On a conjecture involving the function $SL^*(n)$

Yanrong Xue

Department of Mathematics, Northwest University Xi'an, Shaanxi, P.R.China

Received February 4, 2007

Abstract In this paper, we define a new arithmetical function $SL^*(n)$, which is related with the famous F.Smarandache LCM function SL(n). Then we studied the properties of $SL^*(n)$, and solved a conjecture involving function $SL^*(n)$.

Keywords F.Smarandache LCM function, $SL^*(n)$ function, conjecture.

§1. Introduction and result

For any positive integer n, the famous F.Smarandache LCM function SL(n) is defined as the smallest positive integer k such that $n \mid [1, 2, \dots, k]$, where $[1, 2, \dots, k]$ denotes the least common multiple of all positive integers from 1 to k. For example, the first few values of SL(n) are SL(1) = 1, SL(2) = 2, SL(3) = 3, SL(4) = 4, SL(5) = 5, SL(6) = 3, SL(7) = 7, SL(8) = 8, SL(9) = 9, SL(10) = 5, SL(11) = 11, SL(12) = 4, SL(13) = 13, SL(14) = 7, SL(15) = 5, SL(16) = 16, \cdots . From the definition of SL(n) we can easily deduce that if $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the factorization of n into primes powers, then

$$SL(n) = \max\{p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_r^{\alpha_r}\}.$$

About the elementary properties of SL(n), many people had studied it, and obtained some interesting results, see references [2], [4] and [5]. For example, Murthy [2] porved that if n be a prime, then SL(n) = S(n), where S(n) be the F.Smarandache function. That is, $S(n) = \min\{m: n|m!, m \in N\}$. Simultaneously, Murthy [2] also proposed the following problem:

$$SL(n) = S(n), \quad S(n) \neq n$$
 (1)

Le Maohua [4] solved this problem completely, and proved the following conclusion: Every positive integer n satisfying (1) can be expressed as

$$n = 12$$
 or $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} p$,

where p_1, p_2, \dots, p_r, p are distinct primes and $\alpha_1, \alpha_2, \dots, \alpha_r$ are positive integers satisfying $p > p_i^{\alpha_i}, i = 1, 2, \dots, r$.

42 Yanrong Xue No. 2

Zhongtian Lv [5] proved that for any real number x > 1 and fixed positive integer k, we have the asymptotic formula

$$\sum_{n \le x} SL(n) = \frac{\pi^2}{12} \cdot \frac{x^2}{\ln x} + \sum_{i=2}^k \frac{c_i \cdot x^2}{\ln^i x} + O\left(\frac{x^2}{\ln^{k+1} x}\right),$$

where c_i $(i = 2, 3, \dots, k)$ are computable constants.

Now, we define another function $SL^*(n)$ as follows: $SL^*(1) = 1$, and if $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the factorization of n into primes powers, then

$$SL^*(n) = \min\{p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_r^{\alpha_r}\},\$$

where $p_1 < p_2 < \cdots < p_r$ are primes.

About the elementary properties of function $SL^*(n)$, it seems that none has studied it yet, at least we have not seen such a paper before. It is clear that function $SL^*(n)$ is the dual function of SL(n). So it has close relations with SL(n). In this paper, we use the elementary method to study the following problem: For any positive integer n, whether the summation

$$\sum_{d|n} \frac{1}{SL^*(n)},\tag{2}$$

is a positive integer? where $\sum_{d|n}$ denotes the summation over all positive divisors of n.

We conjecture that there is no any positive integer n > 1 such that (2) is an integer. In this paper, we solved this conjecture, and proved the following:

Theorem. There is no any positive integer n > 1 such that (2) is an positive integer.

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem directly. For any positive integer n > 1, let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the factorization of n into primes powers, from the definition of $SL^*(n)$ we know that

$$SL^*(n) = \min\{p_1^{\alpha_1}, \ p_2^{\alpha_2}, \ \cdots, \ p_r^{\alpha_r}\}.$$
 (3)

Now if $SL(n) = p_k^{\alpha_k}$ (where $1 \le k \le r$) and n satisfy

$$\sum_{d|n} \frac{1}{SL^*(d)} = N, \text{ a positive integer,}$$

then let $n = m \cdot p_k^{\alpha_k}$ with $(m, p_k) = 1$, note that for any d|m with d > 1, $SL^*(p_k^i \cdot d) \mid m \cdot p_k^{\alpha_k - 1}$, where $i = 0, 1, 2, \dots, \alpha_k$. We have

$$\begin{split} N &= \sum_{d|n} \frac{1}{SL^*(d)} = \sum_{i=0}^{\alpha_k} \sum_{d|m} \frac{1}{SL^*(d \cdot p_k^i)} = \sum_{i=0}^{\alpha_k} \frac{1}{SL^*(p_k^i)} + \sum_{i=0}^{\alpha_k} \sum_{d|m} \frac{1}{SL^*(d \cdot p_k^i)} \\ &= 1 + \frac{1}{p_k} + \dots + \frac{1}{p_k^{\alpha_k}} + \sum_{i=0}^{\alpha_k} \sum_{d|m} \frac{1}{SL^*(d \cdot p_k^i)}, \end{split}$$

or

$$m \cdot p_k^{\alpha_k - 1} \cdot N = \sum_{i=0}^{\alpha_k} \sum_{\substack{d \mid m \\ d > 1}} \frac{m \cdot p_k^{\alpha_k - 1}}{SL^*(d \cdot p_k^i)} + m \cdot p_k^{\alpha_k - 1} \cdot \left(1 + \frac{1}{p_k} + \dots + \frac{1}{p_k^{\alpha_k - 1}}\right) + \frac{m}{p_k}. \tag{4}$$

It is clear that for any d|m with d > 1,

$$\sum_{i=0}^{\alpha_k} \sum_{\substack{d \mid m \\ d > 1}} \frac{m \cdot p_k^{\alpha_k - 1}}{SL^*(d \cdot p_k^i)} \quad \text{and} \quad m \cdot p_k^{\alpha_k - 1} \cdot \left(1 + \frac{1}{p_k} + \dots + \frac{1}{p_k^{\alpha_k - 1}}\right),$$

are integers, but $\frac{m}{p_k}$ is not an integer. This contradicts with (4). So the theorem is true. This completes the proof of the theorem.

Open problem. If $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}$ be the factorization of n into primes powers, whether there exists an integer $n\geq 2$ such that $\sum_{d|n}\frac{1}{SL(n)}$ is an integer?

References

- [1] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shanghai Science and Technology Press, Shanghai, 1988.
- [2] A. Murthy, Some notions on least common multiples, Smarandache Notions Journal, **12**(2001), 307-309.
- [3] I. Balacenoiu and V. Seleacu, History of the Smarandache function, Smarandache Notions Journal, **10**(1999), 192-201.
- [4] Le Maohua, An equation concerning the Smarandache LCM function, Smarandache Notions Journal, **14**(2004),186-188.
- [5] Zhongtian Lv, On the F. Smarandache LCM function and its mean value, Scientia Magna, $\mathbf{3}(2007)$, No. 1, 22-25.
- [6] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
- [7] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.