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Abstract The main purpose of this paper is using the elementary method to study the
asymptotic properties of the SCBF function on simple numbers, and give an
interesting asymptotic formula for it.
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§1. Introduction
In reference [1], the Smarandache Sum of Composites Between Factors

function SCBF (n) is defined as: The sum of composite numbers between
the smallest prime factor of n and the largest prime factor of n. For example,
SCBF (14)=10, since 2×7 = 14 and the sum of the composites between 2 and
7 is: 4 + 6 = 10. In reference [2]: A number n is called simple number if the
product of its proper divisors is less than or equal to n. Let A denotes set of all
simple numbers. That is, A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19,
21, · · ·}.

According to reference [1], Jason Earls has studied the arithmetical proper-
ties of SCBF (n) and proved that SCBF (n) is not a multiplicative function.
For example, SCBF (14 × 15) = 10 and SCBF (14) × SCBF (15) = 40.
He also got that if i and j are positive integers then SCBF (2i × 5j) = 4,
SCBF (2i × 7j) = 10, etc. In this paper, we use the elementary method to
study the mean value properties of SCBF (n) on simple numbers, and give an
interesting asymptotic formula for it. That is, we shall prove the following:

Theorem. Let x ≥ 1, A denotes the set of all simple numbers. Then we
have the asymptotic formula

∑

n≤x
n∈A

SCBF (n) = B
x3

lnx
+ O

(
x3

ln2 x

)
,

where B = 1
3

∑
p

1
p3

is a constant,
∑
p

denotes the summation over all primes.

§2. Some Lemmas
To complete the proof of the theorem, we need the following lemmas:
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Lemma 1. For any prime p and positive integer k, we have the asymptotic
formula

SCBF (pk) = 0.

Proof. (See reference [1]).

Lemma 2. Let n ∈ A, then we have n = p, or n = p2, or n = p3, or
n = pq four case, where p, q denote the distinct primes.

Proof. First let n be a positive integer, pd(n) is the product of all positive
divisors of n, that is, pd(n) =

∏
d|nd. qd(n) is the product of all positive

divisors of n but n. That is, qd(n) =
∏

d|n,d<nd. Then from the definition of
pd(n) we know that

pd(n) =
∏

d|n
d =

∏

d|n

n

d
.

So from this formula we have

p2
d(n) =

∏

d|n
d×

∏

d|n

n

d
=

∏

d|n
n = nd(n).

where d(n) =
∑

d|n 1. Then we may immediately get pd(n) = n
d(n)

2 and

qd(n) =
∏

d|n,d<n

d =
∏

d|n d

n
= n

d(n)
2
−1.

By the definition of the simple numbers, we get n
d(n)

2
−1 ≤ n. Therefore, we

have
d(n) ≤ 4.

This inequality holds only for n = p, or n = p2, or n = p3, or n = pq four
cases. This completes the proof of Lemma 2.

Lemma 3. For any distinct prime p and q, we have the asymptotic formula

SCBF (pq) =
q2

2

(
1− 1

ln q

)
− p2

2

(
1− 1

ln p

)
+ O

(
q2

ln2 q

)
.

Proof. From the definition of SCBF (n), we have

SCBF (pq) =
∑

p<n<q

n−
∑

p<q1<q

q1,

where q1 is a prime. Using the Abel’s Identity [3] and note that the asymptotic
formula

∑

n≤x

nα =
xα+1

α + 1
+ O(xα)
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we can get

SCBF (pq) =
∑

p<n<q

n−
∑

p<q1<q

q1

=
∑

p<n≤q−1

n−
∑

p<q1≤q−1

q1

=
∑

n≤q−1

n−
∑

n≤p

n−
∑

p<q1≤q−1

q1

=
(q − 1)2

2
− (p− 1)2

2
+ O(q)− (q − 1)π(q − 1) + pπ(p)

+
∫ q−1

p
π(t)dt

=
q2

2
− q2

2 ln q
− p2

2
+

p2

2 ln p
+ O

(
q2

ln2 q

)
.

This completes the proof of Lemma 3.
Lemma 4. For real number x ≥ 1, we have the asymptotic formula

∑

pq≤x

SCBF (pq) = B
x3

lnx
+ O

(
x3

ln2 x

)
,

where p and q are two distinct primes, B = 1
3

∑
p

1
p3

is a constant, and
∑
p

denotes the summation over all primes.

Proof. From the definition of SCBF (n) and Lemma 1, Lemma 3, we get
∑

pq≤x

SCBF (pq) = 2
∑

pq≤x,p<q

SCBF (pq)−
∑

p2≤x

SCBF (p2)

= 2
∑

p≤√x

∑

p<q≤x
p

SCBF (pq)

=
∑

p≤√x

∑

p<q≤x
p

(
q2 − q2

ln q
− p2 +

p2

ln p
+ O

(
q2

ln2 q

))
.

Noting that π(x) = x
ln x + O

(
x

ln2 x

)
, using Abel’s Identity [3] we get

∑

p<q≤x
p

q2 = π(
x

p
)
x2

p2
− π(p)p2 − 2

∫ x
p

p
π(t)tdt

=
x3

3p3 ln x
p

− p3

3 ln p
+ O

(
x3

p3 ln2 x
p

)
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and
∑

p<q≤x
p

q2

ln q
= A(

x

p
)f(

x

p
)−A(p)f(p)−

∫ x
p

p
A(t)f(t)′dt

=
x3

3p3 ln2 x
p

− p3

3 ln2 p
− p3

9 ln3 p
+ O

(
x3

p3 ln3 x
p

)
,

where A(x
p ) =

∑
p<q≤x

p
q2, f(x) = 1

ln x . From reference [3], we know that

∑

p≤x

1
p

= ln lnx + C + O

(
1

lnx

)
,

where C is a computable constant. And then we also get
∑

p≤√x

p =
x

lnx
+ O

(
x

ln2 x

)

and
∑

p≤√x

p3 =
x2

2 ln x
+ O

(
x2

ln2 x

)
.

Using the same method, we obtain
∑

p≤√x

p

ln p
=

2x

ln2 x
+ O

(
x

ln3 x

)

and
∑

p≤√x

p3

ln p
=

x2

ln2 x
+ O

(
x2

ln3 x

)
.

Noting that 1

1− ln p
ln x

= 1 + ln p
ln x + ln2 p

ln2 x
+ · · · + lnm p

lnm x + · · ·, then we get the

following two formulae:
∑

p≤√x

∑

p<q≤x
p

q2

=
∑

p≤√x

(
x3

3p3 ln x
p

− p3

3 ln p
+ O

(
x3

p3 ln2 x
p

))

=
x3

3 ln x

∑

p≤√x

1
p3

(
1 +

ln p

lnx
+

ln2 p

ln2 x
+ · · ·

)

−1
3

∑

p≤√x

p3

ln p
+ O


 x3

ln2 x

∑

p≤√x

1
p3

(
1 + 2

ln p

lnx
+ 3

ln2 p

ln2 x
+ · · ·

)


= C1
x3

lnx
+ O

(
x3

ln2 x

)
;
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∑

p≤√x

∑

p<q≤x
p

q2

ln q

=
∑

p≤√x

(
x3

3p3 ln2 x
p

− p3

3 ln2 p
− p3

9 ln3 p
+ O

(
x3

p3 ln3 x
p

))

=
x3

3 ln2 x

∑

p≤√x

1
p3

(
1 + 2

ln p

lnx
+ 3

ln2 p

ln2 x
+ · · ·

)
− 1

3

∑

p≤√x

p3

ln2 p

−1
9

∑

p≤√x

p3

ln3 p
+ O


 ∑

p≤√x

x3

p3 ln3 x
p




= C2
x3

ln2 x
+ O

(
x2

ln2 x

)
,

where C1 = C2 = 1
3

∑
p

1
p3

.

So we have

2
∑

p≤√x

∑

p<q≤x
p

SCBF (pq)

=
∑

p≤√x

∑

p<q≤x
p

(
q2 − q2

ln q
− p2 +

p2

ln p
+ O

(
q2

ln2 q

))

=
∑

p≤√x

∑

p<q≤x
p

q2 −
∑

p≤√x

∑

p<q≤x
p

q2

ln q
−

∑

p≤√x

p2
∑

p<q≤x
p

1

+
∑

p≤√x

p2

ln p

∑

p<q≤x
p

1 + O




∑

p≤√x

∑

p<q≤x
p

q2

ln2 q




= B
x3

lnx
+ O

(
x3

ln2 x

)
,

where B = 1
3

∑
p

1
p3

. This proves Lemma 4.

§3. Proof of the theorem
In this section, we complete the proof of Theorem. According to the defini-

tion of simple numbers and Lemma 2, we have
∑

n≤x
n∈A

SCBF (n)
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=
∑

p≤x

SCBF (p) +
∑

p2≤x

SCBF (p2) +
∑

p3≤x

SCBF (p3) +
∑

pq≤x

SCBF (pq).

And then, using Lemma 1 and Lemma 4 we obtain
∑

n≤x
n∈A

SCBF (n) =
∑

pq≤x

SCBF (pq)

= B
x3

lnx
+ O

(
x3

ln2 x

)
.

This completes the proof of Theorem.
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