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Abstract: For a connected graph G = (V, E), let a set M be a minimum monophonic hull
set of G. A subset T' C M is called a forcing subset for M if M is the unique minimum
monophonic hull set containing 7. A forcing subset for M of minimum cardinality is a
minimum forcing subset of M. The forcing monophonic hull number of M ;| denoted by
Sfmn(M), is the cardinality of a minimum forcing subset of M. The forcing monophonic
hull number of G, denoted by fimn(G), i8 fimn(G) = min{fmn(M)}, where the minimum is
taken over all minimum monophonic hull sets in G. Some general properties satisfied by this
concept are studied. Every monophonic set of G is also a monophonic hull set of G and so
mh(G) < h(G), where h(G) and mh(G) are hull number and monophonic hull number of
a connected graph G. However, there is no relationship between f5,(G) and fmn(G), where
fr(G) is the forcing hull number of a connected graph G. We give a series of realization

results for various possibilities of these four parameters.
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81. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple
edges. The order and size of G are denoted by p and g respectively. For basic graph theoretic
terminology, we refer to Harary [1,9]. A convexity on a finite set V' is a family C of subsets of
V', convex sets which is closed under intersection and which contains both V' and the empty set.
The pair(V, E) is called a convexity space. A finite graph convexity space is a pair (V, F), formed
by a finite connected graph G = (V, E) and a convexity C on V such that (V, E) is a convexity
space satisfying that every member of C' induces a connected subgraph of G. Thus, classical

convexity can be extended to graphs in a natural way. We know that a set X of R™ is convex if
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every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a
finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain
kind of path connecting vertices of W[2,8]. The distance d(u, v) between two vertices  and v in
a connected graph G is the length of a shortest u — v path in G. An u — v path of length d(u,v)
is called an u — v geodesic. A vertex x is said to lie on a u — v geodesic P if x is a vertex of P
including the vertices u and v. For two vertices u and v, let I[u, v] denotes the set of all vertices
which lie on u—v geodesic. For aset S of vertices, let I[S] = ,, ,)es I [, v]. The set S'is convex
if I[S] = S. Clearly if S = {v}or S = V, then S is convex. The convexity number, denoted
by C(G), is the cardinality of a maximum proper convex subset of V. The smallest convex set
containing S is denoted by Ij,(S) and called the convex hull of S. Since the intersection of two
convex sets is convex, the convex hull is well defined. Note that S C I[S] C I;[S] C V. For an
integer k > 0, a subset S C V is called a Smarandachely geodetic k-set if I[S|JST] =V and a
Smarandachely hull k-set if I;,(S|JS1) = V for a subset ST C V with |ST| < k. Particularly, if
k = 0, such Smarandachely geodetic 0-set and Smarandachely hull 0-set are called the geodetic
set and hull set, respectively. The geodetic number ¢g(G) of G is the minimum order of its
geodetic sets and any geodetic set of order g(G) is a minimum geodetic set or simply a g- set
of G. Similarly, the hull number h(G) of G is the minimum order of its hull sets and any hull
set of order h(G) is a minimum hull set or simply a h- set of G. The geodetic number of a
graph is studied in [1,4,10] and the hull number of a graph is studied in [1,6].A subset T C S is
called a forcing subset for S if S is the unique minimum hull set containing 7". A forcing subset
for S of minimum cardinality is a minimum forcing subset of M. The forcing hull number of
S, denoted by f1(S5), is the cardinality of a minimum forcing subset of S. The forcing hull
number of G, denoted by f(G),is fo(G) = min {fx(S)}, where the minimum is taken over all
minimum hull sets S in G. The forcing hull number of a graph is studied in[3,14]. A chord of
a path u,, u1,usg, ..., up is an edge u;u; with 7 > ¢4+ 2(0 < 4,5 <n). A v — v path P is called
a monophonic path if it is a chordless path. A vertex z is said to lie on a u — v monophonic
path P if x is a vertex of P including the vertices u and v. For two vertices u and v, let J[u, v]
denotes the set of all vertices which lie on v — v monophonic path. For a set M of vertices, let
J[M] = Uy wermJu,v]. The set M is monophonic convex or m-convex if J[M] = M. Clearly if
M = {v} or M =V, then M is m-convex. The m-convexity number, denoted by C,(G), is the
cardinality of a maximum proper m-convex subset of V. The smallest m-convex set containing
M is denoted by Jp,(M) and called the monophonic convex hull or m-convex hull of M. Since
the intersection of two m-convex set is m-convex, the m-convex hull is well defined. Note that
M C JM] C J(M) CV. A subset M C V is called a monophonic set if J[M] =V and
a m-hull set if J,(M) = V. The monophonic number m(G) of G is the minimum order of
its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set or
simply a m- set of G. Similarly, the monophonic hull number mh(G) of G is the minimum
order of its m-hull sets and any m-hull set of order mh(G) is a minimum monophonic set or
simply a mh- set of G. The monophonic number of a graph is studied in [5,7,11,15] and the
monophonic hull number of a graph is studied in [12]. A vertex v is an extreme vertex of a
graph G if the subgraph induced by its neighbors is complete.Let G be a connected graph and

M a minimum monophonic hull set of G. A subset T C M is called a forcing subset for M
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if M is the unique minimum monophonic hull set containing 7. A forcing subset for M of
minimum cardinality is a minimum forcing subset of M. The forcing monophonic hull number
of M, denoted by f,,n(M), is the cardinality of a minimum forcing subset of M. The forcing
monophonic hull number of G, denoted by fimn(G), is fmr(G) = min {fmn(M)}, where the
minimum is taken over all minimum monophonic hull sets M in G.For the graph G given in
Figure 1.1, M = {vy, vg} is the unique minimum monophonic hull set of G so that mh(G) = 2
and fmp(G) = 0. Also S; = {v1,vs,vs} and S = {v1,ve,vs} are the only two h-sets of G
such that f,(S1) = 1, fa(S2) = 1 so that f,(G) = 1 . For the graph G given in Figure 1.2,
My = {v1,v4}, My = {v1,v6}, M3 = {v1,v7} and My = {v1,vs} are the only four mh-sets of
G such that fi,n(M1) =1, frn(M2) = 1, fron(M3) = 1 and fn(My) = 1 so that fi,,(G) = 1.
Also, S = {v1,v7} is the unique minimum hull set of G so that h(G) = 2 and f,(G) = 0.
Throughout the following G denotes a connected graph with at least two vertices.
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G
Figure 1.1
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Figure 1.2
The following theorems are used in the sequel

Theorem 1.1 ([6]) Let G be a connected graph. Then

a) Each extreme vertex of G belongs to every hull set of G;
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(0) h(G) =p if and only if G = K.
Theorem 1.2 ([3]) Let G be a connected graph. Then

(@) fn(G) =0 if and only if G has a unique minimum hull set;
() fu(G) < h(G) — |W|, where Wis the set of all hull vertices of G.

Theorem 1.3 ([13]) Let G be a connected graph. Then

(a) Each extreme vertex of G belongs to every monophonic hull set of G;
() mh(G) =p if and only if G = K.

Theorem 1.4 ([12]) Let G be a connected graph. Then
(@) fmn(G) =0 if and only if G has a unique mh-set;

(B) fmn(G) < mh(G) — |S|, where S is the set of all monophonic hull vertices of G.

Theorem 1.5 ([12]) For any complete Graph G = Kp(p > 2), fmn(G) = 0.

82. Special Graphs

In this section, we present some graphs from which various graphs arising in theorem are
generated using identification.

Let U; : a;, Bi, i, 0i, i (1 < i < a) be a copy of cycle Cy. Let V; be the graph obtained from
U; by adding three new vertices 7;, fi,¢; and the edges Bini, mi fi, fi9:, 9i0i, 0iYis fivi, 9ivi(1 <
i < a). The graph T, given in Figure 2.1 is obtained from V;’s by identifying ~;_1 of V;_; and
a; of V(2 <i < a).
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Figure 2.1

Let P; : ki, li,mi,mg, ki(1 < ¢ <b) be acopy of cycle Cy. Let Q; be the graph obtained from
P; by adding three new vertices h;, p; and ¢; and the edges l;h;, hip;, pigi, and gim;(1 < i <b).
The graph W, given in Figure 2.2 is obtained from @);’s by identifying m;_1 of @Q;_1 and k; of
Qi(2<i<h).
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The graph Z;, given in Figure 2.3 is obtained from W}, by joining the edge I;n;(1 < i <b).
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Figure 2.3

Let F; : s, t;, xi, w;, $;(1 < i < ¢) be a copy of cycle Cy. Let R; be the graph obtained from
F; by adding two new vertices u;, v; and joining the edges t;u;, u;w;, tyw;, u;v; and vz (1 < i <
¢). The graph H. given in Figure 2.4 is obtained from R;’s by identifying the vertices x;_; of
R;_1 and s; of R;(1 <i<e¢).
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Figure 2.4

Every monophonic set of G is also a monophonic hull set of G and so mh(G) < h(G),
where h(G) and mh(G) are hull number and monophonic hull number of a connected graph G.
However, there is no relationship between f,(G) and fmn(G), where fi,(G) is the forcing hull
number of a connected graph G. We give a series of realization results for various possibilities

of these four parameters.
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83. Some Realization Results

Theorem 3.1 For every pair a,b of integers with 2 < a < b, there exists a connected graph G
such that fimn(G) = fr(G) =0, mh(G) = a and h(G) = b.

Proof If a =b, let G = K,. Then by Theoremsl.3(b) and 1.1(b), mh(G) = h(G) = a and
by Theorems 1.5 and 1.2(a), fmn(G) = fr(G) = 0. For a < b, let G be the graph obtained from
Ty,—q by adding new vertices x, 21, 22, -+ , 24—1 and joining the edges a1, Yo—a21, Yo—a22, " ,
Vo—aZa—1- Let Z = {x, 21,22, -+ ,24—1} be the set of end-vertices of G. Then it is clear that Z
is a monophonic hull set of G and so by Theorem 1.3(a), Z is the unique mh-set of G so that
mh(G) = a and hence by Theorem 1.4(a), fmn(G) = 0. Since I (Z) # V, Z is not a hull set of
G. Now it is easily seen that W = Z U {f1, fo, -, fo—a} is the unique h-set of G and hence by
Theorem 1.1(a) and Theorem 1.2(a), h(G) = b and f,(G) = 0. O

Theorem 3.2 For every integers a,b and ¢ with 0 < a <b < c and ¢ > a+ b, there exists a
connected graph G such that fin(G) =0, fr(G) = a,mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0. Then the graph T; constructed in Theorem 3.1 satisfies the requirements of

the theorem.

Case 2. a > 1. Let G be the graph obtained from W, and T,._ 4 by identifying the vertex
mg of W, and oy of T._(q4p) and then adding new vertices x, 21,22, , zp—1 and joining the
edges k1, Ye—b—a?1, Ye—b—a?2," " * s Ve—b—a?b—1- Let Z = {x, 21,22, , 2p—1}. Since Jp(Z) =V,
Z is a monophonic hull set G and so by Theorem 1.3(a), Z is the unique mh- set of G so that
mh(G) = b and hence by Theorem 1.4(a), f,n(G) = 0. Next we show that h(G) = c. Let S be
any hull set of G. Then by Theorem 1.1(a), Z C S. It is clear that Z is not a hull set of G. For
1<i<a,let H = {p;,qi}. We observe that every h-set of G must contain at least one vertex
from each H;(1 <4 < a) and each f;(1 <i < c¢—b—a) so that h(G) > b+a+c—a—b = c. Now,
M=2U{q,q, - ,qU{f1, 2, , fe—b—a} is a hull set of G so that h(G) < b+a+c—b—a =c.
Thus h(G) = c. Since every h-set contains S1 = Z U {f1, fa, ", fe—b—a}, it follows from
Theorem 1.2(b) that f5(G) = h(G) —|S1| = ¢ — (¢ — a) = a. Now, since h(G) = ¢ and every h-

set of G contains S1, it is easily seen that every h-set S is of the form S;U{d1,ds, -, d,},where
d; € H;(1 <i<a). Let T be any proper subset of S with |T'| < a. Then it is clear that there
exists some j such that 7N H; = ¢, which shows that f,(G) = a. O

Theorem 3.3 For every integers a,b and c with 0 < a < b <c and b > a+ 1, there exists a
connected graph G such that fr,(G) =0, fmn(G) = a,mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements of

the theorem.

Case 2. a>1.
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Subcase 2a. b= c. Let G be the graph obtained from Z, by adding new vertices x, 21, z2, - - ,
Zp—q—1 and joining the edges xky,mgz1, M2, - ,Ma2b—a-1. Let Z = {x, 21,29, , Zb—q—1}
be the set of end-vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), Z C S.
It is clear that Z is not a hull set of G. For 1 < i < a, let H; = {h;,pi,q;}. We observe that
every h-set of G must contain only the vertex p; from each H; so that h(G) <b—a+a =b.
Now S = Z U {p1,p2,p3," - ,Pa} is a hull set of G so that h(G) > b—a+a = b. Thus
h(G) = b. Also it is easily seen that S is the unique h-set of G and so by Theorem 1.2(a),
fn(G) = 0.Next we show that mh(G) = b. Since J,(Z) # V, Z is not a monophonic hull set of
G. We observe that every mh-set of G must contain at least one vertex from each H; so that
mh(G) >b—a+a=0>b. Now My = ZU{q1,92,43," - ,qa} is a monophonic hull set of G so that
mh(G) <b—a+a=>. Thus mh(G) = b. Next we show that f,,x(G) = a. Since every mh-set
contains Z, it follows from Theorem 1.4(b) that fi,n(G) < mh(G)—|Z| =b—(b—a) = a. Now,
since mh(G) = b and every mh-set of G contains Z, it is easily seen that every mh-set M is of
the form Z U {dy,da,d3,--- ,ds}, where d; € H;(1 <i < a). Let T be any proper subset of M
with |T'| < a. Then it is clear that there exists some j such that T'N H; = ¢, which shows that

fmh(G) = aq.

Subcase 2b. b < c¢. Let G be the graph obtained from Z, and T._, by identifying the
vertex mg, of Z, and a; of T,_; and then adding the new vertices z, 21, 292, , 2p—q—1 and
joining the edges xau, Ye—b21, Ye—b22, " * s Ye—bZb—a—1- Let Z = {x, 21,29, ,2p—a—1} be the
set of end vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), Z C S. Since
In(Z) #V,Z is not a hull set of G. For 1 <i < a, let H; = {h;,p;,q;}. We observe that every
h-set of G must contain only the vertex p; from each H; and each f;(1 < i < ¢ —b) so that
hMG)>b—a+a+c—b=c Now S=ZU{p1,p2,03,  * ,Pa} U{f1, fo, f3, -, fe—p}is a hull
set of G so that h(G) < b—a+a+c—b=c Thus h(G) = c. Also it is easily seen that S
is the unique h-set of G and so by Theorem 1.2(a), f5(G) = 0. Since J,(Z) #V, Z is not a
monophonic hull set of G. We observe that every mh-set of G must contain at least one vertex
from each H;(1 < i < a) so that mh(G) >b—a+a=0>. Now, My = ZU {hy,ho,hs, - ,hs}
is a monophonic hull set of G so that mh(G) < b —a + a = b. Thus mh(G) = b. Next we
show that f,,5(G) = a. Since every mh-set contains Z, it follows from Theorem 1.4(b) that
fmn(G) < mh(G) —|Z] = b— (b — a) = a. Now, since mh(G) = b and every mh-set of G

contains Z, it is easily seen that every mh-set S is of the form Z U {dy,ds,ds, -+ ,d.}, where
d; € Hi(1 <i<a). Let T be any proper subset of S with |T'| < a. Then it is clear that there
exists some j such that T'N H; = ¢, which shows that f,,,(G) = a. O

Theorem 3.4 For every integers a,b and c with 0 < a < b<candb>a+ 1, there exists a
connected graph G such that fin(G) = fr(G) = a, mh(G) =b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0, then the graph G constructed in Theorem 3.1 satisfies the requirements of the
theorem.

Case 2. a>1.
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Subcase 2a. b = c. Let G be the graph obtained from H, by adding new vertices x, 21, 22, - - ,
Zp—q—1 and joining the edges x$1, 2421, T2, * , TaZb—a—1- Let Z ={x, 21,22, ,2p—q—1} be
the set of end-vertices of G. Let M be any monophonic hull set of G. Then by Theorem 1.3(a),
Z C M. First we show that mh(G) = b. Since J,(Z) # V, Z is not a monophonic hull set of
G. Let F; = {u;,v;} (1 <i < a). We observe that every mh-set of G must contain at least one
vertex from each F;(1 < i < a). Thus mh(G) > b —a+ a =0b. On the other hand since the set
M = Z U {v1,v3,03, - ,0.} is a monophonic hull set of G, it follows that mh(G) < |M| = b.
Hence mh(G) = b. Next we show that f,n(G) = a. By Theorem 1.3(a), every monophonic hull
set of G contains Z and so it follows from Theorem 1.4(b) that fnn(G) < mh(G) — |Z| = a.
Now, since mh(G) = b and every mh-set of G contains Z, it is easily seen that every mh-set
M is of the form Z U {e1,co,¢3, -+ , ¢4}, where ¢; € F;(1 <i < a). Let T be any proper subset
of S with |T'| < a. Then it is clear that there exists some j such that 7'N F; = ¢, which shows
that fi,n(G) = a. By similar way we can prove h(G) = b and f,(G) = a.

Subcase 2b. b < ¢. Let G be the graph obtained from H, and T,._; by identifying the vertex
x, of H, and the vertex oy of T.—; and then adding the new vertices x, 21, 22, - - , 2p—q—1 and
joining the edges x$1,Ve—b21, Ye—b22, " * s Ye—bZb—a—1- First we show that mh(G) = b. Since
Jn(Z) # V, Z is not a monophonic hull set of G. Let F; = {u;,v;} (1 <i < a) .We observe that
every mh-set of G must contain at least one vertex from each F;(1 < ¢ < a). Thus mh(G) >
b—a+a =b. On the other hand since the set M = ZU{v1,v2,v3, -+ ,v,} is a monophonic hull
set of G, it follows that mh(G) > |M| = b. Hence mh(G) = b. Next, we show that f,,,(G) = a.
By Theorem 1.3(a), every monophonic hull set of G contains Z and so it follows from Theorem
1.4(b) that fmn(G) < mh(G) — |Z] = a. Now, since mh(G) = b and every mh-set of G
contains Z, it is easily seen that every mh-set is of the form M = ZU{c1,ca,¢3,- -, Ca}, where
¢; € F;(1 <i<a). Let T be any proper subset of M with |T'| < a. Then it is clear that there
exists some j such that TUF; = ¢, which shows that f,,,(G) = a. Next we show that h(G) = c.
Since I, (Z) # V, Z is not a hull set of G. We observe that every h-set of G must contain at least
one vertex from each F;(1 < i < a) and each f;(1 < i < ¢—b) so that h(G) > b—a+a+c—b=c.
On the other hand, since the set S1 = Z U {u1,ua,us, -+ ,uat U{f1, f2, f3, ", fe—p} is & hull
set of G, so that h(G) < |Si| = ¢. Hence h(G) = ¢. Next we show that f,(G) = a. By
Theorem 1.1(a), every hull set of G contains Sy = Z U {f1, fa, f3, -, fe—p} and so it follows
from Theorem 1.2(b) that fr(G) < h(G) — |S2| = a. Now, since h(G) = c and every h-set of

G contains Ss, it is easily seen that every h-set S is of the form S = So U {c1,¢2,¢5, -+ ,¢Ca}s
where ¢; € Fi(1 <4 < a). Let T be any proper subset of S with |T| < a. Then it is clear that
there exists some j such that 7' N F; = ¢, which shows that f,(G) = a. O

Theorem 3.5 For every integers a,b,c and d with 0 <a<b<c<d,c>a+1,d>c—a+0b,
there exists a connected graph G such that fumn(G) = a, fn(G) =b,mh(G) = ¢ and h(G) =d.

Proof We consider four cases.

Case 1. a =b=0. Then the graph G constructed in Theorem 3.1 satisfies the requirements

of this theorem.

Case 2. a4 =0,b> 1. Then the graph G constructed in Theorem 3.2 satisfies the requirements
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of this theorem.

Case 3. 1 < a="b. Then the graph G constructed in Theorem 3.4 satisfies the requirements

of this theorem.

Case 4. 1 <a <b. Let G; be the graph obtained from H, and W,_, by identifying the vertex
x4 of H, and the vertex k1 of Wy_,. Now let G be the graph obtained from G; and Tq—(c—a+b)
by identifying the vertex my_, of G and the vertex oy of Ty_(._,44) and adding new vertices

T, 21,22, " 5 Ze—a—1 and joining the edges =51, Va—(c—a+b) 215 Vd—(c—a+b)?2, " * » Vd—(c—a+b) Fc—a—1-
Let Z = {x,21,22, "+ ,Zc—a—1} be the set of end vertices of G. Let F; = {u;,v;} (1 < i < a).
It is clear that any mh-set S is of the form S = Z U {c1,¢a,¢3, -+ ,ca}, where ¢; € F;(1 <

i < a). Then as in earlier theorems it can be seen that f,,,(G) = a and mh(G) = c¢. Let
Q; = {pi,q:}. Tt is clear that any h-set W is of the form W = ZU {fl, fa, [z, ,fd,(c,aer)} U
{c1,¢2,¢3, -+ ,ca}U{d1,da,ds, - ,dp—q}, where ¢; € Fi(1 <i<a)andd; € Q;(1 <j<b—a).
Then as in earlier theorems it can be seen that f,(G) =b and h(G) = d. O

Theorem 3.6 For every integers a,b,c and d with a < b < c < d and ¢ > b+ 1 there exists a
connected graph G such that fr(G) = a, fmn(G) = b,mh(G) = ¢ and h(G) = d.

Proof We consider four cases.

Case 1. a = b= 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements

of this theorem.

Case 2. a=0,b> 1. Then the graph G constructed in Theorem 3.2 satisfies the requirements

of this theorem.

Case 3. 1 < a="b. Then the graph G constructed in Theorem 3.4 satisfies the requirements

of this theorem.
Case 4. 1 <a<hb.

Subcase 4a. ¢ = d. Let G be the graph obtained from H, and Z,_, by identifying the
vertex x, of H, and the vertex ki of Z,_, and then adding the new vertices x, 21, 2o, ..., Ze—p—1
and joining the edges xs1,Mp—a21, Mb—a 22, .oy Mp—aZe—b—1. First we show that mh(G) = c.
Let Z = {x, 21,22, ..., 2c—p—1} be the set of end vertices of G. Let F; = {u;,v;} (1 < i < a)
and H; = {hi,pi,qi} (1 < i < b—a). It is clear that any mh-set of G is of the form S =
ZU{c1,¢2,¢3, ..., ¢ fU{d1,d2,ds, ...,dp—o }, where ¢; € Fj(1 <i<a)andd; € H;(1 <j<b—a).
Then as in earlier theorems it can be seen that f,,(G) = b and mh(G) = c. It is clear that any
h-set W is of the form W = ZU{p1, p2, p3, ..., Db—a fU{c1, C2, €3, ..., Ca }, Where ¢; € F;(1 < i < a).
Then as in earlier theorems it can be seen that f,(G) = a and h(G) = c.

Subcase 4b. ¢ < d. Let G be the graph obtained from H, and Z,_, by identifying
the vertex z, of H, and the vertex ki of Z,_,. Now let G be the graph obtained from G,
and Ty_. by identifying the vertex my_, of G; and the vertex a; of Ty_. and then adding
new vertices x, z1, 22, - -+ , Zc—p—1 and joining the edges xS1, Vg—c21, Yd—c22, " * » Yd—cZc—b—1- L€t
Z ={x,21,22, + ,Zc—b—1} be the set of end vertices of G. Let F; = {u;,v;} (1 <14 < a) and
H; = {hi,pi,q;i} (1 < i < b—a). It is clear that any mh-set of G is of the form S = Z U
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{c1,¢2,¢3, -+ ,ca}U{d1,da,ds3, - ,dp—s}, where ¢; € F;(1 <i<a)andd; € H;j(1 <j<b—a).
Then as in earlier theorems it can be seen that f,,,s(G) = b and mh(G) = c. Tt is clear that any h-
set W is of the form W = ZU{p1,p2, 03, s Po—a} U{f1, f2, f3, -+, fa—c}U{c1,¢2,¢3,- , cat,
where ¢; € F;(1 < i < a). Then as in earlier theorems it can be seen that f,(G) = a and
h(G) =d. O

References

[1] F.Buckley and F.Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.
[2] G.Chartrand and P.Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph
Theory, 19 (1999), 45-58.
[3] G.Chartrand and P.Zhang, The forcing hull number of a graph, J. Combin Math. Comput.,
36(2001), 81-94.
[4] G.Chartrand, F.Harary and P.Zhang, On the geodetic number of a graph, Networks,39(2002)
1-6.
[6] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the
Steiner, geodetic and hull number of graphs, Discrete Mathematics, 293 (2005) 139 - 154.
[6] M. G. Evertt, S. B. Seidman, The hull number of a graph , Discrete Mathematics, 57 (1985)
217-223.
[7] Esamel M. Paluga, Sergio R. Canoy Jr, Monophonic numbers of the join and Composition
of connected graphs, Discrete Mathematics 307(2007) 1146 - 1154.
[8] M.Faber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM Journal Algebraic
Discrete Methods, 7(1986) 433-444.
[9] F.Harary, Graph Theory, Addison-Wesley, 1969.
[10] F.Harary, E.Loukakis and C.Tsouros, The geodetic number of a graph, Math. Comput Mod-
eling 17(11)(1993) 89-95.
[11] J.John and S.Panchali, The upper monophonic number of a graph, International J.Math.
Combin, 4(2010),46-52.
[12] J.John and V.Mary Gleeta, The Forcing Monophonic Hull Number of a Graph, Interna-
tional Journal of Mathematics Trends and Technology, 3(2012),43-46.
[13] J.John and V.Mary Gleeta, Monophonic hull sets in graphs, submitted.
[14] Li-Da Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Applied
Math., 157(2009), 1159-1163.
[15] Mitre C.Dourado, Fabio protti and Jayme L.Szwarcfiter, Algorithmic Aspects of Mono-
phonic Convexity, Electronic Notes in Discrete Mathematics 30(2008) 177-182.



