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Abstract: Let G = (V, E) be a graph with p vertices and q edges and let f : V (G) →

{0, 1, 2, . . . , q − 1, q + 1} be an injection. The graph G is said to have a near mean labeling

if for each edge, there exist an induced injective map f∗ : E(G) → {1, 2, . . . , q} defined by

f∗(uv) =











f(u) + f(v)

2
if f(u) + f(v) is even,

f(u) + f(v) + 1

2
if f(u) + f(v) is odd.

We extend this notion to Smarandachely near m-mean labeling (as in [9]) if for each edge

e = uv and an integer m ≥ 2, the induced Smarandachely m-labeling f∗ is defined by

f∗(e) =

⌈

f(u) + f(v)

m

⌉

.

A graph that admits a Smarandachely near mean m-labeling is called Smarandachely near

m-mean graph. The graph that admits a near mean labeling is called a near mean graph

(NMG). In this paper, we proved that the graphs Pn, Cn, K2,n are near mean graphs and

Kn(n > 4) and K1,n(n > 4) are not near mean graphs.
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labeling, Smarandachely near m-mean graph.
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§1. Introduction

By a graph, we mean a finite simple and undirected graph. The vertex set and edge set of a

graph G denoted are by V (G) and E(G) respectively. Let f : V (G) → {0, 1, 2, . . . , q− 1, q+ 1}
be an injection. The graph G is said to have a near mean labeling if for each edge, there exist

an induced injective map f∗ : E(G) → {1, 2, . . . , q} defined by

f∗(uv) =











f(u) + f(v)

2
if f(u) + f(v) is even,

f(u) + f(v) + 1

2
if f(u) + f(v) is odd.

We extend this notion to Smarandachely near m-mean labeling (as in [9]) if for each edge e = uv
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and an integer m ≥ 2, the induced Smarandachely m-labeling f∗ is defined by

f∗(e) =

⌈

f(u) + f(v)

m

⌉

.

A graph that admits a Smarandachely near mean m-labeling is called Smarandachely near m-

mean graph. A path Pn is a graph of length n − 1 ·Kn and Cn are complete graph and cycle

with n vertices respectively. Terms and notations not used here are as in [2].

§2. Preliminaries

The mean labeling was introduced in [3]. Let G be a (p, q) graph. In [4], we proved that

the graphs Book Bn, Ladder Ln, Grid Pn × Pn, Prism Pm × C3 and Ln ⊙K1 are near mean

graphs. In [5], we proved that Join of graphs, K2 +mK1,K
1
n + 2K2, Sm +K1Pn + 2K1 and

double fan are near mean graphs. In [6], we proved Family of trees, Bi-star, Sub-division Bi-star

Pm ⊖ 2K1, Pm ⊖ 3K1, Pm ⊖ K1,4 and Pm ⊖ K1,3 are near mean graphs. In [7], special class

of graphs triangular snake, quadrilateral snake, C+
n , Sm,3, Sm,4, and parachutes are proved as

near mean graphs. In [8], we proved the graphs armed and double armed crown of C3 and C4

are near mean graphs. In this paper we proved that the graphs Pn, Cn,K2,n are near mean

graphs and Kn(n > 4) and K1,n(n > 4) are not near mean graphs.

§3 Near Mean Graphs

Theorem 3.1 The path Pn is a near mean graph.

Proof Let Pn be a path of n vertices with V (Pn) = {u1, u2, . . . , un} and E(Pn) =

{(uiui+1)/i = 1, 2, . . . , n− 1}. Define f : V (Pn) → {0, 1, 2, . . . , n− 1, n+ 1} by

f(ui) = i− 1, 1 ≤ i ≤ n

f(un) = n+ 1.

Clearly, f is injective. It can be verified that the induced edge labeling given by f∗(uiui+1) =

i(1 ≤ i ≤ n) are distinct. Hence, Pn is a near mean graph. �

Example 3.2 A near mean labeling of P4 is shown in Figure 1.

0 1 2 4

u1 1 u2 2
u3 3 u4

P4 :

Figure 1: P4

Theorem 3.3 Kn, (n > 4) is not a near mean graph.

Proof Let f : V (G) → {0, 1, 2, . . . , q−1, q+1}. To get the edge label 1 we must have either

0 and 1 as vertex labels or 0 and 2 as vertex labels.
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In either case 0 must be label of some vertex. In the same way to get edge label q, we

must have either q − 1 and q + 1 as vertex labels or q − 2 and q + 1 as vertex labels. Let u be

a vertex whose veretx label 0.

Case i To get the edge label q. Assign vertex labels q − 1 and q + 1 to the vertices w and x

and respectively.

Subcase a. Let v be a vertex whose vertex label be 2, then the edges vw and ux get the same

label.

Subcase b. Let v be a vertex whose vertex label be 1.

Then the edges vw and ux get the same label when q is odd. Similarly, when q is even,

the edges uw and vw get the same label as well the edges ux and vx get the same label.

Case ii. To get the edge label q assign the vertex label q− 2 and q+1 to the vertices w and

x respectively.

Subcase a. Let v be the vertex whose vertex label be 1.

As n > 4, to get edge label 2, there should be a vertex whose vertex label is either 3 or 4.

Let it be z (say). When vertex label of z is 3, the edges ux and wz have the same label also

the edges uz and vz get the same edge label. When the vertex label of z is 4, the edges vx and

wz have the same label.

Subcase b. Let v be a vertex whose vertex label 2.

As n > 4, to get edge label 2, there should be a vertex, say z whose vertex label is either 3

or 4. When vertex label of z is 3, the edges ux and wz get the same label. Suppose the vertex

label of z is 4.

If q is even then the edges ux and wz have the same label. If q is odd then the edges vw

and ux have the same label. Hence Kn(n ≥ 5) is not a near mean graph. �

Remark 3.4 K2,K3 and K4 are near mean graphs.

0 2 0 1 2 0 1 2

K2 K3 K4

u1 1
u2

2

u3

4

3

u1

2

4
u3

6

4 u4

7
5

3

u2
u1 u2

Figure 2: K2,K3,K4

Theorem 3.5 A cycle Cn is a near mean graph for any integer n ≥ 1.
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Proof Let V (Cn) = (u1, u2, u3, . . . , un, u1} and E(Cn) = {[(uiui+1) : 1 ≤ i ≤ n − 1] ∪
(u1un)}.

Case i Let n be even, say n = 2m.

Define f : V (Cn) → {0, 1, 2, . . . , 2m, 2m+ 2} by

f(ui) = i− 1, 1 ≤ i ≤ m.

f(um+j) = m+ j, 1 ≤ i < m.

f(un) = 2m+ 1.

Clearly f is injective. The set of edge labels of Cn is {1, 2, . . . , q}.

Case ii. Let n be odd, say n = 2m+ 1.

Define f : V (Cn) → {0, 1, 2, . . . , 2m− 1, 2m+ 1} by

f(ui) = i− 1, 1 ≤ i ≤ m

f(um+j) = m+ j, 1 ≤ j ≤ m.

f(u2m+1) = 2m+ 2.

Clearly f is injective. The set of edge labels of Cn is {1, 2, . . . , q}. �

Example 3.6 A near mean labeling of C6 and C7 is shown in Figure 3.

u1 1 u2 2 u3

0 1 2

7 5 4

3

u6 u5 u4

4u1

u2 u3
u4

u5
u6u7

8 7 6 6 5

5

1 2 2 3 4

1

4

6 5

0

C7-odd C6-even

Figure 3: C6, C7

Theorem 3.7 K1,n(n > 4) is not a near mean graph.

Proof Let V (K1,n) = {u, vi : 1 ≤ i ≤ n} and E(K1,n) = {(uvi) : 1 ≤ i ≤ n}. To get the

edge label 1, either 0 and 1 (or) 0 and 2 are assigned to u and vi for some i. In either case 0

must be label of some vertex.

Suppose if f(u) = 0, then we can not find an edge label q. Suppose if f(v1) = 0, then either

f(u) = 1 or f(u) = 2.

Case i. Let f(u) = 1.

To get edge label q, we need the following possibilities either q − 1 and q + 1 or q − 2 and

q + 1. If f(u) = 1, it is possible only when q is either 2 or 3. But q > 4, so it is not possible to

get edge value q.
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Case ii. Let f(u) = 2.

As in Case i, if f(u) = 2 and if one of the edge value is q, then the value of q is either 3 or

4. From both the cases it is not possible to get the edge value q, when q > 4.

Hence, K1,n(n > 5) is not a near mean graph. �

Remark 3.8 K1,n, n ≤ 4 is a near mean graph. For example, one such a near mean labeling

is shown in Figure 4.

0 2

u 1 v1

K1,1
K1,2

1 3
v2v1

1 2

u
0

v1 v2 v3

u

0 1 4

1 2
3

2

v1 v2 v3 v4

u
2

1
2 3

4

0 1 3 5

K1,3
K1,4

Figure 4: K1,n, n ≤ 4

Theorem 3.9 K2,n admits near mean graph.

Proof Let (V1, V2) be the bipartition of V (K2,n) with V1 = {u1u2} and V2 = {v1, v2, . . . , vn}.
E(K2,n) = {(u1vi), (u2vi) : 1 ≤ i ≤ n}.

Define an injective map f : V (K2,n) → {0, 1, 2, . . . , 2n− 1, 2n+ 1} by

f(u1) = 1

f(u2) = 2n+ 1

f(vi) = 2(i− 1), 1 ≤ i ≤ n.

Then, it can be verified f∗(u1vi) = i, 1 ≤ i ≤ n, f∗(u2vi) = n+ i, 1 ≤ i ≤ n and the edge values

are distinct. Hence, K2,n is a near mean graph. �
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Example 3.10 A near mean labeling of K2,4 is shown in Figure 5.

0 2 4 6

8
76

54

321

u1 u2
9

1

v1 v2 v3 v4

Figure 5: K2,4
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