Forcing (G,D)-number of a Graph

K.Palani

(Department of Mathematics A.P.C. Mahalaxmi College for Women, Thoothukudi, India)

A.Nagarajan

(Department of Mathematics V.O.C. College, Thoothukudi, India)

E-mail: kp5.6.67apcm@gmail.com, nagarajan.voc@gmail.com

Abstract: In [7], we introduced the new concept (G,D)-set of graphs. Let G = (V, E) be any graph. A (G,D)-set of a graph G is a subset S of vertices of G which is both a dominating and geodominating(or geodetic) set of G. The minimum cardinality of all (G,D)-sets of G is called the (G,D)-number of G and is denoted by $\gamma_G(G)$. In this paper, we introduce a new parameter called forcing (G,D)-number of a graph G. Let S be a γ_G -set of G. A subset T of S is said to be a forcing subset for S if S is the unique γ_G -set of G containing T. A forcing subset T of S of minimum cardinality is called a minimum forcing subset of S. The forcing (G,D)-number of S denoted by $f_{G,D}(S)$ is the cardinality of a minimum forcing subset of S. The forcing (G,D)-number of G is the minimum of $f_{G,D}(S)$, where the minimum is taken over all γ_G -sets S of G and it is denoted by $f_{G,D}(S)$.

Key Words: (G,D)-number, Forcing (G,D)-number, Smarandachely k-dominating set.

AMS(2010): 05C69

§1. Introduction

By a graph G=(V,E), we mean a finite, undirected connected graph without loops and multiple edges. For graph theoretic terminology, we refer [5]. A set of vertices S in a graph G is said to be a Smarandachely k-dominating set if each vertex of G is dominated by at least k vertices of S. Particularly, if k=1, such a set is called a dominating set of G, i.e., every vertex in V-D is adjacent to at least one vertex in D. The minimum cardinality among all dominating sets of G is called the domination number $\gamma(G)$ of G[6]. A u-v geodesic is a u-v path of length d(u,v). A set S of vertices of G is a geodominating (or geodetic) set of G if every vertex of G lies on an x-y geodesic for some x,y in G. The minimum cardinality of a geodominating set is the geodomination (or geodetic) number of G and it is denoted by g(G)[1[-[4]]. A G0, set of G1 is a subset G2 of G3 which is both a dominating and geodetic set of G3. The minimum cardinality of all G1, sets of G3 is called the G2, number of G3 and is denoted by G3.

¹Received January 21, 2011. Accepted August 30, 2011.

Any (G,D)-set of G of cardinality γ_G is called a γ_G -set of G[7].In this paper, we introduce a new parameter called forcing (G,D)-number of a graph G. Let S be a γ_G -set of G. A subset T of S is said to be a forcing subset for S if S is the unique γ_G -set of G containing T. A forcing subset T of S of minimum cardinality is called a minimum forcing subset of S. The forcing (G,D)-number of S denoted by $f_{G,D}(S)$ is the cardinality of a minimum forcing subset of S. The forcing (G,D)-number of G is the minimum of $f_{G,D}(S)$, where the minimum is taken over all γ_G -sets S of G and it is denoted by $f_{G,D}(S)$.

§2. Forcing (G,D)-number

Definition 2.1 Let G be a connected graph and S be a γ_G -set of G. A subset T of S is called a forcing subset for S if S is the unique γ_G -set of G containing T. A forcing subset T of S of minimum cardinality is called a minimum forcing subset for S. The forcing (G,D)-number of S denoted by $f_{G,D}(S)$ is the cardinality of a minimum forcing subset of S. The forcing (G,D)-number of G is the minimum of $f_{G,D}(S)$, where the minimum is taken over all γ_G -sets S of G and it is denoted by $f_{G,D}(G)$. That is, $f_{G,D}(G) = \min\{f_{G,D}(S): S \text{ is any } \gamma_G\text{-set of } G\}$.

Example 2.2 In the following figure,

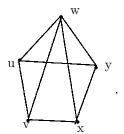


Fig.2.1

 $S_1 = \{u, x\}$ and $S_2 = \{v, y\}$ are the only two γ_G -sets of G. $\{u\}, \{x\}$ and $\{u, x\}$ are forcing subsets of S_1 . Therefore, $f_{G,D}(S_1) = 1$. Similarly, $\{v\}$, $\{y\}$ and $\{v, y\}$ are the forcing subsets of $f_{G,D}(S_2)$. Therefore, $f_{G,D}(S_2) = 1$. Hence $f_{G,D}(G) = min\{1,1\} = 1$. For G, we have, $0 < f_{G,D}(G) = 1 < \gamma_G(G) = 2$.

Remark 2.3 1. For every connected graph G, $0 \le f_{G,D}(G) \le \gamma_G(G)$.

- 2. Here the lower bound is sharp, since for any complete graph S = V(G) is a unique γ_G -set. So, $T = \Phi$ is a forcing subset for S and $f_{G,D}(K_p) = 0$.
 - 3. Example 2.2 proves the bounds are strict.

Theorem 2.4 Let G be a connected graph. Then,

- (i) $f_{G,D}(G) = 0$ if and only if G has a unique γ_G -set;
- (ii) $f_{G,D}(G) = 1$ if and only if G has at least two γ_G -sets, one of which, say, S has forcing (G,D)-number equal to 1;

(iii) $f_{G,D}(G) = \gamma_G(G)$ if and only if every γ_G -set S of G has the property, $f_{G,D}(S) = |S| = \gamma_G(G)$.

- Proof (i) Suppose $f_{G,D}(G) = 0$. Then, by Definition 2.1, $f_{G,D}(S) = 0$ for some γ_G -set S of G. So, empty set is a minimum forcing subset for S. But, empty set is a subset of every set. Therefore, by Definition 2.1, S is the unique γ_G -set of G. Conversely, let S be the unique γ_G -set of G. Then, empty set is a minimum forcing subset of S. So, $f_{G,D}(G) = 0$.
- (ii) Assume $f_{G,D}(G) = 1$. Then, by (i), G has at least two γ_G -sets. $f_{G,D}(G) = \min\{f_{G,D}(S) : S \text{ is any } \gamma_G \text{set of } G\}$. So, $f_{G,D}(S) = 1$ for at least one γ_G -set S. Conversely, suppose G has at least two γ_G -sets satisfying the given condition. By (i), $f_{G,D}(G) \neq 0$. Further, $f_{G,D}(G) \geqslant 1$. Therefore, by assumption, $f_{G,D}(G) = 1$.
- (iii) Let $f_{G,D}(G) = \gamma_G(G)$. Suppose S is a γ_G -set of G such that $f_{G,D}(S) < |S| = \gamma_G(G)$. So, S has a forcing subset T such that |T| < |S|. Therefore, $f_{G,D}(G) = \min\{f_{G,D}(S) : S \text{ is a } \gamma_G - \text{set of } G\} \leqslant |T| < |S| = \gamma_G(G)$. This is a contradiction. So, every γ_G -set S of S satisfies the given condition. The converse is obvious. Hence the result.

Corollary 2.5 $f_{G,D}(P_n) = 0$ if $n \equiv 1 \pmod{3}$.

Proof Let $P_n = (v_1, v_2, \dots, v_{3k+1}), k \ge 0$. Now, $S = \{v_1, v_4, v_7, \dots, v_{3k+1}\}$ is the unique γ_G -set of P_n . So, by Theorem 2.4, $f_{G,D}(P_n) = 0$.

Observation 2.6 Let G be any graph with at least two γ_G -sets. Suppose G has a γ_G -set S satisfying the following property:

S has a vertex u such that $u \in S'$ for every γ_G -set S' different from S (I), Then, $f_{G,D}(G) = 1$.

Proof As G has at least two γ_G -sets, by Theorem 2.4, $f_{G,D}(G) \neq 0$. If G satisfies (I), then we observe that $f_{G,D}(S) = 1$. So, by Definition 2.1, $f_{G,D}(G) = 1$.

Corollary 2.7 Let G be any graph with at least two γ_G -sets. Suppose G has a γ_G -set S such that $S \cap S' = \phi$ for every γ_G -set S' different from S. Then $f_{G,D}(G) = 1$.

Proof Given that G has a γ_G -set S such that $S \cap S' = \phi$ for every γ_G -set S' different from S. Then, we observe that S satisfies property (I) in Observation 2.6. Hence, we have, $f_{G,D}(G) = 1$.

Corollary 2.8 Let G be any graph with at least two γ_G -sets. If pair wise intersection of distinct γ_G -sets of G is empty, then $f_{G,D}(G) = 1$.

Proof The proof proceeds along the same lines as in Corollary 2.7. \Box

Corollary 2.9 $f_{G,D}(C_n) = 1$ if n = 3k, k > 1.

Proof Let n = 3k, k > 1. Let $V(C_n) = \{v_1, v_2, \dots, v_{3k}\}$. Note that the only γ_G -sets of C_n are $S_1 = \{v_1, v_4, \dots, v_{3(k-1)+1}\}$, $S_2 = \{v_2, v_5, \dots, v_{3(k-1)+2}\}$ and $S_3 = \{v_3, v_6, \dots, v_{3k}\}$.

Further, we have, $S_1 \cap S_2 = S_1 \cap S_3 = S_2 \cap S_3 = \emptyset$. That is, pair wise intersection of distinct γ_G -sets of C_n is empty. Hence, from Corollary 2.8, we have $f_{G,D}(C_n) = 1$ if n = 3k.

Definition 2.10 A vertex v of G is said to be a (G,D)-vertex of G if v belongs to every γ_G -set of G.

Remark 2.11 1. All the extreme vertices of a graph G are (G,D)-vertices of G.

2. If G has a unique γ_G -set S, then every vertex of S is a (G,D)-vertex of G.

Lemma 2.12 Let G = (V, E) be any graph and $u \in V(G)$ be a (G,D)-vertex of G. Suppose S is a γ_G -set of G and T is a minimum forcing subset of S, then $u \notin T$.

Proof Since u is a (G,D)-vertex of G, u is in every γ_G -set of G. Given that S is a γ_G -set of G and T is a minimum forcing subset of S. Suppose $u \in T$. Then, there exists a γ_G -set S' of G different from S such that $T - \{u\} \subseteq S'$. Otherwise, $T - \{u\}$ is a forcing subset of S. Since $u \in S'$, $T \subseteq S'$. This contradicts the fact that T is a minimum forcing subset of S. Hence, from the above arguments, we have $u \notin T$.

Corollary 2.13 Let W be the set of all (G,D)-vertices of G. Suppose S is a γ_G -set of G and T is a forcing subset of S. If W is non-empty, then $T \neq S$.

Definition 2.14 Let G be a connected graph and S be a γ_G -set of G. Suppose T is a minimum forcing subset of S. Let E = S - T be the relative complement of T in its relative γ_G -set S. Then, $\mathscr L$ is defined by

 $\mathscr{L} = \{E | E \text{ is a relative complement of a minimum}$ forcing subset T in its relative $\gamma_G - \text{set } S \text{ of } G\}.$

Theorem 2.15 Let G be a connected graph and ζ = The intersection of all $E \in \mathcal{L}$. Then, ζ is the set of all (G,D)-vertices of G.

Proof Let W be the set of all (G,D)-vertices of G.

Claim $W = \zeta$, the intersection of all $E \in \mathcal{L}$. Let $v \in W$. By Definition 2.10, v is in every γ_G -set of G. Let S be a γ_G -set of G and T be a minimum forcing subset of S. Then, $v \in S$. From Lemma 2.12, we have, $v \notin T$. So, $v \in E = S - T$. Hence, $v \in E$ for every $E \in \mathcal{L}$. That is, $v \in \zeta$. Conversely, let $v \in \zeta$. Then, $v \in E = S - T$, where T is a minimum forcing subset of the γ_G -set S. So, $v \in S$ for every γ_G -set S of G. That is, $v \in W$.

Corollary 2.16 Let S be a γ_G -set of a graph G and T is a minimum forcing subset of S. Then, $W \cap T = \emptyset$.

Remark 2.17 The above result holds even if G has a unique γ_G -set.

Corollary 2.18 Let W be the set of all (G,D)-vertices of a graph G. Then, $f_{G,D}(G) \leq \gamma_G(G) - |W|$.

Remark 2.19 In the above corollary, the inequality is strict. For example, consider the following graph G.

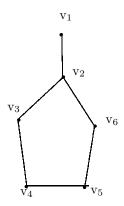


Fig.2.2

For G, $S_1 = \{v_1, v_4, v_5\}$, $S_2 = \{v_1, v_3, v_5\}$, $S_3 = \{v_1, v_4, v_6\}$ are the only distinct γ_G -sets. Therefore, $\gamma_G(G) = 3$. But, $f_{G,D}(S_1) = 2$ and $f_{G,D}(S_2) = f_{G,D}(S_3) = 1$. So, $f_{G,D}(G) = \min\{f_{G,D}(S): S \text{ is a } \gamma_G\text{-set of } G\} = 1$. Also, $W = \{1\}$. Now, $\gamma_G(G) - |W| = 3 - 1 = 2$. Hence $f_{G,D}(G) \leq \gamma_G(G) - |W|$.

Also the upper bound is sharp. For example, consider the following graph G.

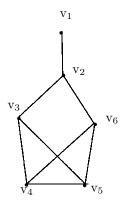


Fig.2.3

For G, $S_1 = \{v_1, v_4, v_5\}$, $S_2 = \{v_1, v_3, v_6\}$ are different γ_G -sets. Therefore, $\gamma_G(G) = 3$. But, $f_{G,D}(S_1) = f_{G,D}(S_2) = 2$. So, $f_{G,D}(G) = \min\{f_{G,D}(S): S \text{ is a } \gamma_G\text{-set of } G\} = 2$. Also, $W = \{1\}$. Now, $\gamma_G(G) - |W| = 3 - 1 = 2$. Hence, $f_{G,D}(G) = \gamma_G(G) - |W|$.

Corollary 2.20 $f_{G,D}(G) \leq \gamma_G(G) - k$ where k is the number of extreme vertices of G.

Proof The result follows from $|W| \ge k$.

Theorem 2.21 For a complete graph $G = K_p$, $f_{G,D}(G) = 0$ and |W| = p.

Proof $V(K_p)$ is the unique γ_G -set of K_p . Hence by Theorem 2.4, $f_{G,D}(K_p) = 0$. By Remark 2.11, W = V(G) with |W| = p.

References

- [1] G.Chartrand, F.Harary and P.Zhang, Geodetic sets in graphs, *Discussiones Mathematicae Graph Theory*, 20(2000),129-138e
- [2] G.Chartrand, F.Harary and H.C.Swart P.Zhang, Geodomination in graphs, *Bulletin of the ISA*, 31(2001), 51-59.
- [3] G.Chartrand, M.Palmer and P.Zhang, The Geodetic number of a graph-A Survey, *Congressus Numerantium*, 156 (2002), 37-58.
- [4] G.Chartrand, F.Harary and P.Zhang, On the Geodetic number of a graph, *Networks*, Vol 39(1)(2002),1-6.
- [5] F. Harary, Graph Theory, Addison Wesley Reading Mass, 1972.
- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Decker, Inc., New York 1998.
- [7] K.Palani and A.Nagarajan, (G,D)-Number of a Graph, *International Journal of Mathematics Research*, Vol.3, No.3 (2011), 285 299.