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Abstract For any positive integer n, the near pseudo Smarandache function K(n) is defined

as K(n) = m = n(n+1)
2

+k, where k is the smallest positive integer such that n divides m. The

main purpose of this paper is using the elementary method to study the calculating problem

of an infinite series involving the near pseudo Smarandache function K(n), and give an exact

calculating formula.
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§1. Introduction and results

For any positive integer n, the near pseudo Smarandache function K(n) is defined as
follows:

K(n) = m,

where m = n(n+1)
2 + k, and k is the smallest positive integer such that n divides m.

The first few values of K(n) are K(1) = 2, K(2) = 4, K(3) = 9, K(4) = 12, K(5) = 20,
K(6) = 24, K(7) = 35, K(8) = 40, K(9) = 54, K(10) = 50, K(11) = 77, K(12) = 84, K(13) =
104, K(14) = 112, K(15) = 135, · · · . This function was introduced by A.W.Vyawahare and
K.M.Purohit in [1], where they studied the elementary properties of K(n), and obtained a
series interesting results. For example, they proved that 2 and 3 are the only solutions of
K(n) = n2; If a, b > 5, then K(a · b) > K(a) ·K(b); If a > 5, then for all positive integer n,
K(an) > n ·K(a); The Fibonacci numbers and the Lucas numbers do not exist in the sequence
{K(n)}; Let C be the continued fraction of the sequence {K(n)}, then C is convergent and

2 < C < 3; K(2n−1)+1 is a triangular number; The series
∞∑

n=1

1
K(n)

is convergent. The other

contents related to the near pseudo Smarandache function can also be found in references [2],
[3] and [4].

In this paper, we use the elementary method to study the calculating problem of the series

∞∑
n=1

1
Ks(n)

, (1)

and give an exact calculating formula for (1). That is, we shall prove the following conclusion:
Theorem. For any real number s > 1

2 , the series (1) is convergent, and
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(a)
∞∑

n=1

1
K(n)

=
2
3

ln 2 +
5
6
;

(b)
∞∑

n=1

1
K2(n)

=
11
108

· π2 − 22 + 2 ln 2
27

.

In fact for any positive integer s, using our method we can give an exact calculating formula
for (1), but the calculation is very complicate if s is large enough.

§2. Proof of the theorem

In this section, we shall prove our theorem directly. In fact for any positive integer n, it is
easily to deduce that K(n) = n(n+3)

2 if n is odd and K(n) = n(n+2)
2 if n is even. So from this

properties we may immediately get

n2

2
< K(n) <

(n + 3)2

2
,

or
1

(n + 3)2s
¿ 1

Ks(n)
¿ 1

n2s
.

So the series (1) is convergent if s > 1
2 .

Now from the properties of K(n) we have

∞∑
n=1

1
K(n)

=
∞∑

n=1

1
K(2n− 1)

+
∞∑

n=1

1
K(2n)

=
∞∑

n=1

1
(2n− 1)(n + 1)

+
∞∑

n=1

1
2n(n + 1)

=
2
3
·
∞∑

n=1

(
1

2n− 1
− 1

2n + 2

)
+

1
2
·
∞∑

n=1

(
1
n
− 1

n + 1

)

=
2
3
· lim

N→∞


 ∑

n≤N

1
2n− 1

−
∑

n≤N

1
2n + 2


 +

1
2

=
2
3
· lim

N→∞


 ∑

n≤2N

1
n
− 1

2N + 2
+

1
2
−

∑

n≤N

1
n


 +

1
2
. (2)

Note that for any N > 1, we have the asymptotic formula (See Theorem 3.2 of [5])

∑

n≤N

1
n

= lnN + γ + O

(
1
N

)
, (3)

where γ is the Euler constant.
Combining (2) and (3) we may immediately obtain

∞∑
n=1

1
K(n)

=
2
3
· lim

N→∞

[
ln(2N) + γ +

1
2
− lnN − γ + O

(
1
N

)]
+

1
2

=
2
3

ln 2 +
5
6
.



100 Yongfeng Zhang No. 1

This completes the proof of (a) in Theorem.
Now we prove (b) in Theorem. From the definition and properties of K(n) we also have

∞∑
n=1

1
K2(n)

=
∞∑

n=1

1
K2(2n− 1)

+
∞∑

n=1

1
K2(2n)

=
∞∑

n=1

1
(2n− 1)2(n + 1)2

+
∞∑

n=1

1
(2n)2(n + 1)2

. (4)

Note that the identities

1
(2n− 1)2(n + 1)2

=
2
27

(
1

2n + 2
− 1

2n− 1

)
+

1
9

1
(2n− 1)2

+
1
9

1
(2n + 2)2

, (5)

1
n2(n + 1)2

= 2
(

1
n + 1

− 1
n

)
+

1
n2

+
1

(n + 1)2
, (6)

∞∑
n=1

1
(2n− 1)2

=
π2

8
and

∞∑
n=1

1
(n + 1)2

=
π2

6
− 1. (7)

From (3), (4), (5), (6) and (7) we may deduce that

∞∑
n=1

1
K2(n)

=
2
27
·
∞∑

n=1

(
1

2n + 2
− 1

2n− 1

)
+

1
9
·
∞∑

n=1

(
1

(2n− 1)2
+

1
(2n + 2)2

)

+
1
2
·
∞∑

n=1

(
1

n + 1
− 1

n

)
+

1
4
·
∞∑

n=1

(
1
n2

+
1

(n + 1)2

)

=
2
27
· lim

N→∞


 ∑

n≤N

1
2n + 2

−
∑

n≤N

1
2n− 1


 +

π2

72
+

π2

216
− 1

36

+
1
2
· lim

N→∞


 ∑

n≤N

1
n + 1

−
∑

n≤N

1
n


 +

π2

24
+

π2

24
− 1

4

=
2
27
· lim

N→∞

[
−1

2
+ lnN − ln(2N) + O

(
1
N

)]
+

π2

54
− 1

36

−1
2

+
π2

12
− 1

4

=
11
108

· π2 − 22 + 2 ln 2
27

.

This completes the proof of (b) in Theorem.
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