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The function equation S(n) = Z(n) 1
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Abstract For any positive integer n, let S(n) and Z(n) denote the Smarandache function and the

pseudo Smarandache function respectively. In this paper we prove that the equation S(n) = Z(n) has

infinitely many positive integer solutions n.
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For any positive integers n, let S(n) and Z(n) denote the Smarandache function and pseudo
Smarandache function respectively. In [1], Ashbacher proposed two problems concerning the
equation

S(n) = Z(n) (1)

as follows.
Problem 1. Prove that if n is an even perfect number, then n satisfies (1).
Problem 2. Prove that (1) has infinitely many positive integer solutions n.
In this paper we completely solve these problems as follows.
Theorem 1. If n is an even perfect number, then (1) holds.
Theorem 2. (1) has infinitely many positive integer solutions n.
Proof of Theorem 1. By [2, Theorem 277], if n is an even perfect number, then

n = 2p−1(2p − 1), (2)

where p is a prime. By [3] and [4], we have

S(n) = 2p − 1. (3)

On the other hand, since

1
2

(2p − 1) ((2p − 1) + 1) = n, (4)

by (2), we get

Z(n) = 2p − 1 (5)

immediately. The combination of (3) and (5) yields (1). Thus, the theorem is proved.
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Proof of Theorem 2. Let p be an odd prime with p ≡ 3( mod 4). Since S(2) = 2 and
S(p) = p, we have

S(2p) = max(S(2), S(p)) = max(2, p) = p. (6)

Let t = Z(2p), By the define of Z(n), we have

1
2
t(t + 1) ≡ 0(mod2p). (7)

It implies that either t ≡ 0(modp) or t + 1 ≡ 0(modp). Hence, we get t ≥ p − 1. If t = p − 1,
then from (7) we obtain

1
2
(p− 1)p ≡ 0(mod2p). (8)

whence we get

1
2
(p− 1)p ≡ 0(mod2). (9)

But, since p ≡ 3(mod4), (9) is impossible. So we have

t ≥ p. (10)

Since p + 1 ≡ 0(mod4), we get

1
2
p(p + 1) ≡ 0(mod2p) (11)

and t = p by (10). Therefore, by (6), n = 2p is a solution of (1). Notice that there exist
infinitely many primes p with p ≡ 3(mod4). It implies that (1) has infinitely many positive
integer solutions n. The theorem is proved.
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