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§1. Introduction and results

For any positive integer n, we define L(n) is the Least Common Multiply (LCM) of the
natural number from 1 through n. That is

L(n) = [1, 2, · · · , n].

The Smarandache Least Common Multiply Sequence is defined by:
SLS −→ L(1), L(2), L(3), · · · , L(n), · · · .

The first few numbers are: 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, · · · .

About some simple arithmetical properties of L(n), there are many results in elementary
number theory text books. For example, for any positive integers a, b and c, we have

[a, b] =
ab

(a, b)
and [a, b, c] =

abc · (a, b, c)
(a, b)(b, c)(c, a)

,

where (a1, a2, · · · , ak) denotes the Greatest Common Divisor of a1, a2, · · · , ak−1 and ak. But
about the deeply arithmetical properties of L(n), it seems that none had studied it before, but
it is a very important arithmetical function in elementary number theory. The main purpose of
this paper is using the elementary methods to study a limit problem involving L(n), and give
an interesting limit theorem for it. That is, we shall prove the following:

Theorem. For any positive integer n, we have the asymptotic formulaL(n2)∏
p≤n2

p


1
n

= e + O

(
exp

(
−c

(lnn)
3
5

(ln lnn)
1
5

))
,

where
∏

p≤n2

denotes the production over all prime p ≤ n2.

From this Theorem we may immediately deduce the following:
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Corollary. Under the notations of above, we have

lim
n→∞

L(n2)∏
p≤n2

p


1
n

= e,

where L(n2) = [1, 2, · · · , n2], p is a prime.

§2. Proof of the theorem

In this section, we shall complete the proof of this theorem. First we need the following
simple Lemma.

Lemma. For x > 0, we have the asymptotic formula

θ(x) =
∑
p≤x

ln p = x + O

(
x exp

(
−c(lnx)

3
5

(ln lnx)
1
5

))
,

where c > 0 is a constant,
∑
p≤x

denotes the summation over all prime p ≤ x.

Proof. In fact, this is the different form of the famous prime theorem. Its proof can be
found in reference [2].

Now we use this Lemma to prove our Theorem.
Let

L(n2) = [1, 2, · · · , n2] = pα1
1 pα2

2 · · · pαs
s , (1)

be the factorization of L(n2) into prime powers, then αi = α(pi) is the highest power of pi in
the factorization of 1, 2, 3, · · · , n2. SinceL(n2)∏

p≤n2

p


1
n

= exp

 1
n

ln
L(n2)∏
p≤n2

p

 = exp

 1
n

lnL(n2)− ln
∏

p≤n2

p

 ,

while

lnL(n2)− ln
∏

p≤n2

p = ln (pα1
1 pα2

2 · · · pαn
n )− ln

∏
p≤n2

p

=
∑

p≤n2

α(p) ln p−
∑

p≤n2

ln p

=
∑

p≤n2

(α(p)− 1) ln p

=
∑

p≤n
2
3

(α(p)− 1) ln p +
∑

n
2
3 <p≤n

(α(p)− 1) ln p

+
∑

n<p≤n2

(α(p)− 1) ln p. (2)
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In (1), it is clear that if n < pi ≤ n2, then α(pi) = 1. If n
2
3 < pi ≤ n, we have α(pi) = 2. (In

fact if α(pi) ≥ 3, then p3
i > n. This contradiction with pi ≤ n). If pi ≤ n

2
3 , then α(pi) ≥ 3. So

from these and above Lemma we have∑
n

2
3 <p≤n

(α(p)− 1) ln p =
∑
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2
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ln p, (3)

∑
n<p≤n2

(α(p)− 1) ln p =
∑

n<p≤n2

(1− 1) ln p = 0, (4)

∑
p≤n

2
3
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)
. (5)

Now combining (2), (3), (4) and (5) we may immediately get
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∏
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That is,

L(n2)∏
p≤n2
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This completes the proof of Theorem.
The Corollary follows from Theorem with n →∞.
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