On Near Mean Graphs

A. Nagarajan, A. Nellai Murugan and S. Navaneetha Krishnan

(Department of Mathematics of V.O.C. College, Tuticorin - 628008, Tamil Nadu, India)

Email: nagarajan.voc@gmail.com, anellai.vocc@gmail.com

Abstract: Let G = (V, E) be a graph with p vertices and q edges and let $f : V(G) \to \{0, 1, 2, \ldots, q - 1, q + 1\}$ be an injection. The graph G is said to have a *near mean labeling* if for each edge, there exist an induced injective map $f^* : E(G) \to \{1, 2, \ldots, q\}$ defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even,} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd.} \end{cases}$$

We extend this notion to Smarandachely near m-mean labeling (as in [9]) if for each edge e = uv and an integer $m \ge 2$, the induced Smarandachely m-labeling f^* is defined by

$$f^*(e) = \left\lceil \frac{f(u) + f(v)}{m} \right\rceil.$$

A graph that admits a Smarandachely near mean m-labeling is called Smarandachely near m-mean graph. The graph that admits a near mean labeling is called a near mean graph (NMG). In this paper, we proved that the graphs $P_n, C_n, K_{2,n}$ are near mean graphs and $K_n(n > 4)$ and $K_{1,n}(n > 4)$ are not near mean graphs.

Key Words: Labeling, near mean labeling, near mean graph, Smarandachely near *m*-labeling, Smarandachely near *m*-mean graph.

AMS(2010): 05C78

§1. Introduction

By a graph, we mean a finite simple and undirected graph. The vertex set and edge set of a graph G denoted are by V(G) and E(G) respectively. Let $f:V(G)\to\{0,1,2,\ldots,q-1,q+1\}$ be an injection. The graph G is said to have a near mean labeling if for each edge, there exist an induced injective map $f^*:E(G)\to\{1,2,\ldots,q\}$ defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even,} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd.} \end{cases}$$

We extend this notion to Smarandachely near m-mean labeling (as in [9]) if for each edge e = uv

¹Received August 2, 2010. Accepted December 25, 2010.

and an integer $m \geq 2$, the induced Smar andachely m-labeling f^* is defined by

$$f^*(e) = \left\lceil \frac{f(u) + f(v)}{m} \right\rceil.$$

A graph that admits a Smarandachely near mean m-labeling is called Smarandachely near m-mean graph. A path P_n is a graph of length $n-1 \cdot K_n$ and C_n are complete graph and cycle with n vertices respectively. Terms and notations not used here are as in [2].

§2. Preliminaries

The mean labeling was introduced in [3]. Let G be a (p,q) graph. In [4], we proved that the graphs Book B_n , Ladder L_n , Grid $P_n \times P_n$, Prism $P_m \times C_3$ and $L_n \odot K_1$ are near mean graphs. In [5], we proved that Join of graphs, $K_2 + mK_1, K_n^1 + 2K_2, S_m + K_1P_n + 2K_1$ and double fan are near mean graphs. In [6], we proved Family of trees, Bi-star, Sub-division Bi-star $P_m \ominus 2K_1, P_m \ominus 3K_1, P_m \ominus K_{1,4}$ and $P_m \ominus K_{1,3}$ are near mean graphs. In [7], special class of graphs triangular snake, quadrilateral snake, C_n^+ , $S_{m,3}, S_{m,4}$, and parachutes are proved as near mean graphs. In [8], we proved the graphs armed and double armed crown of C_3 and C_4 are near mean graphs. In this paper we proved that the graphs $P_n, C_n, K_{2,n}$ are near mean graphs and $K_n(n > 4)$ and $K_{1,n}(n > 4)$ are not near mean graphs.

§3 Near Mean Graphs

Theorem 3.1 The path P_n is a near mean graph.

Proof Let P_n be a path of n vertices with $V(P_n) = \{u_1, u_2, \dots, u_n\}$ and $E(P_n) = \{(u_i u_{i+1})/i = 1, 2, \dots, n-1\}$. Define $f: V(P_n) \to \{0, 1, 2, \dots, n-1, n+1\}$ by

$$f(u_i) = i - 1, 1 \le i \le n$$

 $f(u_n) = n + 1.$

Clearly, f is injective. It can be verified that the induced edge labeling given by $f^*(u_iu_{i+1}) = i(1 \le i \le n)$ are distinct. Hence, P_n is a near mean graph.

Example 3.2 A near mean labeling of P_4 is shown in Figure 1.

Figure 1: P_4

Theorem 3.3 K_n , (n > 4) is not a near mean graph.

Proof Let $f: V(G) \to \{0, 1, 2, \dots, q-1, q+1\}$. To get the edge label 1 we must have either 0 and 1 as vertex labels or 0 and 2 as vertex labels.

In either case 0 must be label of some vertex. In the same way to get edge label q, we must have either q-1 and q+1 as vertex labels or q-2 and q+1 as vertex labels. Let u be a vertex whose veretx label 0.

Case i To get the edge label q. Assign vertex labels q-1 and q+1 to the vertices w and x and respectively.

Subcase a. Let v be a vertex whose vertex label be 2, then the edges vw and ux get the same label.

Subcase b. Let v be a vertex whose vertex label be 1.

Then the edges vw and ux get the same label when q is odd. Similarly, when q is even, the edges uw and vw get the same label as well the edges ux and vx get the same label.

Case ii. To get the edge label q assign the vertex label q-2 and q+1 to the vertices w and x respectively.

Subcase a. Let v be the vertex whose vertex label be 1.

As n > 4, to get edge label 2, there should be a vertex whose vertex label is either 3 or 4. Let it be z (say). When vertex label of z is 3, the edges ux and wz have the same label also the edges uz and vz get the same edge label. When the vertex label of z is 4, the edges vx and vz have the same label.

Subcase b. Let v be a vertex whose vertex label 2.

As n > 4, to get edge label 2, there should be a vertex, say z whose vertex label is either 3 or 4. When vertex label of z is 3, the edges ux and wz get the same label. Suppose the vertex label of z is 4.

If q is even then the edges ux and wz have the same label. If q is odd then the edges vw and ux have the same label. Hence $K_n (n \ge 5)$ is not a near mean graph.

Remark 3.4 K_2 , K_3 and K_4 are near mean graphs.

Figure 2: K_2, K_3, K_4

Theorem 3.5 A cycle C_n is a near mean graph for any integer $n \geq 1$.

Proof Let $V(C_n) = \{u_1, u_2, u_3, \dots, u_n, u_1\}$ and $E(C_n) = \{[(u_i u_{i+1}) : 1 \le i \le n-1] \cup (u_1 u_n)\}.$

Case i Let n be even, say n = 2m.

Define $f: V(C_n) \to \{0, 1, 2, \dots, 2m, 2m + 2\}$ by

$$f(u_i) = i - 1, 1 \le i \le m.$$

 $f(u_{m+j}) = m + j, 1 \le i < m.$
 $f(u_n) = 2m + 1.$

Clearly f is injective. The set of edge labels of C_n is $\{1, 2, \ldots, q\}$.

Case ii. Let n be odd, say n = 2m + 1.

Define $f: V(C_n) \to \{0, 1, 2, \dots, 2m - 1, 2m + 1\}$ by

$$f(u_i) = i - 1, 1 \le i \le m$$

$$f(u_{m+j}) = m + j, 1 \le j \le m.$$

$$f(u_{2m+1}) = 2m + 2.$$

Clearly f is injective. The set of edge labels of C_n is $\{1, 2, \ldots, q\}$.

Example 3.6 A near mean labeling of C_6 and C_7 is shown in Figure 3.

Figure 3: C_6, C_7

Theorem 3.7 $K_{1,n}(n > 4)$ is not a near mean graph.

Proof Let $V(K_{1,n}) = \{u, v_i : 1 \le i \le n\}$ and $E(K_{1,n}) = \{(uv_i) : 1 \le i \le n\}$. To get the edge label 1, either 0 and 1 (or) 0 and 2 are assigned to u and v_i for some i. In either case 0 must be label of some vertex.

Suppose if f(u) = 0, then we can not find an edge label q. Suppose if $f(v_1) = 0$, then either f(u) = 1 or f(u) = 2.

Case i. Let f(u) = 1.

To get edge label q, we need the following possibilities either q-1 and q+1 or q-2 and q+1. If f(u)=1, it is possible only when q is either 2 or 3. But q>4, so it is not possible to get edge value q.

Case ii. Let f(u) = 2.

As in Case i, if f(u) = 2 and if one of the edge value is q, then the value of q is either 3 or 4. From both the cases it is not possible to get the edge value q, when q > 4.

Hence, $K_{1,n}(n > 5)$ is not a near mean graph.

Remark 3.8 $K_{1,n}$, $n \le 4$ is a near mean graph. For example, one such a near mean labeling is shown in Figure 4.

Figure 4: $K_{1,n}, n \leq 4$

Theorem 3.9 $K_{2,n}$ admits near mean graph.

Proof Let (V_1, V_2) be the bipartition of $V(K_{2,n})$ with $V_1 = \{u_1u_2\}$ and $V_2 = \{v_1, v_2, \dots, v_n\}$. $E(K_{2,n}) = \{(u_1v_i), (u_2v_i) : 1 \le i \le n\}$.

Define an injective map $f:V(K_{2,n})\to\{0,1,2,\dots,2n-1,2n+1\}$ by

$$f(u_1) = 1$$

 $f(u_2) = 2n + 1$
 $f(v_i) = 2(i - 1), 1 \le i \le n$.

Then, it can be verified $f^*(u_1v_i) = i, 1 \le i \le n, f^*(u_2v_i) = n+i, 1 \le i \le n$ and the edge values are distinct. Hence, $K_{2,n}$ is a near mean graph.

Example 3.10 A near mean labeling of $K_{2,4}$ is shown in Figure 5.

Figure 5: $K_{2,4}$

References

- [1] J.A. Gallian, A Dynamic Survey of Graph Labeling, *The Electronic Journal of Cominatorics*, **6**(2001), # DS6.
- [2] F. Harary, Graph Theory, Addition Wesley Publishing company Inc, USA,1969.
- [3] S. Somasundaram and R. Ponraj, Mean Labeling of Graphs, *National Academy Science Letters*, **26**(2003), 210-213.
- [4] A. Nagarajan, A. Nellai Murugan and A. Subramanian, *Near Meanness on product Graphs*, (Communicated).
- [5] A. Nellai Murugan, A. Nagarajan, Near Meanness on Join of two Graphs, (Communicated).
- [6] A. Nellai Murugan, A. Nagarajan, Near Meanness on Family of Trees, International Journal of Physical Sciences, Ultra Scientist., 22(3)M (2010), 775-780.
- [7] A. Nellai Murugan, A. Nagarajan, Near Meanness on Special Types of Graphs, (Communicated).
- [8] A. Nellai Murugan, A. Nagarajan, Near Meanness on Armed and Double Armed Crown of Cycles, (Communicated).
- [9] R. Vasuki, A. Nagarajan, Some results on Super Mean Graphs, *International Journal of Mathematical Combinatorics*, 3 (2009), 82-96.