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Abstract

The problem of angular momentum addition requires the calculation of Clebsch-Gordan coefficients. While sys-
tems involving small values of momenta and spin present no special problem, larger systems require extensive
computational effort. This paper describes a straightforward method for computing the coefficients for any
two-particle problem exactly by means of a simplified form of the recursion formula in a notation that is par-
ticularly accessible to the third- or fourth-year student. The method is summarized in a brief BASIC program.

1. Problem Overview

Consider the addition of orbital and spin angular momenta for two particles (or two unconnected systems) that
reside in uncoupled eigenstates designed as | j1m1〉 and | j1m1〉. A product state | j m〉 is to be constructed that is
composed of combinations of these individual state eigenkets. The spin terms mk may take on any integer or
half-integer values between − jk ¶ mk ¶ jk. Although there can be a total of (2 j1 + 1) · (2 j2 + 1) possible spin
pairs m1, m2, each pair must satisfy m1+m2 = m if the corresponding CG coefficient is to be non-zero. Similarly,
the product-space orbital momentum j must satisfy the triangle rule | j1 − j2| ¶ j ¶ j1 + j2, while the product
spin m must satisfy − j ¶ m¶ j. The CG coefficients, which we denote here as 〈 j2m2|〈 j1m1| jm〉, effectively
superpose all state products via the closure relation

| jm〉=
∑

m1,m2

| j1m1〉| j2m2〉〈 j2m2|〈 j1m1| jm〉 (1.1)

A particular CG coefficient therefore represents the (real) probability amplitude for the corresponding product
ket | j1m1〉| j2m2〉 (a more proper expression would be | j1m1〉 ⊗ | j2 m2〉, since the systems must be unconnected).
The summation over spins introduces many disallowed states, so that the number of non-zero CG coefficients is
comparatively small. If we restrict the spins in (1.1) so that only allowed state products appear in the
summation, then the problem can be restated more succinctly as

| jm〉=
n
∑

k=1

| j1m1,k〉| j2m2,k〉〈 j2m2,k|〈 j1m1,k| jm〉

where k represents an allowed spin pair index and n is the total number of such pairs (this is also the number of
non-zero CG coefficients). In the following, we shall assume that all valid spin pairs for a particular problem
have been identified (this will be demonstrated shortly). We can then drop the somewhat imposing notation for
the CG coefficient by expressing it instead as

Ck = 〈 j2m2,k|〈 j1m1,k| jm〉

We can now write

| jm〉=
n
∑

k=1

Ck | j1m1,k〉| j2 m2,k〉 (1.2)

By assigning m1,1 as the lowest allowed spin for particle 1 (and m1,n as the highest value), we can develop a
convenient method for relabelling all of the spin indices that will greatly simplify the determination of the Ck.

2. Approach

In order to solve (1.2) for the CG coefficients, we must first know how many non-zero coefficients exist for a
given problem and what the allowed spin pairs are. Both of these questions can be answered by plotting the
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condition m2 = m−m1 on the m1,m2 plane and observing the locations of the quantities m1,1 and m1,n. It is
easy to verify that if j2 − j1 ¾ m, then the lowest possible spin for particle 1 must be m1,1 =− j1; otherwise,
m1,1 = m− j2. Similarly, it can be shown that the highest possible spin for particle 1 is m1,n = m+ j2 when
j1 − j2 ¾ m; otherwise, m1,n = j1. The number of states n spanning the lowest and highest spins can then be
determined by n= m1,n −m1,1 + 1. However, for computational purposes it is easier to dispense with the
inequality conditions altogether and just use the equivalent identities

m1,1 =
m− j1 − j2 + | j1 − j2 +m|

2

m1,n =
m+ j1 + j2 − | j1 − j2 −m|

2

(2.1)

(We omit the proof for brevity.) Once m1,1 and m1,n have been determined, we can calculate all of the other
values m1,k by addition: m1,k+1 = m1,k + 1, etc., up to m1,n. The allowed spins for particle 2 may then be
determined using m2,k = m−m1,k.

We begin the solution of (1.2) by imposing the condition that the eigenvalues of the total angular momentum
operator Ĵ2 acting on | jm〉 must be the same as those obtained by action of Ĵ2 on | j1m1,k〉| j2m2,k〉. That is, we
demand that

Ĵ 2| jm〉= j( j+ 1)ħh2| jm〉

be expandable in terms of the operator Ĵ = Ĵ1 + Ĵ2, where Ĵk = Ĵkx êx + Ĵk y êy + Ĵkz êz (k = 1,2). However,
things are made difficult by the fact that the operators Ĵkx and Ĵk y acting on | j1m1,k〉| j2m2,k〉 lead to extremely
complicated expressions. Fortunately, the total angular momentum operator Ĵ 2 is expressible in terms of the
quantities Ĵk via the familiar identity

Ĵ2 = Ĵ 2
1 + Ĵ 2

2 + 2 Ĵ1z Ĵ2z + Ĵ1+ Ĵ2− + Ĵ1− Ĵ2+ (2.2)

where the quantities Ĵk± = Ĵkx ± iĴk y are the raising (+) and lowering (−) operators (or “ladder” operators) for
particle k, which increase or decrease the spin component by one unit (the normalization constant for the lth
spin pair is
p

jk( jk + 1)−mk,l(mk,l ± 1)ħh). The operators in (2.2) provide convenient “access” to the
eigenvalues we need to pull out of | j1m1,k〉| j2m2,k〉 because they involve only the commuting operators Ĵ 2

k and
Ĵkz and the ladder operators. Therefore, we have

Ĵ 2| jm〉=
n
∑

k=1

Ck [Ĵ
2

1 + Ĵ 2
2 + 2 Ĵ1z Ĵ2z + Ĵ1+ Ĵ2− + Ĵ1− Ĵ2+] | jm1,k〉| jm2,k〉

Carrying out the indicated operations, we obtain a set of n homogeneous linear equations in the CG coefficients:

Ck

¦

j1( j1 + 1) + j2( j2 + 1) + 2m1,km2,k − j( j+ 1)
©

| j1m1,k〉| j2m2,k〉+

Ck

p

j1( j1 + 1)−m1,k(m1,k + 1)
p

j2( j2 + 1)−m2,k(m2,k − 1)| j1m1,k + 1〉| j2m2,k − 1〉+

Ck

p

j1( j1 − 1)−m1,k(m1,k − 1)
p

j2( j2 + 1)−m2,k(m2,k + 1)| j1m1,k − 1〉| j2m2,k + 1〉= 0

(2.3)

The various product kets in (2.3) serve only to keep track of the indices for Ck and their coefficients; as we
really have no need for them (our goal, after all, is to find the Ck), it would considerably simplify matters if we
could dispense with them altogether. One way of doing this is to relabel the second and third terms in the above
expression so that the corresponding product kets are the same as that in the first term, | j1m1,k〉| j2m2,k〉. We
can then divide this product ket out since it is arbitrary for any k.

To accomplish this, consider the factor m1,k + 1 in the second term above. It follows that if m1,1 is the lowest
allowable spin for particle 1, a step up to the next spin must require that m1,k + 1= m1,k+1. Likewise, since
m2,k = m−m1,k, we must have m2,k + 1= m1,k−1. Similarly, in the third term we have m1,k − 1= m1,k−1 and
m2,k + 1= m2,k−1. In view of this, we set k′ = k+ 1 in the second term, which changes Ck to Ck−1 and converts
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the product ket from | j1m1,k + 1〉| j2m2,k − 1〉 to | j1m1,k〉| j2m2,k〉. Similarly, revising the index from k to k− 1
in the third term changes Ck to Ck+1 with a similar change in the product ket. We then arrive at

Ck

¦

j1( j1 + 1) + j2( j2 + 1) + 2m1,km2,k − j( j+ 1)
©

| j1m1,k〉| j2m2,k〉 +

Ck−1

p

j1( j1 + 1)−m1,k m1,k−1

p

j2( j2 + 1)−m2,k m2,k−1 | j1m1,k〉| j2m2,k 〉 +

Ck+1

p

j1( j1 + 1)−m1,k m1,k+1

p

j2( j2 + 1)−m2,k m2,k+1 | j1m1,k〉| j2m2,k 〉 = 0

(2.4)

Again, because the product ket is arbitrary, we can drop it altogether and write

Ck

¦

j1( j1 + 1) + j2( j2 + 1) + 2m1,km2,k − j( j+ 1)
©

+

Ck−1

p

j1( j1 + 1)−m1,k m1,k−1

p

j2( j2 + 1)−m2,k m2,k−1 +

Ck+1

p

j1( j1 + 1)−m1,k m1,k+1

p

j2( j2 + 1)−m2,k m2,k+1 = 0

(2.5)

Equation (2.5) is a particularly simple form of the recursion relations for the CG coefficients. It can be viewed as
the homogeneous matrix expression AC = 0, where the square matrix A (of rank n) has diagonal elements
corresponding to the coefficients of Ck, while the two off-diagonal elements correspond to the coefficients of
Ck−1 and Ck+1. The coefficient matrix is therefore tridiagonal with a bandwidth of two. Note also that
off-diagonal terms like m1,k ·m1,k+1 are invariant with respect to interchange of the indices k and k+ 1; thus,
Ak k+1 = Ak+1 k, so the coefficient matrix A is symmetric. Tridiagonal, symmetric matrices are very easy to
manipulate and, although the matrix is singular, we can solve for the Ck using the fact that the CG coefficients
are the components of a unit vector (that is, the sum of the squares of the CG coefficients is unity). This
condition uniquely (up to a sign) determines the coefficients. The CG coefficients are therefore simply the
components of the n-dimensional nullspace vector associated with the coefficient matrix A.

3. Computational Procedure

To find the Ck, we must solve the homogenous set of equations given by
















a11 a12 0 0 0 · · · 0
a12 a22 a23 0 0 · · · 0
0 a23 a33 a34 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 an−1 n ann

































C1
C2
C3
...

Cn

















=

















0
0
0
...
0

















,

subject to |C |= 1, where
ak k = j1( j1 + 1) + j2( j2 + 1) + 2m1,km2,k − j( j+ 1) (3.1)

and
ak k+1 =
p

j1( j1 + 1)−m1,km1,k+1

p

j2( j2 + 1)−m2,km2,k+1 (3.2)

Any backward-substitution procedure can be used to solve for the coefficients. It is conventional to fix the sign
of the coefficients by taking Cn to be a positive number.

4. Example

Suppose we are given two particles with j1 = 3 and j2 = 6, which we wish to combine into a product state in
which j = 5, m= 3. Our definition for n tells us that there will be a total of 7 CG coefficients; that is, in order
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for m1,k +m2,k = 3, the particle spins can combine only in the seven ordered pairs

m1,1, m2,1 =−3, 6

m1,2, m2,2 =−2,5

m1,3, m2,3 =−1,4

m1,4, m2,4 = 0, 3

m1,5, m2,5 = 1,2

m1,6, m2,6 = 2,1

m1,7, m2,7 = 3,0

as is easily confirmed by the formulas given earlier. The matrix elements may be computed from (3.1) and
(3.2); they are

a11 =−12 a12 = a21 = 6
p

2

a22 = 4 a23 = a32 = 2
p

55

a33 = 16 a34 = a43 = 6
p

10

a44 = 24 a45 = a54 = 12
p

3

a55 = 28 a56 = a65 = 20

a66 = 28 a67 = a76 = 6
p

7

a77 = 24

with all the other matrix elements being zero. We therefore have to solve the system






















−12 6
p

2 0 0 0 0 0
6
p

2 4 2
p

55 0 0 0 0
0 2

p
55 16 6

p
10 0 0 0

0 0 6
p

10 24 12
p

3 0 0
0 0 0 12

p
3 28 20 0

0 0 0 0 20 28 6
p

7
0 0 0 0 0 6

p
7 24











































C1
C2
C3
C4
C5
C6
C7





















=





















0
0
0
0
0
0
0





















subject to |C | = 1. The student should have no difficulty showing that the solution is





















〈3,−3|〈6,6|5,3〉
〈3,−2|〈6,5|5,3〉
〈3,−1|〈6,4|5,3〉
〈3,0|〈6,3|5, 3〉
〈3, 1|〈6,2|5, 3〉
〈3, 2|〈6,1|5, 3〉
〈3, 3|〈6,0|5, 3〉





















=

























p

11/91
p

22/91

−
p

10/91
−1/
p

91
p

7/39
−8/
p

273
2/
p

39

























5. Computer Program

The two-particle procedure is very easy to implement on a computer. It can be used to calculate the CG
coefficients of systems having extremely large momenta and spin exactly (within the limits of floating-point
precision). The following BASIC program uses the formulas presented above to compute the CG coefficients in
decimal format (the student might want to modify the program to output the coefficients for simple problems in
terms of ratios of integers, as we have done in the example problem). Because the backward-substitution
procedure needs only the last n− 1 rows of the n× n coefficient matrix A (which is sparse with never more than
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2n− 2 non-zero elements), the program constructs a vector B from these elements in lieu of storing the entire
coefficient matrix.

For a large problem like j = 50, m= 40, j1 = 30, j2 = 40, the typical personal computer can compute the 31 CG
coefficients in a fraction of a second. However, the decimal output is a serious limitation. For this example, the
value of 〈30,30|〈40,10|50,40〉 is approximately 0.1246637149976796; by comparison, Mathematica returns

〈30,30|〈40, 10|50, 40〉=
261

2

r

27564505

30205852104326
= 0.12466371499767958758 . . .

which is decidedly more useful.

CLEAR
DEFDBL A-S: DIM B(2000), C(2000)
INPUT "Enter J,M,J1,J2 ", J, M, J1, J2
M1 = (M-J1-J2+ABS(J1-J2+M))/2 : N = (M+J1+J2-ABS(J1-J2-M))/2-M1+1
1: FOR X = N-1 TO 1 STEP -1
IF FLAG = 1 THEN GOTO 2
B(2*X) = J1*(J1+1)+J2*(J2+1)+2*(M1+X)*(M-M1-X)-J*(J+1) : C(N) = 1
B(2*X-1) = SQR((J1*(J1+1)-(M1+X)*(M1+X-1))*(J2*(J2+1)-(M-M1-X)*(M-M1-X+1)))
2: C(X) = -(B(2*X)*C(X+1)+B(2*X+1)*C(X+2))/B(2*X-1)
SUM = SUM + C(X)
NEXT X
FLAG = FLAG + 1
IF FLAG = 1 THEN C(N) = SQR(1/(SUM+1)) : GOTO 1
FOR X = 1 TO N
PRINT USING "#.##############"; C(X)
NEXT X
END
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