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§1. Introduction

The matroid theory has several interesting applications in system analysis, operations research

and economics. Since most of the time the aspects of matroid problems are uncertain, it is

nice to deal with these aspects via the methods of fuzzy logic. The notion of fuzzy matroids

was first introduced by Geotschel and Voxman in their landmark paper [4] using the notion of

fuzzy independent set. The notion of fuzzy independent set was also explored in [10,9]. Some

constructions, fuzzy spanning sets, fuzzy rank and fuzzy closure axioms were also studied in

[5-7,13]. Several other fuzzifications of matroids were also discussed in [8,11]. Since the notion

of flats in traditional matroids is one of the most significant notions that plays a very important

rule in characterizing strong maps ( see for example [3,12]). In [2], the notions of fuzzy flats

and fuzzy closure flats were introduced and several examples were provided. Thus in [2], fuzzy

matroids are defined via fuzzy flats axioms and it was shown that the levels of the fuzzy matroid

introduced are indeed crisp matroids. Moreover, fuzzy strong maps and fuzzy hesitant maps are

introduced and explored. We remark that the approach in [2] is different from those mentioned

above. Let FM = (E ,O) be a fuzzy matroid. A fuzzy set λ ∈ E is called a fuzzy C-open set in

FM if there exists a fuzzy open set µ such that µ ≤ λ ≤ µ̄ ([1]).

Let E be any non-empty set. A neutrosophic set based on neutrosophy, is defined for an

element x(T, I, F ) belongs to the set if it is t true in the set, i indeterminate in the set, and f

false, where t, i and f are real numbers taken from the sets T, I and F with no restriction on

T, I, F nor on their sum n = t+ i+ f . Particularly, if I = ∅, we get the fuzzy set. By ℘(1) we

denote the set of all fuzzy sets on E. That is ℘(1) = [0, 1]E, which is a completely distributive

lattice. Thus let 0E and 1E denote its greatest and smallest elements, respectively. That is

0E(e) = 0 and 1E(e) = 1 for every e ∈ E. A fuzzy set µ1 is a subset of µ2 , written µ1 ≤ µ2, if
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µ1(e) ≤ µ2(e) for all e ∈ E. If µ1 ≤ µ2 and µ1 6= µ2, then µ1 is a proper subset of µ2, written

µ1 < µ2. Moreover, µ1 ≺ µ2 if µ1 < µ2 and there does not exist µ3 such that µ1 < µ3 < µ2.

Finally, µ1 ∨ µ2 = sup{µ1, µ2} and µ1 ∧ µ2 = inf{µ1, µ2}.
Next we recall some basic definitions and results from [2].

Definition 1.1 Let E be a finite set and let F be a family of fuzzy subsets of E satisfying the

following three conditions:

(i) 1E ∈ F;

(ii) If µ1, µ2 ∈ F, then µ1 ∧ µ2 ∈ F;

(iii) If µ ∈ F and µ1, µ2, ..., µn are all minimal members of F (with respect to standard

fuzzy inclusion) that properly contain µ (in this case we write µ ≺ µi for all i = 1, 2, ..., n),

then the fuzzy union of µ1, µ2, ..., µn is equal to 1E (i.e. ∨n
i=1µi = 1E). Then the system

FM = (E,F) is called fuzzy matroid and the elements of F are fuzzy flats of FM .

Definition 1.2 For r ∈ (0, 1], let Cr(µ) = {e ∈ E|µ(e) ≥ r} be the r-level of a fuzzy set µ ∈ F,

and let Fr = {Cr(µ) : µ ∈ F} be the r-level of the family F of fuzzy flats. Then for r ∈ (0, 1],

(E,Fr) is the r-level of the fuzzy set system (E,F).

Theorem 1.3 For every r ∈ (0, 1], Fr = {Cr(µ) : µ ∈ F} the r-levels of a family of fuzzy flats

F of a fuzzy matroid FM = (E,F) is a family of crisp flats.

Definition 1.4 Let E be any set with n-elements and F = {χA : A ≤ E, |A| = n or |A| < m}
where m is a positive integer such that m ≤ n. Then (E,F) is a fuzzy matroid called the fuzzy

uniform matroid on n-elements and rank m, denoted by Fm,n. Fm,m is called the free fuzzy

uniform matroid on n-elements.

We remark that the rank notion in the preceding definition coincides with that in [6].

Definition 1.5 Let FM = (E,F) be a fuzzy matroid and µ ∈ F. Then the fuzzy closure of µ

is µ̄ =
∧

λ∈F,µ≤λ

λ.

Theorem 1.6 Let FM = (E,F) be a fuzzy matroid and X be a non-empty subset of E. Then

(X,FX) is a fuzzy matroid, where FX = {χ
X
∧ µ : µ ∈ F}.

Let FM = (E,F) be a fuzzy matroid, X be a non-empty subset of E and µ be a fuzzy set

in X. We may realize µ as a fuzzy set in E by the convention that µ(e) = 0 for all e ∈ E −X.

It can be easily shown that FX = {µ|X : µ ∈ F}, where µ|X is the restriction of µ to X.

Let E1 and E2 be two sets, µ1 is a fuzzy set in E1, µ2 is a fuzzy set in E2 and f : E1 → E2

be a map. Then we define the fuzzy sets f(µ1) (the image of µ1) and f−1(µ2) (the preimage of

µ2) by

f(µ1)(y) =







sup{µ1(x) : x ∈ f−1({y})}
1

, y ∈ Range(f)

,Otherwise,

and f−1(µ2)(x) = µ2(f(x)) for all x ∈ E1.
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Definition 1.7 A fuzzy strong map from a fuzzy matroid FM1 = (E1,F1) into a fuzzy matroid

FM2 = (E2,F2) is a map f : E1 → E2 such that the preimage of every fuzzy flat in FM2 is a

fuzzy flat in FM1.

Theorem 1.8 Let FM1 = (E1,F1) and FM2 = (E2,F2) be fuzzy matroids and f : E1 → E2

be a map. Then the following are equivalent:

(i) f is fuzzy strong;

(ii) For every fuzzy set µ1 in FM1, f(µ1) ≤ f(µ1);

(iii) For every fuzzy set µ2 in FM2, f−1(µ2) ≤ f−1(µ2).

Next, we recall some results from [1].

Definition 1.9 Let FM = (E,F) be a fuzzy matroid and µ be a fuzzy set. Then µ is a fuzzy

c-flat if
∨

λ∈F,λ≤µ

λ ≤ µ.

Clearly, every fuzzy flat is a fuzzy c-flat, but the converse need not be true.

Example 1.1 Let E = {a, b, c, d} and F = {1E, 0, χ{a,b}, χ{c,d}}. FM = (E,F) is a fuzzy

matroid. χ{b,d} is a fuzzy c- flat that is not a fuzzy flat.

Lemma 1.10 The intersection of fuzzy c-flats is a fuzzy c-flat.

Lemma 1.11 Let FM = (E,F) be a fuzzy matroid and µ be a fuzzy set. The fuzzy C closure

of µ is µF =
∧{µ́ : µ́ is a fuzzy c-flat and µ ≤ µ́}.

Theorem 1.12 Let FM = (E,F) be a fuzzy matroid and µ, λ be fuzzy sets. Then

i) 0
F

= 0;

ii) µF is a fuzzy closure flat;

iii) µ ≤ µF ;

iv) If µ ≤ λ, then µF ≤ λ
F
;

v) µF
F

= µF .

Lemma 1.13 Let FM = (E,F) be a fuzzy matroid and µ be a fuzzy set. Then µ is a fuzzy

c-flat if and only if µF = µ.

Lemma 1.14 Let FM = (E,F) be a fuzzy matroid and µ, λ be fuzzy sets. Then

i) µ ∨ λF ≥ µF ∨ λF
;

ii) µ ∧ λF ≤ µF ∧ λF
.

Definition 1.15 A map f : FM1 → FM2 is

i) fuzzy c-strong if the inverse image of every fuzzy flat of FM2 is a fuzzy c-flat of FM1;

ii) fuzzy hesitant if the inverse image of every fuzzy c-flat of FM2 is a fuzzy c-flat of FM1.

Clearly, a fuzzy strong (fuzzy hesitant) map is fuzzy c-strong, but the converse need not

be true since a fuzzy c-flat need not be a fuzzy flat as we have seen in Example 1.1.
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A map f : FM1 → FM2 is said to be fuzzy if the image of every fuzzy flat of FM1 is a

fuzzy flat of FM2. The following is a trivial result.

Lemma 1.16 Let f : FM1 → FM2 be a fuzzy map that is also fuzzy strong. Then f−1(µ̄) =

f−1(µ) for every fuzzy set µ of FM2.

Theorem 1.17 A fuzzy map f : FM1 → FM2 that is also fuzzy strong is fuzzy hesitant.

Theorem 1.18 The following are equivalent for a map f : FM1 → FM2 :

i) f is hesitant;

ii) f(µF ) ≤ f(µ)
F

for every fuzzy set µ of FM1;

iii) f−1(λ)
F ≤ f−1(λ

F
) for every fuzzy set λ of FM2.

§2. Fuzzy-Regular- and Fuzzy i-Flats

In this section, the notions of fuzzy–regular-flat and fuzzy-i-flats are discussed. We prove that

the notion of fuzzy-i-flat coincides with that of fuzzy-c-flat. In addition, we provide several

characterizations of fuzzy-regular-flats and fuzzy open sets of certain fuzzy matroids.

Definition 2.1 Let FM = (E ,O) be a fuzzy matroid. A fuzzy set λ is nowhere-spanning

boundary if

o

λ̄\
o

λ = 0, fuzzy local-flat if λ = µ ∧ λ̄, where µ is fuzzy open and λ is fuzzy

C-preopen if µ ≤ o
µ̄ and fuzzy-i-flat if

o

λ̄ =
o

λ.

The following example shows that a nowhere-spanning-boundary-fuzzy set needs not be a

fuzzy-c-flat. In the next coming theorem we prove a partial converse of this.

Example 2.1 Let E = {a, b, c} and O = {1, χ{b,c}}. Then χ{a,b} is an nowhere-spanning-

boundary-fuzzy set but not a fuzzy-c-flat.

Theorem 2.2 In a loopless fuzzy matroid, every fuzzy-c-flat is a nowhere-spanning-boundary-

fuzzy set.

Proof Clearly the intersection of two nowhere-spanning-boundary-fuzzy sets is a nowhere-

spanning-boundary-fuzzy set. Since a fuzzy-c-flat is an intersection of a (fuzzy C-open) fuzzy

open set and a fuzzy closure flat, it is enough to show that every fuzzy C-open and every fuzzy

c-flat is a nowhere-spanning-boundary-fuzzy set. If λ is a C-open, then for some fuzzy open set

µ we have µ ≤ λ ≤ µ̄. Since λ̄\
o

λ ≤ µ̄\o
µ = 0. Thus

o

λ̄\
o

λ = 0. In fact, it is obvious that every

fuzzy open set is a nowhere-spanning-boundary-fuzzy set. Thus fuzzy C–open- (and hence every

fuzzy C–flat-) set is a nowhere-spanning-boundary-fuzzy set. �

The following result shows that the fuzzy-i-flats class coincides with the class of closure

flats.
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Theorem 2.3 Let M = (E,O) be a loopless fuzzy matroid. Then the following are equivalent:

(1) λ is a fuzzy-i-flat;

(2) λ is a closure flat;

(3) 1 − λ is a C-preopen and λ is a fuzzy-c-flat;

(4) 1 − λ is a C-preopen and λ is a nowhere-spanning-boundary-set.

Proof (1) ⇒ (2) Since
o

λ̄ =
o

λ ≤ λ, then 1 − λ ≤ (1 − λ)o. Thus 1 − λ is fuzzy C-open,

hence isλ a fuzzy-c-flat.

(2) ⇒ (3) Every fuzzy-c-flat is trivially fuzzy C-preopen. Since λ = 1∧ λ, where 1 is fuzzy

open and λ is a fuzzy-c-flat, then 1 − λ is an fuzzy-c-flat.

(3) ⇒ (4) Theorem 2.2.

(4) ⇒ (1) Since λ is a nowhere-spanning-boundary-fuzzy set, µ = 1 − λ is also a nowhere-

spanning-boundary-fuzzy set and as

(µ̄\
o

\µ)o =
o
µ̄

o

∧1 − µ =
o
µ̄ ∧ (1 − o

µ) =
o
µ̄\o
µ,

it follows that
o
µ̄ ≤ o

µ. Since µ is fuzzy C-preopen, µ ≤ o
µ̄. Thus µ ≤ o

µ or equivalently µ̄ =
o
µ.

Since µ = 1 − λ,
o

λ̄ =
o

λ. �

A matroid M = (E,O) is called a fuzzy closure matroid if λ ∨ µ = λ̄ ∨ µ̄ for all fuzzy

subsets λ and µ of E. Next we characterize the class of fuzzy-regular-flats of a fuzzy closure

matroid. We show that the class of fuzzy-regular-flats is the intersection of the class of fuzzy

local-flats with either the class of fuzzy C-open-sets or the class of fuzzy C-preopen-sets.

Theorem 2.4 Let M = (E,O) be a fuzzy closure matroid and λ ∈ E. Then the following are

equivalent:

(1) λ is a fuzzy-regular-flat;

(2) λ is fuzzy C–open set and a fuzzy local-flat;

(3) λ is fuzzy C-preopen-set and a fuzzy local-flat.

Proof (1) ⇒ (2) Every fuzzy-regular-flat is clearly a fuzzy local-flat. Let λ = µ∧ η be an

fuzzy-regular-flat, where µ is fuzzy open and η is a fuzzy flat such that η =
o
η. Since λ = µ ∧ η,

we have µ ∧ ηo ≤
o

λ. It is easily seen that
o

λ ≤ λ ≤ η, hence
o

λ ≤ ηo. But
o

λ ≤ λ ≤ µ, hence
o

λ ≤ µ ∧ ηo. Therefore
o

λ = µ ∧ ηo. Now we prove λ ≤ λo. Let e ∈ λ and δ be an fuzzy open

set containing e. Then e ∈ µ ∧ δ = (1 − λ1) ∧ (1 − λ2) for some fuzzy flats λ1 and λ2. Thus

e ∈ 1 − (λ1 ∨ λ2) = 1 − (λ1 ∨ λ2) = 1 − (λ1 ∨ λ2) which is fuzzy open. Since e ∈ η =
o
η, there

exists l ∈ o
η such that l 6= e and l ∈ 1− (λ1 ∨ λ2) = µ∧ η. Hence l ∈ µ∧ ηo =

o

λ. Therefore e ∈
o

λ

and λ ≤
o

λ. From
o

λ ≤ λ ≤
o

λ we know that λ is fuzzy C-open.

(2) ⇒ (3) is trivial

(3) ⇒ (1) Since λ is a fuzzy local-flat, λ = µ ∧ λ̄, where µ is fuzzy open. As λ is fuzzy

C-preopen and as
o

λ ≤ λ, λ is a fuzzy regular-flat. Thus λ is an fuzzy-regular-flat. �
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Next, we characterize the class of fuzzy open sets of a loopless closure fuzzy matroid, hence

we characterize the class of fuzzy flats.

Theorem 2.5 Let M = (E,O) be a loopless fuzzy closure matroid and λ ∈ E. Then the

following are equivalent:

(1) λ is fuzzy open;

(2) λ is fuzzy prespanning and a fuzzy local-flat;

(3) λ is fuzzy prespanning and an fuzzy-regular-flat;

(4) λ is fuzzy prespanning and an fuzzy-c-flat.

Proof (1) ⇒ (2) Since λ ≤ λ̄, λ =
o

λ ≤
o

λ̄. Thus λ is fuzzy prespanning. As 1 is a fuzzy

flat and λ =
o

λ ∧ 1, λ is a fuzzy local-flat.

(2) ⇒ (3) Since λ is a fuzzy local-flat, λ = µ ∧ λ̄, where µ is fuzzy open. Since
o

λ ≤ λ,
o

λ ≤ λ. But as λ is fuzzy prespanning, λ ≤
o

λ and thus λ ≤
o

λ. Hence λ is a fuzzy regular-flat

and so λ is a fuzzy-regular-flat.

(3) ⇒ (4) Clearly a fuzzy flat is a fuzzy-i-flat and thus a fuzzy-regular-flat is an fuzzy-c-flat.

(4) ⇒ (1) Since λ is an fuzzy-c-flat, we have λ = µ∧ η where µ is open and
o
η̄ =

o
η. Because

λ is fuzzy prespanning, we have λ ≤
o

λ̄ =
o

(µ ∧ η) ⊆ o
µ̄∧ o

η. Hence λ = (µ∧ η)∧µ ≤ µ∧ o
η. Notice

λ = µ∧ η ≥ µ∧ o
η, we have λ = µ∧ o

η. Thus as M is a closure fuzzy matroid, λ is fuzzy open.�

§3. Characterizations of Particular Fuzzy Matroids

In this section, we characterize maximal fuzzy matroids, local-flat-fuzzy matroids, free fuzzy

matroids and others via fuzzy-regular-flats and fuzzy-c-flats. We provide a decomposition of

fuzzy strong maps at the end of this section.

Theorem 3.1 For a loopless fuzzy matroid M = (E,O), the following are equivalent:

(1) M is maximal;

(2) Every fuzzy subset of E is an fuzzy-c-flat;

(3) Every spanning fuzzy subset of E is an fuzzy-c-flat.

Proof (1) ⇒ (2) Let λ ∈ E. Since every submatroid of a maximal fuzzy matroid is

maximal, then M |λ̄ is maximal. Since λ is a spanning fuzzy set in M |λ̄, λ is fuzzy open in M |λ̄.
Thus λ = µ ∧ λ̄ where µ is a fuzzy open set in M and λ̄ is a fuzzy-c-flat in M. Hence λ is an

fuzzy-c-flat.

(2) ⇒ (3) is trivial.

(3) ⇒ (1) Let λ̄ = 1. By (3) λ = µ∧ η, where µ is fuzzy open and η is a fuzzy-c-flat. Since

λ ≤ η, η̄ = 1 and hence
o
η =

o

η =
o

1 = 1, since M is loopless. Thus η = 1 and λ = µ is fuzzy

open. Therefore, M is maximal. �

Theorem 3.2 Let M = (E,O) be a loopless fuzzy closure matroid. Then the following are
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equivalent:

(1) M is a locally-couniform fuzzy matroid;

(2) Every fuzzy-c-flat is both fuzzy open and a fuzzy flat;

(3) Every fuzzy-c-flat is a fuzzy flat.

Proof (1) ⇒ (2) If λ is an fuzzy-c-flat, λ = µ∧ η, where µ is fuzzy open and η is a C-fuzzy

flat. By (1) µ is also a fuzzy flat. On the other hand η is fuzzy open by (1) and thus
o

η ≤ η ≤ η

and so η is both fuzzy open and a fuzzy flat. Therefore, λ is a fuzzy flat being the intersection

of two fuzzy flats and as M is a closure fuzzy matroid, λ is also fuzzy open.

(2) ⇒ (3) is trivial.

(3) ⇒ (1) Every fuzzy open set is a fuzzy-c-flat by Theorem 2.5 and thus by (3) a fuzzy

flat. �

Theorem 3.3 Let M = (E,O) be a loopless fuzzy closure matroid. Then the following are

equivalent:

(1) M ∼= F1,n for some positive integer n ≥ 1;

(2) The only fuzzy-c-flats in M are the trivial ones;

(3) The only fuzzy-regular-flats in M are the trivial ones.

Proof (1) ⇒ (2) If λ is an fuzzy-c-flat, then λ = µ ∧ η, where µ is fuzzy open and η

is a fuzzy-c-flat (ηo = ηo). If λ 6= 0, then µ 6= 0 and by (1) µ = 1. Thus λ = η and so

λo =
o

λ̄ = 1o = 1. Hence λ = 1.

(2) ⇒ (3) Every fuzzy-regular-flat is an fuzzy-c-flat.

(3) ⇒ (1) Since every fuzzy open set is a fuzzy-regular-flat, by (3) the only fuzzy open sets

in M are the trivial ones. �

It is well-known that the notions of fuzzy-regular-flat and fuzzy C-open-set are independent

from each other. By Theorem 2.4 in a fuzzy closure matroid, every fuzzy-regular-flat is fuzzy

C-open. Clearly a fuzzy-regular-flat is a fuzzy local-flat in any fuzzy matroid. Next we show

that a fuzzy C-open-set which is also a fuzzy local-flat has to be a fuzzy-regular-flat.

Theorem 3.4 In any fuzzy matroid, every fuzzy set λ that is both fuzzy C-open and a fuzzy

local-flat is a fuzzy-regular-flat.

Proof Since λ is fuzzy C-open, λ ≤
o

λ and since λ is a fuzzy local-flat, λ = µ ∧ λ̄, where µ

is fuzzy open. Then λ̄ =
o

λ and so λ is a fuzzy regular-flat. Hence λ is a fuzzy-regular-flat. �

Corollary 3.5 Let M = (E, µ) be a fuzzy closure matroid and λ ≤ 1. Then λ is a fuzzy-regular-

flat if and only if λ is both fuzzy C-open-set and a fuzzy local-flat.

Theorem 3.6 Let M = (E, µ) be a loopless fuzzy closure matroid. Then M is free if and only

if every fuzzy subset of E is a fuzzy-regular-flat.

Proof Let M be free. Then every fuzzy set λ ≤ 1 is open and a fuzzy regular-flat. Hence
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λ is a fuzzy-regular-flat.

Conversely if every fuzzy subset of E is a fuzzy-regular-flat, then every singleton e ≤ 1 is a

fuzzy-regular-flat and by Theorem 2.4 fuzzy C-open. If eo = 0, then we have the contradiction

e ≤ eo = 0. Thus e = eo or equivalently every singleton is fuzzy open. Thus every fuzzy subset

of E is fuzzy open and hence M is free. �

Theorem 3.7 Let M = (E,O) be a loopless fuzzy closure matroid and λ ≤ 1. Then the

following are equivalent:

(1) λ is fuzzy open;

(2) λ is a alternative-fuzzy set and a fuzzy local-flat;

(3) λ is fuzzy prespanning and a fuzzy local-flat.

Proof (1) ⇒ (2) and (2) ⇒ (3) are trivial.

(3) ⇒ (1) Let λ be a fuzzy prespanning set that is also a fuzzy local-flat. Then λ ≤
o

λ and

λ = µ∧ λ̄, where µ is fuzzy open. Thus λ ≤ µ∧
o

λ = (µ∧ Ā)o =
o

λ. Therefore, λ is fuzzy open.�

Definition 3.8 A fuzzy map f : M1 → M2 is called fuzzy hesitant (resp. fuzzy alternative-

strong, fuzzy prestrong, fuzzy local–flat-strong, fuzzy open–regular-flat-strong) if the inverse

image of every open set in M2 is a fuzzy C-open (resp. fuzzy alternative-set, fuzzy prespanning

set, fuzzy local-flat, fuzzy-regular-flat) in M1.

Combining Corollary 3.5 and Theorem 3.4, we immediately obtain the following decompo-

sition of fuzzy strong maps.

Theorem 3.9 Let f : M1 → M2 be a fuzzy map where M1 is a loopless fuzzy closure matroid.

Then

(i) f is fuzzy open–regular-flat-strong if and only if f is fuzzy hesitant and fuzzy local-flat-

strong;

(ii) f is fuzzy strong if and only if f is fuzzy alternative-strong and fuzzy local-flat-strong;

(iii) f is fuzzy alternative-strong if and only if f is fuzzy prestrong and fuzzy hesitant;

(iv) f is fuzzy strong if and only if f is fuzzy prestrong and fuzzy local-flat-strong;

(v) f is fuzzy strong if and only if f is fuzzy prestrong and fuzzy open–regular-flat-strong.
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