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Abstract The main purpose of this paper it to studied the mean value properties of the

Smarandache Superior m-th power part sequence SSMP (n) and the Smarandache Inferior

m-th power part sequence SIMP (n), and give several interesting asymptotic formula for

them.
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§1. Introduction and Results

For any positive integer n, the Smarandache Superior m-th power part sequence SSMP (n)
is defined as the smallest m-th power greater than or equal to n. The Smarandache Inferior
m-th power part sequence SIMP (n) is defined as the largest m-th power less than or equal to
n. For example, if m = 2, then the first few terms of SIMP (n) are: 0, 1, 1, 1, 4, 4, 4, 4, 4, 9,
9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, · · · . The first few terms of SSMP (n) are:
1, 4, 4, 4, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 25, · · · . If m = 3, then The first few terms of
SSMP (n) are: 1, 8, 8, 8, 8, 8, 8, 8, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 64, · · · . The first few terms of SIMP (n) are: 0, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 27, · · · . Now we let

Sn = (SSMP (1) + SSMP (2) + · · ·+ SSMP (n))/n;

In = (SIMP (1) + SIMP (2) + · · ·+ SIMP (n))/n;

Kn = n
√

SSMP (1) + SSMP (2) + · · ·+ SSMP (n);

In = n
√

SIMP (1) + SIMP (2) + · · ·+ SIMP (n).

In reference [2], Dr. K.Kashihara asked us to study the properties of these sequences. Gou Su
[3] studied these problem, and proved the following conclusion:

For any real number x > 2 and integer m = 2, we have the asymptotic formula

∑

n6x

SSSP (n) =
x2

2
+ O

(
x

3
2

)
,

∑

n6x

SISP (n) =
x2

2
+ O

(
x

3
2

)
,

and

Sn

In
= 1 + O

(
n−

1
2

)
, lim

n→∞
Sn

In
= 1.
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In this paper, we shall use the elementary method to give a general conclusion. That is,
we shall prove the following:

Theorem 1. Let m ≥ 2 be an integer, then for any real number x > 1, we have the
asymptotic formula

∑

n≤x

SSMP (n) =
x2

2
+ O

(
x

2m−1
m

)
,

and ∑

n≤x

SIMP (n) =
x2

2
+ O

(
x

2m−1
m

)
.

Theorem 2. For any fixed positive integer m ≥ 2 and any positive integer n, we have
the asymptotic formula

Sn − In =
m(m− 1)
2m− 1

n1− 1
m + O

(
n1− 2

m

)
.

Corollary 1. For any positive integer n, we have the asymptotic formula

Sn

In
= 1 + O

(
n−

1
m

)
,

and the limit lim
n→∞

Sn

In
= 1.

Corollary 2. For any positive integer n, we have the asymptotic formula

Kn

Ln
= 1 + O

(
1
n

)
,

and the limit lim
n→∞

Kn

Ln
= 1, lim

n→∞
(Kn − Ln) = 0.

§2. Proof of the theorems

In this section, we shall use the Euler summation formula and the elementary method to
complete the proof of our Theorems. For any real number x > 2, it is clear that there exists
one and only one positive integer M satisfying Mm < x ≤ (M +1)m. That is, M = x

1
m +O(1).

So we have
∑

n≤x

SSMP (n) =
∑

n≤Mm

SSMP (n) +
∑

Mm<n≤x

SSMP (n)

=
∑

k≤M

(km − (k − 1)m)km + ([x]− (Mm + 1))(M + 1)m

=
∑

k≤M

(mk2m−1 + O(k2m−2)) + ([x]−Mm − 1)(M + 1)m

=
m ·M2m

2m
+ O

(
M2m−1

)
+ ([x]−Mm − 1) (M + 1)m

=
M2m

2
+ O

(
M2m−1

)
.
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Note that M = x
1
m + O(1), from the above estimate we have the asymptotic formula

∑

n≤x

SSMP (n) =
x2

2
+ O

(
x2− 1

m

)
.

This proves the first formula of Theorem 1.
Now we prove the second one. For any real number x > 1, we also have

∑

n≤x

SIMP (n) =
∑

n<Mm

SIMP (n) +
∑

Mm≤n≤x

SIMP (n)

=
∑

k6M

(km − (k − 1m))(k − 1)m +
∑

Mm6n6x

Mm

=
∑

k6M

(mk2m−1 + O(k2m−2)) + ([x]−Mm + 1) Mm

=
M2m

2
+ O

(
M2m−1

)
+ ([x]−Mm + 1) Mm.

Note that

([x]−Mm + 1) Mm 6 M2m−1 ≤ x1− 1
m .

Therefore,
∑

n≤x

SSMP (n) =
x2

2
+ O

(
x2− 1

m

)
.

This completes the proof of Theorem 1.
To prove Theorem 2, let x = n, then from the method of proving Theorem 1 we have

Sn − In =
1
n

(SSMP (1) + SSMP (2) + · · ·+ SSMP (n))

− 1
n

(SIMP (1) + SIMP (2) + · · ·+ SIMP (n))

=
1
n


 ∑

k≤M

(km − (k − 1)m)km + ([x]− (Mm + 1))(M + 1)m




− 1
n


 ∑

k6M

(km − (k − 1m))(k − 1)m + ([x]−Mm + 1)Mm




=
1
n

∑

k≤M

m(m− 1)k2m−2 + O

(
1
n

M2m−2

)

=
m(m− 1)
n(2m− 1)

M2m−1 + O

(
1
n

M2m−2

)
.

Note that Mm < n ≤ (M+1)m or M = n
1
m +O(1), from the above formula we may immediately

deduce that

Sn − In =
m(m− 1)
2m− 1

n1− 1
m + O

(
n1− 2

m

)
.

This completes the proof of Theorem 2.
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Now we prove the Corollaries. Note that the asymptotic formula

In =
1
n

(SIMP (1) + SIMP (2) + · · ·+ SIMP (n)) =
1
n

(
n2

2
+ O

(
n

2m−1
m

))
=

n

2
+ O

(
n1− 1

m

)

and

Sn =
1
n

(SSMP (1) + SSMP (2) + · · ·+ SSMP (n)) =
1
n

(
n2

2
+ O

(
n

2m−1
m

))
=

n

2
+O

(
n1− 1

m

)
.

From the above two formula we have

Sn

In
=

n
2 + O

(
n

m−1
m

)

n
2 + O

(
n

m−1
m

) = 1 + O
(
n−

1
m

)
.

Therefore, we have the limit formula

lim
n→∞

Sn

In
= 1.

Using the same method we can also deduce that

Kn = n
√

SSMP (1) + SSMP (2) + · · ·+ SSMP (n) =
(

n2

2
+ O

(
n

2m−1
m

)) 1
n

and

Ln = n
√

SIMP (1) + SIMP (2) + · · ·+ SIMP (n) =
(

n2

2
+ O

(
n

2m−1
m

)) 1
n

From these formula we may immediately deduce that

Kn

Ln
=




n2

2 + O
(
n

2m−1
m

)

n2

2 + O
(
n

2m−1
m

)



1
n

=
(
1 + O

(
n−

1
m

)) 1
n

= 1 + O

(
1
n

)
.

Therefore, we have the limit formula

lim
n→∞

Kn

Ln
= 1.

Note that lim
n→∞

Kn = lim
n→∞

Ln = 1, we may immediately deduce that

lim
n→∞

(Kn − Ln) = 0.

This completes the proof of Corollary 2.
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