On Functions Preserving Convergence of Series in Fuzzy *n*-Normed Spaces

Sayed Elagan

Department of Mathematics and Statistics, Faculty of Science, Taif University,

Taif , El-Haweiah, P.O.Box 888, Zip Code 21974, Kingdom of Saudi Arabia (KSA).

E-mail: sayed_khalil2000@yahoo.com

Mohamad Rafi Segi Rahmat

School of Applied Mathematics, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan

E-mail: Mohd.Rafi@nottingham.edu.my

Abstract: The purpose of this paper is to introduce finite convergence sequences and functions preserving convergence of series in fuzzy *n*-normed spaces.

Keywords: Pseudo-Euclidean space, Smarandache space, fuzzy *n*-normed spaces, *n*-seminorm; function preserving convergence

AMS(2000): 34A10, 34C10

§1. Introduction

A Pseudo-Euclidean space is a particular Smarandache space defined on a Euclidean space \mathbb{R}^n such that a straight line passing through a point p may turn an angle $\theta_p \geq 0$. If $\theta_p > 0$, then p is called a non-Euclidean point. Otherwise, a Euclidean point. In this paper, normed spaces are considered to be Euclidean, i.e., every point is Euclidean. In [7], S. Gähler introduced n-norms on a linear space. A detailed theory of n-normed linear space can be found in [9,12,14,15]. In [9], H. Gunawan and M. Mashadi gave a simple way to derive an (n-1)- norm from the n-norm in such a way that the convergence and completeness in the n-norm is related to those in the derived (n-1)-norm. A detailed theory of fuzzy normed linear space can be found in [1,2,4,5,6,11,13,18]. In [16], A. Narayanan and S. Vijayabalaji have extended the n-normed linear space to fuzzy n-normed linear space and in [20] the authors have studied the completeness of fuzzy n-normed spaces.

The main purpose of this paper is to study the results concerning infinite series (see, [3,17,19,21]) in fuzzy n-normed spaces. In section 2, we quote some basic definitions of fuzzy n-normed spaces. In section 3, we consider the absolutely convergent series in fuzzy n-normed spaces and obtain some results on it. In section 4, we study the property of finite convergence sequences in fuzzy n-normed spaces. In the last section we introduce and study the concept of

¹Received July 8, 2009. Accepted Aug.18, 2009.

function preserving convergence of series in fuzzy n-norm spaces and obtain some results.

§2. Preliminaries

Let n be a positive integer, and let X be a real vector space of dimension at least n. We recall the definitions of an n-seminorm and a fuzzy n-norm [16].

Definition 2.1 A function $(x_1, x_2, ..., x_n) \mapsto ||x_1, ..., x_n||$ from X^n to $[0, \infty)$ is called an n-seminorm on X if it has the following four properties:

- (S1) $||x_1, x_2, \dots, x_n|| = 0$ if x_1, x_2, \dots, x_n are linearly dependent;
- (S2) $||x_1, x_2, \ldots, x_n||$ is invariant under any permutation of x_1, x_2, \ldots, x_n ;
- (S3) $||x_1, \ldots, x_{n-1}, cx_n|| = |c|||x_1, \ldots, x_{n-1}, x_n||$ for any real c;
- (S4) $||x_1, \dots, x_{n-1}, y + z|| \le ||x_1, \dots, x_{n-1}, y|| + ||x_1, \dots, x_{n-1}, z||$.

An n-seminorm is called a n-norm if $||x_1, x_2, \ldots, x_n|| > 0$ whenever x_1, x_2, \ldots, x_n are linearly independent.

Definition 2.2 A fuzzy subset N of $X^n \times \mathbb{R}$ is called a fuzzy n-norm on X if and only if:

- (F1) For all $t \leq 0$, $N(x_1, x_2, \dots, x_n, t) = 0$;
- (F2) For all t > 0, $N(x_1, x_2, \dots, x_n, t) = 1$ if and only if x_1, x_2, \dots, x_n are linearly dependent;
- (F3) $N(x_1, x_2, ..., x_n, t)$ is invariant under any permutation of $x_1, x_2, ..., x_n$;
- (F4) For all t > 0 and $c \in \mathbb{R}$, $c \neq 0$,

$$N(x_1, x_2, \dots, cx_n, t) = N(x_1, x_2, \dots, x_n, \frac{t}{|c|});$$

(F5) For all $s, t \in \mathbb{R}$,

$$N(x_1, \ldots, x_{n-1}, y+z, s+t) \ge \min \{N(x_1, \ldots, x_{n-1}, y, s), N(x_1, \ldots, x_{n-1}, z, t)\}.$$

(F6) $N(x_1, x_2, \dots, x_n, t)$ is a non-decreasing function of $t \in \mathbb{R}$ and

$$\lim_{t\to\infty} N(x_1, x_2, \dots, x_n, t) = 1.$$

The pair (X, N) will be called a fuzzy n-normed space.

Theorem 2.1 Let A be the family of all finite and nonempty subsets of fuzzy n-normed space (X, N) and $A \in A$. Then the system of neighborhoods

$$\mathcal{B} = \{ B(t, r, A) : t > 0, \ 0 < r < 1, \ A \in \mathcal{A} \}$$

where $B(t,r,A) = \{x \in X : N(a_1, \dots, a_{n-1}, x, t) > 1 - r, a_1, \dots, a_{n-1} \in A\}$ is a base of the null vector θ , for a linear topology on X, named N-topology generated by the fuzzy n-norm N.

Proof We omit the proof since it is similar to the proof of Theorem 3.6 in [8].

Definition 2.3 A sequence $\{x_k\}$ in a fuzzy n- normed space (X,N) is said to converge to x if given r>0, t>0, 0< r<1, there exists an integer $n_0 \in \mathbb{N}$ such that $N(x_1,x_2,\ldots,x_{n-1},x_k-x,t)>1-r$ for all $k\geq n_0$.

Definition 2.4 A sequence $\{x_k\}$ in a fuzzy n- normed space (X,N) is said to be Cauchy sequence if given $\epsilon > 0$, t > 0, $0 < \epsilon < 1$, there exists an integer $n_0 \in \mathbb{N}$ such that $N(x_1, x_2, \ldots, x_{n-1}, x_m - x_k, t) > 1 - \epsilon$ for all $m, k \ge n_0$.

Theorem 2.1([13]) Let N be a fuzzy n- norm on X. Define for $x_1, x_2, \ldots, x_n \in X$ and $\alpha \in (0,1)$

$$||x_1, x_2, \dots, x_n||_{\alpha} = \inf \{t : N(x_1, x_2, \dots, x_n, t) \ge \alpha \}.$$

Then the following statements hold.

- (A_1) for every $\alpha \in (0,1), \|\bullet, \bullet, \dots, \bullet\|_{\alpha}$ is an n- seminorm on X;
- (A_2) If $0 < \alpha < \beta < 1$ and $x_1, x_2, \ldots, x_n \in X$ then

$$||x_1, x_2, \dots, x_n||_{\alpha} \le ||x_1, x_2, \dots, x_n||_{\beta}$$
.

Example 2.3[10, Example 2.3] Let $\|\bullet, \bullet, \dots, \bullet\|$ be a *n*-norm on *X*. Then define $N(x_1, x_2, \dots, x_n, t) = 0$ if $t \leq 0$ and, for t > 0,

$$N(x_1, x_2, \dots, x_n, t) = \frac{t}{t + ||x_1, x_2, \dots, x_n||}.$$

Then the seminorms (2.1) are given by

$$||x_1, x_2, \dots, x_n||_{\alpha} = \frac{\alpha}{1 - \alpha} ||x_1, x_2, \dots, x_n||.$$

§3. Absolutely Convergent Series in Fuzzy n-Normed Spaces

In this section we introduce the notion of the absolutely convergent series in a fuzzy n-normed space (X, N) and give some results on it.

Definition 3.1 The series $\sum_{k=1}^{\infty} x_k$ is called absolutely convergent in (X, N) if

$$\sum_{k=1}^{\infty} \|a_1, ..., a_{n-1}, x_k\|_{\alpha} < \infty$$

for all $a_1, ..., a_{n-1} \in X$ and all $\alpha \in (0, 1)$.

Using the definition of $\|...\|_{\alpha}$ the following lemma shows that we can express this condition directly in terms of N.

Lemma 3.1 The series $\sum_{k=1}^{\infty} x_k$ is absolutely convergent in (X, N) if, for every $a_1, ..., a_{n-1} \in X$ and every $\alpha \in (0,1)$ there are $t_k \geq 0$ such that $\sum_{k=1}^{\infty} t_k < \infty$ and $N(a_1, ..., a_{n-1}, x_k, t_k) \geq \alpha$ for all k.

proof Let $\sum_{k=1}^{\infty} x_k$ be absolutely convergent in (X, N). Then

$$\sum_{k=1}^{\infty} \|a_1, ..., a_{n-1}, x_k\|_{\alpha} < \infty$$

for every $a_1, ..., a_{n-1} \in X$ and every $\alpha \in (0,1)$. Let $a_1, ..., a_{n-1} \in X$ and $\alpha \in (0,1)$. For every k there is $t_k \geq 0$ such that $N(a_1, ..., a_{n-1}, x_k, t_k) \geq \alpha$ and

$$t_k < ||a_1, ..., a_{n-1}, x_k||_{\alpha} + \frac{1}{2^k}.$$

Then

$$\sum_{k=1}^{\infty} t_k < \sum_{k=1}^{\infty} \|a_1, ..., a_{n-1}, x_k\|_{\alpha} + \sum_{k=1}^{\infty} \frac{1}{2^k} < \infty.$$

The other direction is even easier to show.

Definition 3.2 A fuzzy n-normed space (X, N) is said to be sequentially complete if every Cauchy sequence in it is convergent.

Lemma 3.2 Let (X, N) be sequentially complete, then every absolutely convergent series $\sum_{k=1}^{\infty} x_k$ converges and

$$\left\| a_1, ..., a_{n-1}, \sum_{k=1}^{\infty} x_k \right\|_{\alpha} \le \sum_{k=1}^{\infty} \|a_1, ..., a_{n-1}, x_k\|_{\alpha}$$

for every $a_1, ..., a_{n-1} \in X$ and every $\alpha \in (0, 1)$.

Proof Let $\sum\limits_{k=1}^{\infty}x_k$ be an infinite series such that $\sum\limits_{k=1}^{\infty}\|a_1,...,\ a_{n-1},\ x_k\|_{\alpha}<\infty$ for every $a_1,...,\ a_{n-1}\in X$ and every $\alpha\in(0,1)$. Let $y_n=\sum\limits_{k=1}^nx_k$ be a partial sum of the series. Let $a_1,...,\ a_{n-1}\in X$, $\alpha\in(0,1)$ and $\epsilon>0$. There is N such that $\sum\limits_{k=N+1}^{\infty}\|a_1,...,\ a_{n-1},\ x_k\|_{\alpha}<\epsilon$.

Then, for $n > m \ge N$,

$$\begin{split} |\|a_{1},...,\ a_{n-1},\ y_{n}\|_{\alpha} - \|a_{1},...,\ a_{n-1},\ y_{m}\|_{\alpha}| & \leq \|a_{1},...,\ a_{n-1},\ y_{n} - y_{m}\|_{\alpha} \\ & \leq \sum_{k=m+1}^{n} \|a_{1},...,\ a_{n-1},\ x_{k}\|_{\alpha} \\ & \leq \sum_{k=N+1}^{\infty} \|a_{1},...,\ a_{n-1},\ x_{k}\|_{\alpha} \\ & \leq \epsilon. \end{split}$$

This is shows that $\{y_n\}$ is a Cauchy sequence in (X, N). But since (X, N) is sequentially complete, the sequence $\{y_n\}$ converges and so the series $\sum_{k=1}^{\infty} x_k$ converges.

Definition 3.3 Let I be any denumerable set. We say that the family $(x_{\alpha})_{\alpha \in I}$ of elements in a complete fuzzy n-normed space (X, N) is absolutely summable, if for a bijection Ψ of \mathbf{N} (the set of all natural numbers) onto I the series $\sum_{n=1}^{\infty} x_{\Psi(n)}$ is absolutely convergent.

The following result may not be surprising but the proof requires some care.

Theorem 3.1 Let $(x_{\alpha})_{\alpha \in I}$ be an absolutely summable family of elements in a sequentially complete fuzzy n- normed space (X,N). Let (B_n) be an infinite sequence of a non-empty subset of A, such that $A = \bigcup_n B_n$, $B_i \cap B_j = \emptyset$ for $i \neq j$, then if $z_n = \sum_{\alpha \in B_n} x_{\alpha}$, the series $\sum_{n=0}^{\infty} z_n$ is absolutely convergent and $\sum_{n=0}^{\infty} z_n = \sum_{\alpha \in I} x_{\alpha}$.

Proof It is easy to see that this is true for finite disjoint unions $I = \bigcup_{n=1}^{N} B_n$. Now consider the disjoint unions $I = \bigcup_{n=1}^{\infty} B_n$. By Lemma 3.2

$$\sum_{n=1}^{\infty} \|a_1, ..., a_{n-1}, z_n\|_{\alpha} \leq \sum_{n=1}^{\infty} \sum_{i \in B_n} \|a_1, ..., a_{n-1}, x_i\|_{\alpha}$$

$$= \sum_{i \in I} \|a_1, ..., a_{n-1}, x_i\|_{\alpha} < \infty$$

for every $a_1,...$, $a_{n-1} \in X$, and every $\alpha \in (0,1)$. Therefore, $\sum_{n=0}^{\infty} z_n$ is absolutely convergent. Let $y = \sum_{i \in I} x_i$, $z = \sum_{n=1}^{\infty} z_n$. Let $\epsilon > 0$, $a_1,...$, $a_{n-1} \in X$ and $\alpha \in (0,1)$. There is a finite set $J \subset I$ such that

$$\sum_{i \notin J} \|a_1, ..., a_{n-1}, x_i\|_{\alpha} < \frac{\epsilon}{2}.$$

Choose N large enough such that $B = \bigcup_{n=1}^{N} B_n \supset J$ and

$$\left\| a_1, ..., a_{n-1}, z - \sum_{n=1}^{N} z_n \right\|_{\infty} < \frac{\epsilon}{2}.$$

Then

$$\left\| a_1, ..., a_{n-1}, y - \sum_{i \in B} x_i \right\|_{\alpha} < \frac{\epsilon}{2}.$$

By the first part of the proof

$$\sum_{n=1}^{N} z_n = \sum_{i \in B} x.$$

Therefore, $||a_1, ..., a_{n-1}, y-z||_{\alpha} < \epsilon$. This is true for all ϵ so $||a_1, ..., a_{n-1}, y-z||_{\alpha} = 0$. This is true for all $a_1, ..., a_{n-1} \in X$, $\alpha \in (0, 1)$ and (X, N) is Hausdorff see [8, Theorem 3.1]. Hence y = z.

Definition 3.4 Let (X^*, N) be the dual of fuzzy n-normed space (X, N). A linear functional $f: X^* \to K$ where K is a scalar field of X is said to be bounded linear operator if there exists a $\lambda > 0$ such that

$$||a_1, \cdots, a_{n-1}, f(x_k)||_{\alpha} \le \lambda ||a_1, \cdots, a_{n-1}, x_k||_{\alpha},$$

for all $a_1, \dots, a_{n-1} \in X$ and all $\alpha \in (0,1)$.

Definition 3.5 The series $\sum_{k=1}^{\infty} x_k$ is said to be weakly absolutely convergent in (X, N) if

$$\sum_{k=1}^{\infty} \|a_1, \cdots, a_{n-1}, f(x_k)\|_{\alpha} < \infty$$

for all $f \in X^*$, all $a_1, \dots, a_{n-1} \in X$ and all $\alpha \in (0, 1)$.

Theorem 3.2 Let the series $\sum_{k=1}^{\infty} x_k$ be weakly absolutely convergence in (X, N). Then there exists a constant $\lambda > 0$ such that

$$\sum_{k=1}^{\infty} \|a_1, \cdots, a_{n-1}, f(x_k)\|_{\alpha} \le \lambda \|a_1, \cdots, a_{n-1}, f(x_k)\|_{\alpha}$$

Proof Let $\{e_r\}_{r=1}^{\infty}$ be a standard basis of the space (X, N). Define continuous operators $S_r \colon X^* \to X$ where $r \in \mathbb{Z}$ by the formula $S_r(f) = \sum_{k=1}^r f(x_k)e_k$, we have

$$||a_1, \dots, a_{n-1}, S_r(f)||_{\alpha} = \sum_{k=1}^r ||a_1, \dots, a_{n-1}, f(x_k)e_k||_{\alpha}.$$

Since for any fixed $f \in X^*$, the numbers $||a_1, \dots, a_{n-1}, S_r(f)||_{\alpha}$ are bounded by $\sum_{k=1}^{\infty} ||a_1, \dots, a_{n-1}, f(x_k)||_{\alpha}$, by Banach-Steinhaus theorem, we have

$$\sup_{r} \|a_1, \cdots, a_{n-1}, S_r(f)\|_{\alpha} = \lambda < \infty.$$

Therefore,

$$\sum_{k=1}^{\infty} \|a_1, \dots, a_{n-1}, f(x_k)\|_{\alpha} = \sup_{r} \|a_1, \dots, a_{n-1}, S_r(f)\|_{\alpha}$$

$$\leq \lambda \|a_1, \dots, a_{n-1}, f(x_k)\|_{\alpha}.$$

$\S4$. Finite Convergent Sequences in Fuzzy n-Normed Spaces

In this section our principal goal is to show that every sequence having finite convergent property is Cauchy and every Cauchy sequence has a subsequence which has finite convergent property in every metrizable fuzzy n-normed space (X, N).

Definition 4.1 A sequence $\{x_k\}$ in a fuzzy n-normed space (X, N) is said to have finite convergent property if

$$\sum_{i=1}^{\infty} \|a_1, ..., a_{n-1}, x_j - x_{j-1}\|_{\alpha} < \infty$$

for all $a_1, ..., a_{n-1} \in X$ and all $\alpha \in (0, 1)$.

Definition 4.2 A fuzzy n- normed space (X,N) is said to be metrizable, if there is a metric d which generates the topology of the space.

Theorem 4.1 Let (X, N) be a metrizable fuzzy n-normed space, then every sequence having finite convergent property is Cauchy and every Cauchy sequence has a subsequence which has finite convergent property.

proof Since X is metrizable, there is a sequence $\{\|a_{1,r},..., a_{n-1,r}, x\|_{\alpha_r}\}$ for all $a_{1,r},..., a_{n-1,r} \in X$ and all $\alpha_r \in (0,1)$ generating the topology of X. We choose an increasing sequence $\{m_{k,1}\}$ such that

$$\sum_{k=1}^{\infty} \|a_{1,1}, \dots, a_{n-1,1}, x_{m_{k+1,1}} - x_{m_{k,1}}\|_{\alpha_1} < \infty$$

where $a_{1,1},..., a_{n-1,1} \in X$ and $\alpha_1 \in (0,1)$. Then we choose a subsequence $m_{k,2}$ of $m_{k,1}$ such that

$$\sum_{k=1}^{\infty} \|a_{1,2}, ..., a_{n-1,2}, x_{m_{k+1,2}} - x_{m_{k,2}}\|_{\alpha_2} < \infty$$

where $a_{1,2},..., a_{n-1,2} \in X$ and $\alpha_2 \in (0,1)$. Continuing in this way we construct recursively sequences $m_{k,r}$ such that $m_{k,r+1}$ is a subsequence of $m_{k,r}$ and such that

$$\sum_{k=1}^{\infty} \|a_{1,r}, ..., a_{n-1,r}, x_{m_{k+1,r}} - x_{m_{k,r}}\|_{\alpha_r} < \infty$$

for all $a_{1,r}, ..., a_{n-1,r} \in X$ and all $\alpha_r \in (0,1)$. Now consider the diagonal sequence $m_k = m_{k,k}$. Let $r \in \mathbb{N}$. The sequence $\{m_k\}_{k=r}^{\infty}$ is a subsequence of $\{m_{k,r}\}_{k=r}^{\infty}$. Let $k \geq r$. There are pairs of integers (u,v), u < v such that $m_k = m_{u,r}$ and $m_{k+1} = m_{v,r}$. Then by the triangle inequality

$$\|a_{1,r},..., a_{n-1,r}, x_{m_{k+1}} - x_{m_k}\|_{\alpha_r} \le \sum_{i=u}^{v-1} \|a_{1,r},..., a_{n-1,r}, x_{m_{i+1,r}} - x_{m_{i,r}}\|_{\alpha_r}$$

and therefore,

$$\sum_{k=r}^{\infty} \|a_1, ..., a_{n-1}, x_{m_{k+1}} - x_{m_k}\|_{\alpha} \le \sum_{j=r}^{\infty} \|a_1, ..., a_{n-1}, x_{m_{j+1,r}} - x_{m_{j,r}}\|_{\alpha}$$

for all $a_1, ..., a_{n-1} \in X$ and all $\alpha \in (0,1)$. The statement of the theorem follows.

The above theorem shows that many Cauchy sequence has a subsequence which has finite convergent. Therefore, it is natural to ask for an example of Cauchy sequence has a subsequence which has not finite convergent property.

Example 4.2 We consider the set S consisting of all convergent real sequences. Let X be the space of all functions $f: S \to \mathbb{R}$ equipped with the topology of pointwise convergence. This topology is generated by

$$||f_{1,s},..., f_{n-1,s}, f||_{\alpha_s} = |f(s)|,$$

for all $f_{1,s},..., f_{n-1,s}, f \in X$ and all $\alpha_s \in (0,1)$, where $s \in S$. Then consider the sequence $f_n \in X$ defined by $f_n(s) = s_n$ where $s = (s_n) \in S$. The sequence f_n is a Cauchy sequence in X but there is no subsequence f_{n_k} such that

$$\sum_{k=1}^{\infty} \|f_{1,s}, ..., f_{n-1,s}, f_{n_{k+1}} - f_{n_k}\|_{\alpha_s} < \infty$$

for all $s \in S$. We see this as follows. If $n_1 < n_2 < n_3 < ...$ is a sequence then define $s_n = (-1)^k \frac{1}{k}$ for $n_k \le n < n_{k+1}$. Then $s = (s_n) \in S$ but

$$\sum_{k=1}^{\infty} \|f_{1,s}, ..., f_{n-1,s}, f_{n_{k+1}} - f_{n_k}\|_{\alpha_s} = \sum_{k=1}^{\infty} |s_{n_{k+1}} - s_{n_k}| \ge \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$$

§5. Functions Preserving Convergence of Series in Fuzzy n-Normed Spaces

In this section we shall introduce the functions $f: X \to X$ that preserve convergence of series in fuzzy n-normed spaces. Our work is an extension of functions $f: \mathbb{R} \to \mathbb{R}$ that preserve convergence of series studied in [19] and [3].

We read in Cauchy's condition in (X, N) as follows: the series $\sum_{k=1}^{\infty} x_k$ converges if and only if for every $\epsilon > 0$ there is an N so that for all $n \ge m \ge N$,

$$||a_1\cdots,a_{n-1},\sum_{k=1}^n x_k||<\epsilon,$$

where $a_1 \cdots, a_{n-1} \in X$.

Definition 5.1 A function $f: X \times X \to X$ is said to be additive in fuzzy n-normed space (X, N) if

$$||a_1, \cdots, a_{n-1}, f(x, y)||_{\alpha} = ||a_1, \cdots, a_{n-1}, f(x)||_{\alpha} + ||a_1, \cdots, a_{n-1}, f(y)||_{\alpha}$$

for each $x, y \in X$, $a_1, \dots, a_{n-1} \in X$ and for all $\alpha \in (0, 1)$.

Definition 5.2 A function $f: X \to X$ is convergence preserving (abbreviated CP) in (X, N) if for every convergent series $\sum_{k=1}^{\infty} x_k$, the series $\sum_{k=1}^{\infty} f(x_k)$ is also convergent, i.e., for every $a_1, \dots, a_{n-1} \in X$,

$$\sum_{k=1}^{\infty} ||a_1, \cdots, a_{n-1}, f(x_k)||_{\alpha} < \infty$$

whenever $\sum_{k=1}^{\infty} \|a_1, \cdots, a_{n-1}, x_k\|_{\alpha} < \infty$.

Theorem 5.1 Let (X, N) be a fuzzy n-normed space and $f: X \to X$ be an additive and continuous function in the neighborhood B(t, r, A). Then the function f is CP of infinite series in (X, N).

Proof Assume that f is additive and continuous in $B(\alpha, \delta, A) = \{x \in X : ||a_1, \dots, a_{n-1}, x||_{\alpha} < \delta\}$, where $a_1, \dots, a_{n-1} \in A$ and $\delta > 0$. From additivity of f in $B(\alpha, \delta, A)$ implies that f(0) = 0. Let $\sum_{k=1}^{\infty} x_k$ be a absolute convergent series and $x_k \in X$ $(k = 1, 2, 3, \dots)$. We show that $\sum_{k=1}^{\infty} f(x_k)$ is also absolute convergent.

By Cauchy condition for convergence of series, there exists a $k \in \mathbb{N}$ such that for every $p \in \mathbb{N}$

$$||a_1, \cdots, a_{n-1}, \sum_{j=k+1}^{k+p} x_j||_{\alpha} < \frac{\delta}{2}.$$

From this we have

$$||a_1, \cdots, a_{n-1}, \sum_{j=k+1}^{\infty} x_j||_{\alpha} < \frac{\delta}{2}.$$

By the additivity of f in $B(\alpha, \delta, A)$, we get

$$||a_1, \dots, a_{n-1}, f(\sum_{j=k+1}^{k+p} x_j)||_{\alpha} = ||a_1, \dots, a_{n-1}, \sum_{j=k+1}^{k+p} f(x_j)||_{\alpha} < \frac{\delta}{2}.$$

Now, let $y_p = \sum_{j=k+1}^{k+p} x_j$ for $p = 1, 2, 3, \cdots$ and $y = \sum_{j=k+1}^{\infty} x_j$ belong to the neighborhood $B(\alpha, \delta, A)$. The function f is continuous in $B(\alpha, \delta, A)$, i.e., $f(y_p) \to f(y)$ because $y_p \to y$ for $p \to \infty$. Hence

$$\lim_{p \to \infty} \|a_1, \cdots, a_{n-1}, f(\sum_{j=k+1}^{k+p} x_j)\|_{\alpha} = \|a_1, \cdots, a_{n-1}, f(\sum_{j=k+1}^{\infty} x_j)\|_{\alpha}.$$

This implies

$$\lim_{p \to \infty} \|a_1, \cdots, a_{n-1}, \sum_{j=k+1}^{k+p} f(x_j)\|_{\alpha} = \|a_1, \cdots, a_{n-1}, \sum_{j=k+1}^{\infty} f(x_j)\|_{\alpha}$$

and this guarantee the convergence of the series $\sum_{j=k+1}^{\infty} f(x_j)$ and therefore the series $\sum_{j=1}^{\infty} f(x_j)$ must also be convergent in X, i.e., the function f is CP infinite series in (X, N).

References

- [1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, *J. Fuzzy Math.*, **11** (2003), no. 3, 687-705.
- [2] S.C. Chang and J. N. Mordesen, Fuzzy linear operators and fuzzy normed linear spaces, *Bull. Calcutta Math. Soc.*, **86** (1994), no. 5, 429-436.
- [3] M. Dindos, I. Martisovits and T. Salat, Remarks on infinite series in linear normed spaces, http://tatra.mat.savba.sk/Full/19/04DINDOS.ps

- [4] C. Felbin, Finite- dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992), no. 2, 239-248.
- [5] C. Felbin, The completion of a fuzzy normed linear space, J. Math. Anal. Appl., 174 (1993), no. 2, 428-440.
- [6] C. Felbin, Finite dimensional fuzzy normed linear space. II., J. Anal., 7 (1999), 117-131.
- [7] S. Gähler, Untersuchungen uber verallgemeinerte m-metrische Raume, I, II, III., Math. Nachr., 40 (1969), 165-189.
- [8] I. Golet, On generalized fuzzy normed spaces, Int. Math. Forum, 4(2009)no. 25, 1237-1242.
- [9] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), no. 10, 631-639.
- 10 Hans Volkmer and Sayed Elagan, Some remarks on fuzzy n-normed spaces, *J. Topology. Appl.*, (under review).
- [11] A. K. Katsaras, Fuzzy topological vector spaces. II., Fuzzy Sets and Systems, 12 (1984), no. 2, 143-154.
- [12] S. S. Kim and Y. J. Cho, Strict convexity in linear n- normed spaces, *Demonstratio Math.*, **29** (1996), no. 4, 739-744.
- [13] S. V, Krish and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63 (1994), no. 2, 207-217.
- [14] R. Malceski, Strong n-convex n-normed spaces, Math. Bilten, No. 21 (1997), 81-102.
- [15] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
- [16] Al. Narayanan and S. Vijayabalaji, Fuzzy n- normed linear spaces, Int. J. Math. Math. Sci., 27 (2005), no. 24, 3963-3977.
- [17] R. Rado, A theorem on infinite series, J. Lond. Math. Soc., 35 (1960), 273-276.
- [18] G. S. Rhie, B. M. Choi, and D. S. Kim, On the completeness of fuzzy normed linear spaces, Math. Japan., 45 (1997), no. 1, 33-37.
- [19] A. Smith, Convergence preserving function: an alternative discussion, *Amer. Math. Monthly*, **96** (1991), 831-833.
- [20] S. Vijayabalaji and N. Thilligovindan, Complete fuzzy *n*-normed space, *J. Fund. Sciences*, 3 (2007), 119-126 (available online at www.ibnusina.utm.my/jfs)
- [21] G. Wildenberg, Convergence preserving functions, Amer. Math. Monthly, 95 (1988), 542-544.