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Abstract In reference [2], we used the elementary method to study the mean value prop-

erties of a new arithmetical function, and obtained two mean value formulae for it, but there

exist some errors in that paper. The main purpose of this paper is to correct the errors in

reference [2], and give two correct conclusions.
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§1. Introduction

For any positive integer n, we call an arithmetical function f(n) as the Smarandache
multiplicative function if for any positive integers m and n with (m, n) = 1, we have f(mn) =
max{f(m), f(n)}. For example, the Smarandache function S(n) and the Smarandache LCM
function SL(n) both are Smarandache multiplicative functions. In reference [2], we defined a
new Smarandache multiplicative function f(n) as follows: f(1) = 1; If n > 1, then f(n) =

max
1≤i≤k

{ 1
αi + 1

}, where n = pα1
1 pα2

2 · · · pαk

k be the factorization of n into prime powers. Then we

studied the mean value properties of f(n), and proved two asymptotic formulae:

∑

n≤x

f(n) =
1
2
· x · ln lnx + λ · x + O

( x

lnx

)
, (1)

where λ is a computable constant.

∑

n≤x

(
f(n)− 1

2

)2

=
1
36
· ζ

(
3
2

)

ζ(3)
· √x · ln lnx + d · √x + O

(
x

1
3

)
, (2)

where ζ(s) is the Riemann zeta-function, and d is a computable constant.
But now, we found that the methods and results in reference [2] are wrong, so the formulae

(1) and (2) are not correct. In this paper, we shall improve the errors in reference [2], and
obtain two correct conclusions. That is, we shall prove the following:

Theorem 1. For any real number x > 1, we have the asymptotic formula

∑

n≤x

f(n) =
1
2
· x + O

(
x

1
2

)
.
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Theorem 2. For any real number x > 1, we have the asymptotic formula

∑

n≤x

(
f(n)− 1

2

)2

) =
1
36
· ζ

(
3
2

)

ζ(3)
· √x + O

(
x

1
3

)
,

where ζ(n) is the Riemann zeta-function.

§2. Proof of the theorems

In this section, we shall using the elementary and the analytic methods to prove our
Theorems. First we give following two simple Lemmas:

Lemma 1. Let A denotes the set of all square-full numbers. Then for any real number
x > 1, we have the asymptotic formula

∑

n≤x
n∈A

1 =
ζ

(
3
2

)

ζ(3)
· x 1

2 +
ζ

(
2
3

)

ζ(2)
· x 1

3 + O
(
x

1
6

)
,

where ζ(s) is the Riemann zeta-function.
Lemma 2. Let B denotes the set of all cubic-full numbers. Then for any real number

x > 1, we have ∑

n≤x
n∈B

1 = N · x 1
3 + O

(
x

1
4

)
,

where N is a computable constant.
Proof. The proof of these two Lemmas can be found in reference [3].
Now we use these two simple Lemmas to complete the proof of our Theorems. In fact, for

any positive integer n > 1, from the definition of f(n) we have

∑

n≤x

f(n) = f(1) +
∑

n≤x
n∈A

f(n) +
∑

n≤x
n∈B

f(n), (3)

where A denotes the set of all square-full numbers. That is, n > 1, and for any prime p, if p | n,
then p2 | n. B denotes the set of all positive integers n > 1 with n /∈ A. Note that f(n) ¿ 1,
from the definition of A and Lemma 1 we have

∑

n≤x
n∈A

f(n) = O
(
x

1
2

)
. (4)

∑

n≤x
n∈B

f(n) =
∑

n≤x
n∈B

1
2

=
∑

n≤x

1
2
−

∑

n≤x
n∈A

1
2

=
1
2
· x + O

(
x

1
2

)
. (5)
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Now combining (3), (4) and (5) we may immediately get
∑

n≤x

f(n) = 1 +
∑

n≤x
n∈A

f(n) +
∑

n≤x
n∈B

f(n)

=
1
2
· x + O

(
x

1
2

)
.

This proves Theorem 1.
Now we prove Theorem 2. From the definition of f(n) and the properties of square-full

numbers we have

∑

n≤x

(
f(n)− 1

2

)2

=
1
4

+
∑

n≤x
n∈A

(
f(n)− 1

2

)2

+
∑

n≤x

n/∈A

(
f(n)− 1

2

)2

=
1
4

+
∑

n≤x
n∈A

(
f(n)− 1

2

)2

. (6)

where A also denotes the set of all square-full numbers. Let C denotes the set of all cubic-full
numbers. Then from the properties of square-full numbers, Lemma 1 and Lemma 2 we have

∑

n≤x
n∈A

(
f(n)− 1

2

)2

=
∑

n≤x

n∈A, f(n)= 1
3

(
1
3
− 1

2

)2

+
∑

n≤x
n∈C

(
f(n)− 1

2

)2

=
∑

n≤x
n∈A

(
1
3
− 1

2

)2

−
∑

n≤x
n∈C

(
1
3
− 1

2

)2

+ O




∑

n≤x
n∈C

1




=
ζ

(
3
2

)

ζ(3)
· x 1

2 + O
(
x

1
3

)
. (7)

where ζ(s) is the Riemann zeta-function.
Now combining (6) and (7) we have the asymptotic formula

∑

n≤x

(
f(n)− 1

2

)2

=
ζ

(
3
2

)

ζ(3)
· x 1

2 + O
(
x

1
3

)
.

This completes the proof of Theorem 2.
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§1. Introduction and result

For any positive integer m ≥ 2, let 1 < d1 < d2 < · · · < dm are m positive integers, then
we define the Smarandache multiplicative sequence Am as: If d1, d2, · · · , dm are the first
m terms of the sequence Am, then dk > dk−1, for k ≥ m + 1, is the smallest number equal
to dα1

1 · dα2
2 · · · dαm

m , where αi ≥ 1 for all i = 1, 2, · · · , m. For example, the Smarandache
multiplicative sequence A2 ( generated by digits 2, 3) is:

2, 3, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, · · · · · · .

The Smarandache multiplicative sequence A3 ( generated by digits 2, 3, 7 ) is:

2, 3, 7, 42, 84, 126, 168, 252, 294, 336, 378, 504, 588, 672, · · · · · · .

The Smarandache multiplicative sequence A4 ( generated by digits 2, 3, 5, 7 ) is:

2, 3, 5, 7, 210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, · · · · · · .

In the book “Sequences of Numbers Involved Unsolved Problems”, Professor F.Smarandache
introduced many sequences, functions and unsolved problems, one of them is the Smarandache
multiplicative sequence, and he also asked us to study the properties of this sequence. About
this problem, it seems that none had studied it yet, at least we have not seen any related
papers before. The problem is interesting, because there are close relationship between the
Smarandache multiplicative sequence and the geometric series. In this paper, we shall use
the elementary method to study the convergent properties of some infinite series involving the
Smarandache multiplicative sequence, and get some interesting results. For convenience, we
use the symbol am(n) denotes the n-th term of the Smarandache multiplicative sequence Am.
The main purpose of this paper is to study the convergent properties of the infinite series

∞∑
n=1

1
as

m(n)
, (1)
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and prove the following:
Theorem. For any positive integer m ≥ 2, let 1 < d1 < d2 < · · · < dm are m positive

integers, and Am denotes the Smarandache multiplicative sequence generated by d1, d2, · · · ,
dm. Then for any real number s ≤ 0, the infinite series (1) is divergent; For any real number
s > 0, the series (1) is convergent, and

∞∑
n=1

1
as

m(n)
=

m∏

i=1

1
ds

i − 1
+

m∑

i=1

1
ds

i

.

From our Theorem we may immediately deduce the following two corollaries:
Corollary 1. Let A2 be the Smarandache multiplicative sequence generated by 2 and 3,

then we have the identity
∞∑

n=1

1
a2(n)

=
4
3
.

Corollary 2. Let A3 be the Smarandache multiplicative sequence generated by 3, 4 and
5, then we have the identity

∞∑
n=1

1
a3(n)

=
13
20

.

Similarly, we can also introduce another sequence called the Smarandache additive sequence
as follows: Let 1 ≤ d1 < d2 < · · · < dm are m positive integers, then we define the Smarandache
additive sequence Dm as: If d1, d2, · · · , dm are the first m terms of the sequence Dm, then
dk > dk−1, for k ≥ m + 1, is the smallest number equal to α1 · d1 + α2 · d2 + · · · · · ·+ αm · dm,
where αi ≥ 1 for all i = 1, 2, · · · , m. It is clear that this sequence has the close relationship
with the coefficients of the power series ( xd1 + xd2 + · · ·+ xdm < 1)

∞∑
n=1

(
xd1 + xd2 + · · ·+ xdm

)n
=

xd1 + xd2 + · · ·+ xdm

1− xd1 − xd2 − · · · − xdm
.

For example, the Smarandache additive sequence D2 ( generated by digits 3, 5 ) is:

3, 5, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, · · · · · · .

It is an interesting problem to study the properties of the Smarandache additive sequence.

§2. Proof of the theorem

In this section, we shall prove our Theorem directly. First note that for any positive integer
k > m, we have

am(k) = dα1
1 · dα2

2 · · · dαm
m ,

where αi ≥ 1, i = 1, 2, · · · , m. So for any real number s > 1, we have
∞∑

n=1

1
as

m(n)
=

m∑

i=1

1
as

m(i)
+

∞∑
α1=1

∞∑
α2=1

· · ·
∞∑

αm=1

1
(dα1

1 · dα2
2 · · · dαm

m )s

=
m∑

i=1

1
as

m(i)
+

( ∞∑
α1=1

1
dα1s
1

)
·
( ∞∑

α2=1

1
dα2s
2

)
· · ·

( ∞∑
αm=1

1
dαms

m

)
. (2)
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It is clear that for any real number s ≤ 0, the series
∞∑

αi=1

1
dαis

i

is divergent, and for any real

number s > 0, the series
∞∑

αi=1

1
dαis

i

is convergent, and more

∞∑
αi=1

1
dα2s

i

=
1

ds
i − 1

.

So from (2) we know that the series
∞∑

n=1

1
as

m(n)
is also convergent, and

∞∑
n=1

1
as

m(n)
=

m∏

i=1

1
ds

i − 1
+

m∑

i=1

1
ds

i

.

This completes the proof of our Theorem.
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