge theory with gauge fields G, although the magnetic charge density 

 by a Jacobian identity (2.4) just as the abelian magnetic charge density 
 because of the differential forms geometry, there is still a non-vanishing 

magnetic field flux  (3.3) across closed surfaces which 

contrasts to the zero net flux  that one has in abelian gauge theory.  These apparently-

conflicting features of non-abelian theory – namely a non-zero magnetic flux over closed 
surfaces but no magnetic sources – are reconciled by realizing that the magnetic field flux is not 

sourced  by any elementary magnetic charge density which is , but 

rather is sourced  by a “faux” magnetic source  which arises 

totally from the gauge fields, .  But real gauge fields do not arise spontaneously.  They 

must be sourced by an electric charge density J, and in non-abelian gauge theory, the differential 
equation which governs this is .  Further, we also know that in Dirac 
theory, electric charge densities are in turn sourced by fermion wavefunctions  via Dirac’s 

.  Thus, we now need to set upon obtaining the inverse solution to 

 for  to enable us to find  and . 

 
 So in section 5 we develop the electric source field equation , and in 

sections 6 and 7 respectively, we carefully develop the inverse solutions  for massive and 

massless gauge bosons respectively, paying very close attention to issues involving uniqueness 
and gauge-invariance and gauge fixing and “contextual gauge fixing” wherein a mathematical 
inverse which is non-unique becomes unique when placed into the physical context of a 

conserved current density.  And in section 8 we see how  is not really a solution involving 

J alone, but is a highly-non-linear, recursive function  which can be recursed as often as 

desired, and then turned from  into  by setting the perturbation  at any 

desired order.  We also noted how the physical inverse ought not to depend on an arbitrary cutoff 
of the recursion, but rather, ought rather to be based on the series (8.20) that results from 
recursing an infinite number of times before zeroing the perturbation.   
 
 So starting in section 9 we made use of the non-abelian solution for a massive gauge 

boson, namely  of (6.27) to write out  in (9.2).  

Then to keep the initial development simple and develop the “ground state” symmetries, we 

immediately set  in (9.4) to write  in the zeroth recursive order , which 

is the same thing as having used the abelian massive solution  (6.17) 

0P DF DDG= = =
0P dF ddG= = =

[ ], 0F i G G i dGG= − = − ≠∫∫ ∫∫ ∫∫∫� �
0F =∫∫�

( )F P∫∫� 0P DF DDG= = =

( )F G∫∫� [ ],P id G G idGG′ = − = −

( )P G′

* * *J D F D DG= =
ψ

J µ µψγ ψ=

* * *J D F D DG= = ( )G J ( )( )F G J∫∫� ( )( )( )F G J ψ∫∫�

* * *J D F D DG= =
( )G J

( )G J

( ),G G J

( ),G G J ( )G J 0V =

( ) 12G V k k m i Jτ
µ τ µε

−
= − + − + ( )( ),F G G J∫∫�

0V = ( )( )F G J∫∫� ( )( )
0

0

( ) 12G k k m i Jτ
µ τ µε

−
= − +
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a.k.a. (6.28).  After then using  to replace currents with fermions and thus arrive at 

 in (9.7), we turned to the fermion Exclusion Principle of Fermi-Dirac-Pauli. 

 
 It is the Exclusion Principle that drives the introduction of a dimension-3 gauge group to 

ensure that all of the fermions within the  system are in three distinct 

eigenstates, turning this now into  which reaches the goal established 

at the end of section 3.  The reason for there being three colored quarks in the ground state of a 
baryon is then seen to be very simple: because there are three additive terms in the covariant 
tensor expression (9.7) for a magnetic monopole.  This also brings with it, eight bi-colored gauge 
fields.  After applying a Goldstone-like mechanism (9.15) to reallocate degrees of freedom and 
force the gauge fields to be massless and give mass to the fermions while contextually-

preserving the uniqueness of the underlying solution for , we arrive at the ground state 

monopole density of (9.21).  This monopole has the antisymmetric  

color-neutral wavefunction of a baryon although it does also contain fermions in three colored 
eigenstates, and as we had already found in (3.5), it permits no net flux of individual gauge fields 
across its closed surfaces.  But then we find in (10.4) and (10.5) that this monopole does permit a 

net flux only of color-neutral  mesons, which further cements the confinement of 

gauge fields first suspected in section 3 because nothing other than colorless  
fields are permitted to net flow in across closed surfaces.  And we further find from (10.6) that 
the dimension-3 gauge group must be SU(3)×U(1), not just SU(3), and that this provides the 
magnetic monopoles with topological stability so long as this SU(3)×U(1) group emerges 
following the spontaneous symmetry breaking of a larger simple group .  We 
learn at (10.9) that the U(1) generator provides a natural platform for equipping each fermion 
with a baryon number  and the overall monopole with , which now introduces flavor 

to these color-neutral monopoles and mesons and their colored fermions and gauge bosons.  And 
we see in (10.10) and (10.11) that one can thereafter arrive at suitable generator assignments 
which give rise to the correct electric charges  for the proton and by a disconnected 
assignment (which then requires a larger unifying group)  for the neutron, as well as the 

 for the up and  for the down flavors of quark. 

 
Although nuclear and particle physics are often discussed as if they are one and the same 

discipline, in fact, they are very distinct based on present understandings of each.  This fault line 
which separates nuclear and hadron physics from particle physics is concisely captured by Jaffe 
and Witten when they state at page 3 of the “Yang-Mills and Mass Gap” problem [6] that: 
 

“. . . for QCD to describe the strong force successfully . . .  It must have ‘quark 
confinement,’ that is, even though the theory is described in terms of elementary 
fields, such as the quark fields, that transform non-trivially under SU(3), the 
physical particle states—such as the proton, neutron, and pion—are SU(3)-
invariant.” 

 

J µ µγ= Ψ Ψ

( )( )( )F G J ψ∫∫�

( )( )( )F G J ψ∫∫�
( )( )( ), ,R G BF G J ψ ψ ψ∫∫�

( )( )G J

[ ] [ ] [ ], , ,R G B G B R B R G+ +

BBGGRR ++
BBGGRR ++

SU(3)×U(1)G ⊃

1
3B = 1B =

1Q = +
0Q =

2
3Q = + 1

3Q = −
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It is this difference between “elementary fields, such as the quark [and the gluon] fields, 
that transform non-trivially under SU(3)” and “the physical particle states—such as the proton, 
neutron, and pion—[which] are SU(3)-invariant,” as well as the need to give flavor to color-
neutral baryons and understand the origins of the specific baryon flavors which are protons and 
neutrons, which separates the elementary particle physics of colored quarks and gluons, from the 
hadron physics of the colorless baryons and mesons, and the nuclear physics of proton- and 
neutron-flavored baryons.   
 

As detailed in the discussion following (10.5), if one advances the thesis that the non-
abelian faux magnetic monopole of (9.21) is in fact synonymous with a baryon, then the results 
reviewed in detail in section 10 would appear to solve this confinement leg of the mass gap 
problem, at least in the classical context.  Moreover, the results presented here take a critical step 
forward toward unifying elementary particle physics with hadron physics and nuclear physics.  It 
is equation (9.21) which operates as a “bridge” between the elementary particle physics of 
colored quarks and gluons and the hadron physics of the colorless baryons and mesons.  This is 
because (9.21), together with its related consequence (10.5), demonstrates how quark and gluon 
fields that transform non-trivially under SU(3) assemble together into the colorless, SU(3)-
invariant particle states which are baryons and mesons, that is, hadrons.  Then, the non-
vanishing trace of (9.21) forces us to employ SU(3)×U(1).  This ensures topological stability 
which is required if (9.21) is to be associated with stable physical particles such as the neutron 
and especially the proton.  Further, via the new U(1) generator, this introduces flavor which then 
allows these baryons to be flavored into the protons and neutrons at the heart of nuclear physics. 

  
Of course, as discussed in section 4 there are many reasons to believe confinement is 

related to the running of the coupling constant which is an inherently quantum effect.  But as also 
argued in section 4, one might take the perspective that the cause for confinement and baryon 
compositeness is the classical field equation (3.3) for a Yang-Mills monopole which has the 
symmetry (3.5), and that one of the effects of this is that in a quantum field treatment of these 
baryon monopoles, the strong coupling will weaken for ultraviolet and strengthen for infrared 
probes.  Without more, however, one could fairly conclude that the connections suggested 
between some identities of the classical Yang-Mills equation and confinement in the quantum 
theory are simply still too speculative or weakly supported to constitute a viable theory of 
hadronic physics, especially since quarks are alluded to but not shown to be required.   

 
But sections 9 and 10 overcome any such conclusion.  These sections deepen support for 

the argument made in sections 3 and 4 by demonstrating that a further cause for confinement is 
the color-neutral SU(3)-invariance of both the monopole (9.21) and the meson (10.5), which 
might then be expected in a quantum field treatment to reveal the effect of a running coupling 
constant which is consistent with these root causes that are already seen in the classical theory.  
It is certainly true that an important view of confinement is the quantum view of a running 
coupling.  But so too is Jaffe and Witten’s complementary symmetry view of confinement as 
utilized here, in which “even though [a] theory is described in terms of elementary fields, such as 
the quark fields, that transform non-trivially under SU(3), the physical particle states—such as 
the proton, neutron, and pion—are SU(3)-invariant.”  Sections 9 and 10 here make clear that 
Yang-Mills monopoles manifest these required confinement symmetries.  And, this underscores 
the value as argued in section 4, of finding and fleshing out, the right classical theory to quantize, 
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before trying to leap unarmed into quantization.  Colloquially speaking, classical theory is the 
“horse” which must one must precede the “cart” of quantization. 

 
As to the “cart” of quantization, two further points may now be made in light of the 

development after section 4, to supplement those already made in section 4.  First, as noted in 
section 4, the chiral anomaly provides an object lesson that not every symmetry which appears in 
a classical theory carries through to the associated quantum theory.  As pointed out in section 7, 
any divergence there may be between classical and quantum symmetries emanates from the 
measure  which is the integration variable in the path integral.  A classical symmetry exists if 

some transformation leaves the action  invariant.  A quantum symmetry exists (and inherits 

the classical symmetry) if the same transformation leaves the path integral  

invariant.  So, for example, although the classical monopole (9.21) has the color-neutral baryon 

wavefunction  and the classical net-flowing magnetic field (10.5) 

has the color-neutral meson wavefunction , i.e., are classically invariant under an 
SU(3) gauge transformation, it is valid to ask whether these symmetries will carry through to the 
related quantum objects.  This cannot be answered with absolute certainty until one has the 
complete quantum theory corresponding to the foregoing classical development, but it is 
encouraging to note that the observed baryons and the mesons of quantum physics are also 

known to be color-neutral with the same respective  and 

 wavefunctions.  Thus for example, when Jaffe and Witten state on page 3 of [6] 
that “the physical particle states—such as the proton, neutron, and pion—are SU(3)-invariant,” 
they are not qualifying or restricting this statement to classical particles.  QCD is a quantum 
theory, and the invariance of baryons and mesons, i.e., hadrons, under SU(3) is a well-known 
feature not only of classical, but of quantum, chromodynamics.  That these symmetries appear to 
emerge very naturally and inexorably from classical Yang-Mills theory without having to make 
any separate postulates about SU(3) being a theory of strong interactions, is highly compelling. 
 

Second, the most important result pertaining to quantization in this paper, is the finding in 

section 8 and its application in sections 11 and 13 that the inverse solution  is actually a 

recursive solution for , but that this can be turned into a  solution by recursing to 

any desired order and then setting the perturbation .  This is important because, referring to 
page 6 of [6], the difficulty of being able to: 

 
“Prove that for any compact simple gauge group G, a non-trivial quantum Yang–
Mills theory exists on . . .” 

 
is not a physics problem, it is a mathematics problem, and more particularly, it is a calculation 
problem of not knowing how to perform an exact analytical calculation of the quantum path 
integral for Yang-Mills theory in particular, and for non-linear physics theories in general. 
 
 Specifically, as discussed in section 8, the technique of analytically calculating a path 

integral   revolves around clever extrapolations of the 

Dϕ
( )S ϕ

( )expZ D iSϕ ϕ= ∫

[ ] [ ] [ ], , ,R G B G B R B R G+ +

BBGGRR ++

[ ] [ ] [ ], , ,R G B G B R B R G+ +
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( )G J

( ),G G J ( )G J
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�
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Gaussian integral  which only contains x and 

 and no higher order in the integration variable x.  Put an  or an  into this integral, or 
even worse, put any higher-order polynomial into this integral, and it is simply not known 
mathematically how to calculate this integral at all.  So the physics recipe for quantizing Yang-
Mills is very clear: find the action, and use it in a path integral.  But the mathematical technique 
for how to calculate this is not known.  The best anybody had been able to do thus far is to make 

use of (8.25) to replace gauge fields with  and then remove  from 

the integral so all that remains behind to integrate is the simple .  

Generally speaking, we need to replace the gauge fields G with current densities J, and leave 

behind the simple quadratic form .  What we find in section 8 is a new and 

different way to make a  substitution in lieu of the usual : recurse 

 to any desired order, then set  

(because ) to zero so that all gauge fields are removed.  By recursing to infinite order 

and removing these gauge fields, we can arrive at an expression for  with all the gauge 

fields removed, and be left with only having to integrate .  In short, the 

recursion preliminarily developed in section 8 provides the needed mathematical tools to carry 
out exact analytical calculations of what are now seemingly-intractable path integrations for non-
linear physical field theories. 
 
 In sections 11 through 13, we then show how to apply these recursive results to calculate 
the non-linear Yang-Mills path integrals for both quark current and faux magnetic monopole 
densities over the gauge field portion  of the path integral measure analytically and exactly, 
thereby proving the existence of a non-trivial relativistic quantum Yang–Mills theory exists on 

 for any compact simple gauge group G by solving a mathematical challenge for which the 
solution has not previously been known.  The results of this are in (13.13) / (13.16) for infinite 
recursion and (13.14) for finite recursion.  Having used recursive technique to prove a quantum 
field theory for Yang-Mills, the question now arises whether recursive technique may be 
similarly applied to other non-linear field theories, most notably, gravitation. 
 

 In section 14, we starts at (14.3) with the amplitude density  at first 

recursive order, and uses this to derive (14.32) for the potential energy E1 between two as a 
function of radial distance.  In Figures 1 through 4 we see how this leaves intact the normal r-1 
character of this potential at very short distances, yet how at around 1/6 F based on 

 the potential changes its qualitative character and is dominantly 

driven by a  contribution into being a confining potential.  Given that we 

have now been able to use  from (13.21) to analytically show the 

qualitative features of confinement as between two J,  and given that 

( ) ( ) ( ).52 21
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2x 3x 4x

/G Jµ
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( )21
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( )21
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G J→ /G Jµ
µ δ δ→
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−
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 is the amplitude density in this same (13.21) for 

two monopole baryons P’, a good next step would be to develop this amplitude in similar fashion 
(that is, Fourier transform it over from momentum space to configuration space) to see if it 
reveals a short range interaction between two P’ densities.  If this can be shown similarly to what 
was done in section 14, one would be able to more or less rest the case that baryons are indeed 
the magnetic monopoles of Yang-Mills gauge theory. 
 
 Another important step is to see if this can be connected to numerically-precise empirical 
observations relating to protons and neutrons.  Among the important unexplained data that we 
already know about for protons and neutrons are their masses, as well as their binding energies in 
a wide variety of nuclei.  Thus, it becomes important to calculate energies and as pointed out at 

(10.13), the way to do so is to use (10.13) in the general energy formulation , 

using a combination of  inner and  outer product terms.  While we do not 

do so in this paper, the author has done so before, and published these results in [15], [16] and 
[21].  Beyond the clear symmetry concurrences developed in section 10, these empirical 
concurrences provide compelling experimental support for the concluding that the non-zero faux 

magnetic source densities  are baryon densities, that  is a baryon, 

that  in (10.4) is a meson field, and that the  which originally 

actuated this whole line of development represents the interaction of these baryons via mesons, 
and indeed the nuclear interaction protons and neutrons at classical level.  As discussed, although 
these symmetries were all developed using the classical theory, there is no apparent reason why 
these symmetries would be lost in the  measure of the complete path integral 

 and would not carry over to the 

quantum field theory.   
 

In fact, it is well known that the same color symmetries which have been classically 
developed in the present treatment solely emergent from classical Yang-Mills theory, do carry 
over to Quantum Chromodynamics. 

 
Because the calculation of section 14 using an Abelian simplification which in which 

certain matrix inverses are treated as ordinary denominators, section 15 proceeds directly into a 
full non-abelian calculation with no simplification of the inverses.  We discovere in section 15 
that the probability density for the source current J which is of course a density in a three 
dimensional space, i.e., which has dimensions of 1/volume=1/length3, cannot be properly treated 
in the non-abelian case without deconstructing the three-density into its one-dimensional 
component densities, i.e., into three separate 1/x, 1/y and 1/z densities in x, y, z Cartesian 
coordinates.  The need to engage in such a deconstruction to properly develop the non-abelian 
theory reveals  a substructure in the quantum field equations not dissimilar to the type of 
substructure that Dirac found when he pursued a linear expression for the energy-momentum 
relationship 2 0p p mσ

σ − =  and came upon the fermion substructure represented in 

( ) 0p m uσ
σγ − = .   

( ) ( )( )114
1 [ ]31

TrP P k J Pαβγρ
µνρ µ ν αβγε π
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Indeed, the upshot of the overall result obtained in (15.42) that there is a direct 

isomorphic relationship between a coupled quantum probability field designated 0hP  and a 

quantum potential 1E  at the first order of recursion in the non-linear quantum field theory.  This 

teaches that analytical non-linear quantum field theory effectively involves studying 
relationships between coupled probability fields and their associated underlying potentials which 
operate on propagating field quanta via least action principles.  Thus, it is desirable to study what 
is found in section 15 using some specific, paradigmatic quantum probability densities to help 
flesh out something of an “operator’s manual” for applying post-path-integration analytical non-
linear quantum field theory. 

 
Sections 16 through 20 develop what are effectively four specific examples of the 

application of non-linear quantum field theory, each of which is informative as to how non-linear 
quantum field theory actually works when analytically applied.  Section 16 shows that the 
classical -1/r potential of Coulomb emerges in the special case where the probability density is 
taken to be zero for all r except r=0, and a portion of section 19 later shows that the probability 
density for the Coulomb potential must be taken to be a Dirac (half-)delta right at r=0. 

 
Section 17, which deepens the development of section 14, shows how a constant isotropic 

probability density bounded within a limited spatial region is isomorphically associated with a 
confining potential.  This may appear at first impression to be a tautology, because if we posit a 
spatially-bounded probability density then we are of course confining the locales at which a field 
quantum contributing to that bounded probability may situate.  But the point is that one cannot 
simply posit a constant bounded probability density and then expect that density to hold together 
by itself.  Physics is still physics; it is not magic.  Even in quantum theory there must be some 
explanatory cause and effect.  So if one is going to posit a bounded probability density, then one 
must at the same time demonstrate that there is an associated potential which is capable of 
dynamically causing and enforcing that confinement.  It is the isomorphism between the posited 
bounded constant probability density and the confining potential which provides us with the 
potential that is needed as a causal matter of dynamic physics, to maintain the constant bounded 
probability density. 

 
Section 18 specifically examines the running of the strong QCD interaction coupling 

based on the confining potential and the constant bounded probability density developed in 
Section 17.  The results obtained in this Figure 14 based on the theoretical equation (18.22) are 
able to match the theoretical results developed here, to within the observed error bars of the 
empirical running coupling data.   And, to the extent that the predicted curve in Figure 14 may be 
nominally higher than the fitted PDG curve below MZ and nominally lower above MZ, it is shown 
via Figure 15 how this is both indicative of, and accounted for, by new physics which we know 
is to be expected in the GUT and Planck energy domains of 1015 to 1020 GeV, and results from 
positing that asymptotic freedom remains asymptotic right up to Q → ∞  rather than accounting 
for the likelihood that the asymptotic freedom behavior is likely to change once we enter the 
GUT to Planck-scale domain. 
   

Section 19 develops the specific example of a Gaussian probability distribution, and 
shows that this distribution is isomorphically linked to a potential which is very close to the 
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Coulomb potential, differing only within small standard deviations about the Gaussian peak.  
This is how we show that in the limit where the Gaussian becomes a Dirac delta, the potential 
maps precisely over to the Coulomb potential as noted above in relation to section 16. 

 
Section 20 tackles perhaps the most intriguing challenges of quantum field theory, 

namely, those presented by single and double slit experiments.   Here we start with the sinc-
based probability densities which are observed by detectors at a distance from the slits which 
greatly exceeds slit width and separation, and as was done in the previous three examples, we 
obtain the isomorphically-related potential.  What we find is that the accumulation of field 
quanta on a detector in an interference-like probability density is in fact guided by this potential 
via long-standing principles of least action propagation.  The quantum paradoxes of slit 
experiments come into play not by discarding least action as a causal principle to explain the 
dynamical evolution and propagation of a system of large numbers of field quanta, but by the 
fact that this guiding potential is itself induced in the quantum vacuum by interaction with the 
field quanta themselves as well as by the slit configuration, in contrast to a classical potential 
which is taken to be a preexisting background potential influenced minimally if at all by 
anything other than the source of that potential. 
 
 Taken together, the ability to analytically complete the path integration of the classical 
action and then study some specific examples of physical systems in non-linear quantum field 
theory, gives us some deep new insights into some of the most perplexing problems which have 
confronted theoretical physicists since the dawning of the quantum era at the outset of the 20th 
century. 
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