On the Forcing Hull and Forcing Monophonic Hull Numbers of Graphs

J.John

(Department of Mathematics, Government College of Engineering, Tirunelveli - 627 007, India)

V.Mary Gleeta

(Department of Mathematics ,Cape Institute of Technology, Levengipuram- 627114, India)

E-mail: johnramesh1971@yahoo.co.in, gleetass@gmail.com

Abstract: For a connected graph G = (V, E), let a set M be a minimum monophonic hull set of G. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum monophonic hull set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing monophonic hull number of M, denoted by $f_{mh}(M)$, is the cardinality of a minimum forcing subset of M. The forcing monophonic hull number of G, denoted by $f_{mh}(G)$, is $f_{mh}(G) = \min\{f_{mh}(M)\}$, where the minimum is taken over all minimum monophonic hull sets in G. Some general properties satisfied by this concept are studied. Every monophonic set of G is also a monophonic hull set of G and so $mh(G) \leq h(G)$, where h(G) and mh(G) are hull number and monophonic hull number of a connected graph G. However, there is no relationship between $f_h(G)$ and $f_{mh}(G)$, where $f_h(G)$ is the forcing hull number of a connected graph G. We give a series of realization results for various possibilities of these four parameters.

Key Words: hull number, monophonic hull number, forcing hull number, forcing monophonic hull number, Smarandachely geodetic k-set, Smarandachely hull k-set.

AMS(2010): 05C12, 05C05

§1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to Harary [1,9]. A convexity on a finite set V is a family C of subsets of V, convex sets which is closed under intersection and which contains both V and the empty set. The pair (V, E) is called a convexity space. A finite graph convexity space is a pair (V, E), formed by a finite connected graph G = (V, E) and a convexity C on V such that (V, E) is a convexity space satisfying that every member of C induces a connected subgraph of G. Thus, classical convexity can be extended to graphs in a natural way. We know that a set X of R^n is convex if

¹Received March 14, 2012. Accepted August 26, 2012.

every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain kind of path connecting vertices of W[2,8]. The distance d(u,v) between two vertices u and v in a connected graph G is the length of a shortest u-v path in G. An u-v path of length d(u,v)is called an u-v geodesic. A vertex x is said to lie on a u-v geodesic P if x is a vertex of P including the vertices u and v. For two vertices u and v, let I[u,v] denotes the set of all vertices which lie on u-v geodesic. For a set S of vertices, let $I[S] = \bigcup_{(u,v) \in S} I[u,v]$. The set S is convex if I[S] = S. Clearly if $S = \{v\}$ or S = V, then S is convex. The convexity number, denoted by C(G), is the cardinality of a maximum proper convex subset of V. The smallest convex set containing S is denoted by $I_h(S)$ and called the convex hull of S. Since the intersection of two convex sets is convex, the convex hull is well defined. Note that $S \subseteq I[S] \subseteq I_h[S] \subseteq V$. For an integer $k \geq 0$, a subset $S \subseteq V$ is called a Smarandachely geodetic k-set if $I[S \cup S^+] = V$ and a Smarandachely hull k-set if $I_h(S \mid S^+) = V$ for a subset $S^+ \subset V$ with $|S^+| < k$. Particularly, if k=0, such Smarandachely geodetic 0-set and Smarandachely hull 0-set are called the *geodetic* set and hull set, respectively. The geodetic number g(G) of G is the minimum order of its geodetic sets and any geodetic set of order q(G) is a minimum geodetic set or simply a q- set of G. Similarly, the hull number h(G) of G is the minimum order of its hull sets and any hull set of order h(G) is a minimum hull set or simply a h- set of G. The geodetic number of a graph is studied in [1,4,10] and the hull number of a graph is studied in [1,6]. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum hull set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of M. The forcing hull number of S, denoted by $f_h(S)$, is the cardinality of a minimum forcing subset of S. The forcing hull number of G, denoted by $f_h(G)$, is $f_h(G) = min\{f_h(S)\}\$, where the minimum is taken over all minimum hull sets S in G. The forcing hull number of a graph is studied in [3,14]. A chord of a path $u_0, u_1, u_2, ..., u_n$ is an edge $u_i u_j$ with $j \geq i + 2(0 \leq i, j \leq n)$. A u - v path P is called a monophonic path if it is a chordless path. A vertex x is said to lie on a u-v monophonic path P if x is a vertex of P including the vertices u and v. For two vertices u and v, let J[u,v]denotes the set of all vertices which lie on u-v monophonic path. For a set M of vertices, let $J[M] = \bigcup_{u,v \in M} J[u,v]$. The set M is monophonic convex or m-convex if J[M] = M. Clearly if $M = \{v\}$ or M = V, then M is m-convex. The m-convexity number, denoted by $C_m(G)$, is the cardinality of a maximum proper m-convex subset of V. The smallest m-convex set containing M is denoted by $J_h(M)$ and called the monophonic convex hull or m-convex hull of M. Since the intersection of two m-convex set is m-convex, the m-convex hull is well defined. Note that $M \subseteq J[M] \subseteq J_h(M) \subseteq V$. A subset $M \subseteq V$ is called a monophonic set if J[M] = V and a m-hull set if $J_h(M) = V$. The monophonic number m(G) of G is the minimum order of its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set or simply a m- set of G. Similarly, the monophonic hull number mh(G) of G is the minimum order of its m-hull sets and any m-hull set of order mh(G) is a minimum monophonic set or simply a mh- set of G. The monophonic number of a graph is studied in [5,7,11,15] and the monophonic hull number of a graph is studied in [12]. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. Let G be a connected graph and M a minimum monophonic hull set of G. A subset $T \subseteq M$ is called a forcing subset for M

if M is the unique minimum monophonic hull set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing monophonic hull number of M, denoted by $f_{mh}(M)$, is the cardinality of a minimum forcing subset of M. The forcing monophonic hull number of G, denoted by $f_{mh}(G)$, is $f_{mh}(G) = \min\{f_{mh}(M)\}$, where the minimum is taken over all minimum monophonic hull sets M in G. For the graph G given in Figure 1.1, $M = \{v_1, v_8\}$ is the unique minimum monophonic hull set of G so that mh(G) = 2 and $f_{mh}(G) = 0$. Also $S_1 = \{v_1, v_5, v_8\}$ and $S_2 = \{v_1, v_6, v_8\}$ are the only two h-sets of G such that $f_h(S_1) = 1$, $f_h(S_2) = 1$ so that $f_h(G) = 1$. For the graph G given in Figure 1.2, $M_1 = \{v_1, v_4\}$, $M_2 = \{v_1, v_6\}$, $M_3 = \{v_1, v_7\}$ and $M_4 = \{v_1, v_8\}$ are the only four mh-sets of G such that $f_{mh}(M_1) = 1$, $f_{mh}(M_2) = 1$, $f_{mh}(M_3) = 1$ and $f_{mh}(M_4) = 1$ so that $f_{mh}(G) = 1$. Also, $S = \{v_1, v_7\}$ is the unique minimum hull set of G so that h(G) = 2 and $f_h(G) = 0$. Throughout the following G denotes a connected graph with at least two vertices.

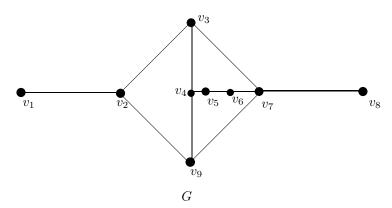


Figure 1.1

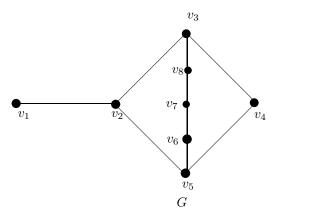


Figure 1.2

The following theorems are used in the sequel

Theorem 1.1 ([6]) Let G be a connected graph. Then

a) Each extreme vertex of G belongs to every hull set of G;

(b) h(G) = p if and only if $G = K_n$.

Theorem 1.2 ([3]) Let G be a connected graph. Then

- (a) $f_h(G) = 0$ if and only if G has a unique minimum hull set;
- (b) $f_h(G) \leq h(G) |W|$, where W is the set of all hull vertices of G.

Theorem 1.3 ([13]) Let G be a connected graph. Then

- (a) Each extreme vertex of G belongs to every monophonic hull set of G;
- (b) mh(G) = p if and only if $G = K_p$.

Theorem 1.4 ([12]) Let G be a connected graph. Then

- (a) $f_{mh}(G) = 0$ if and only if G has a unique mh-set;
- (b) $f_{mh}(G) \leq mh(G) |S|$, where S is the set of all monophonic hull vertices of G.

Theorem 1.5 ([12]) For any complete Graph $G = K_p(p \ge 2), f_{mh}(G) = 0.$

§2. Special Graphs

In this section, we present some graphs from which various graphs arising in theorem are generated using identification.

Let $U_i: \alpha_i, \beta_i, \gamma_i, \delta_i, \alpha_i (1 \leq i \leq a)$ be a copy of cycle C_4 . Let V_i be the graph obtained from U_i by adding three new vertices η_i, f_i, g_i and the edges $\beta_i \eta_i, \eta_i f_i, f_i g_i, g_i \delta_i, \eta_i \gamma_i, f_i \gamma_i, g_i \gamma_i (1 \leq i \leq a)$. The graph T_a given in Figure 2.1 is obtained from V_i 's by identifying γ_{i-1} of V_{i-1} and α_i of $V_i (2 \leq i \leq a)$.

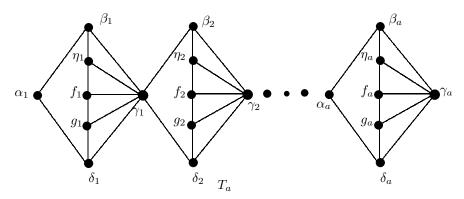
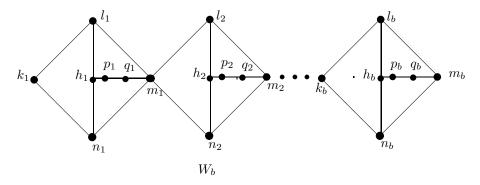


Figure 2.1

Let $P_i: k_i, l_i, m_i, n_i, k_i (1 \le i \le b)$ be a copy of cycle C_4 . Let Q_i be the graph obtained from P_i by adding three new vertices h_i, p_i and q_i and the edges $l_i h_i, h_i p_i, p_i q_i$, and $q_i m_i (1 \le i \le b)$. The graph W_b given in Figure 2.2 is obtained from Q_i 's by identifying m_{i-1} of Q_{i-1} and k_i of $Q_i (2 \le i \le b)$.



 $\mathbf{Figure}\ 2.2$

The graph Z_b given in Figure 2.3 is obtained from W_b by joining the edge $l_i n_i (1 \le i \le b)$.

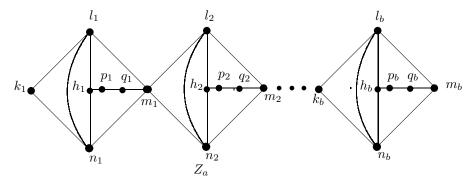


Figure 2.3

Let $F_i: s_i, t_i, x_i, w_i, s_i (1 \le i \le c)$ be a copy of cycle C_4 . Let R_i be the graph obtained from F_i by adding two new vertices u_i, v_i and joining the edges $t_i u_i, u_i w_i, t_i w_i, u_i v_i$ and $v_i x_i (1 \le i \le c)$. The graph H_c given in Figure 2.4 is obtained from R_i 's by identifying the vertices x_{i-1} of R_{i-1} and s_i of $R_i (1 \le i \le c)$.

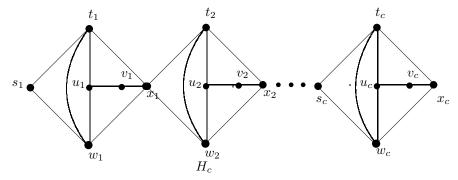


Figure 2.4

Every monophonic set of G is also a monophonic hull set of G and so $mh(G) \leq h(G)$, where h(G) and mh(G) are hull number and monophonic hull number of a connected graph G. However, there is no relationship between $f_h(G)$ and $f_{mh}(G)$, where $f_h(G)$ is the forcing hull number of a connected graph G. We give a series of realization results for various possibilities of these four parameters.

§3. Some Realization Results

Theorem 3.1 For every pair a, b of integers with $2 \le a \le b$, there exists a connected graph G such that $f_{mh}(G) = f_h(G) = 0$, mh(G) = a and h(G) = b.

Proof If a=b, let $G=K_a$. Then by Theorems1.3(b) and 1.1(b), mh(G)=h(G)=a and by Theorems 1.5 and 1.2(a), $f_{mh}(G)=f_h(G)=0$. For a< b, let G be the graph obtained from T_{b-a} by adding new vertices x,z_1,z_2,\cdots,z_{a-1} and joining the edges $x\alpha_1,\gamma_{b-a}z_1,\gamma_{b-a}z_2,\cdots,\gamma_{b-a}z_{a-1}$. Let $Z=\{x,z_1,z_2,\cdots,z_{a-1}\}$ be the set of end-vertices of G. Then it is clear that G is a monophonic hull set of G and so by Theorem 1.3(a), G is the unique G is not a hull set of G. Now it is easily seen that G is the unique G is the unique G is not a hull set of G. Now it is easily seen that G is the unique G

Theorem 3.2 For every integers a, b and c with $0 \le a < b < c$ and c > a + b, there exists a connected graph G such that $f_{mh}(G) = 0$, $f_h(G) = a$, mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0. Then the graph T_b constructed in Theorem 3.1 satisfies the requirements of the theorem.

Case 2. $a \geq 1$. Let G be the graph obtained from W_a and $T_{c-(a+b)}$ by identifying the vertex m_a of W_a and α_1 of $T_{c-(a+b)}$ and then adding new vertices $x, z_1, z_2, \cdots, z_{b-1}$ and joining the edges $xk_1, \gamma_{c-b-a}z_1, \gamma_{c-b-a}z_2, \cdots, \gamma_{c-b-a}z_{b-1}$. Let $Z = \{x, z_1, z_2, \cdots, z_{b-1}\}$. Since $J_h(Z) = V$, Z is a monophonic hull set G and so by Theorem 1.3(a), Z is the unique mh- set of G so that mh(G) = b and hence by Theorem 1.4(a), $f_{mh}(G) = 0$. Next we show that h(G) = c. Let S be any hull set of G. Then by Theorem 1.1(a), $Z \subseteq S$. It is clear that Z is not a hull set of G. For $1 \leq i \leq a$, let $H_i = \{p_i, q_i\}$. We observe that every h-set of G must contain at least one vertex from each $H_i(1 \leq i \leq a)$ and each $f_i(1 \leq i \leq c-b-a)$ so that $h(G) \geq b+a+c-a-b=c$. Now, $M = Z \cup \{q_1, q_2, \cdots, q_a\} \cup \{f_1, f_2, \cdots, f_{c-b-a}\}$ is a hull set of G so that $h(G) \leq b+a+c-b-a=c$. Thus h(G) = c. Since every h-set contains $S_1 = Z \cup \{f_1, f_2, \cdots, f_{c-b-a}\}$, it follows from Theorem 1.2(b) that $f_h(G) = h(G) - |S_1| = c - (c - a) = a$. Now, since h(G) = c and every h-set of G contains S_1 , it is easily seen that every h-set S is of the form $S_1 \cup \{d_1, d_2, \cdots, d_a\}$, where $d_i \in H_i(1 \leq i \leq a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap H_j = \phi$, which shows that $f_h(G) = a$.

Theorem 3.3 For every integers a, b and c with $0 \le a < b \le c$ and b > a + 1, there exists a connected graph G such that $f_h(G) = 0, f_{mh}(G) = a, mh(G) = b$ and h(G) = c.

Proof We consider two cases.

Case 1. a = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements of the theorem.

Case 2. $a \ge 1$.

Subcase 2a. b=c. Let G be the graph obtained from Z_a by adding new vertices x, z_1, z_2, \cdots , z_{b-a-1} and joining the edges $xk_1, m_a z_1, m_a z_2, \cdots, m_a z_{b-a-1}$. Let $Z = \{x, z_1, z_2, \cdots, z_{b-a-1}\}$ be the set of end-vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), $Z \subseteq S$. It is clear that Z is not a hull set of G. For $1 \le i \le a$, let $H_i = \{h_i, p_i, q_i\}$. We observe that every h-set of G must contain only the vertex p_i from each H_i so that $h(G) \leq b - a + a = b$. Now $S = Z \cup \{p_1, p_2, p_3, \dots, p_a\}$ is a hull set of G so that $h(G) \geq b - a + a = b$. Thus h(G) = b. Also it is easily seen that S is the unique h-set of G and so by Theorem 1.2(a), $f_h(G) = 0$. Next we show that mh(G) = b. Since $J_h(Z) \neq V, Z$ is not a monophonic hull set of G. We observe that every mh-set of G must contain at least one vertex from each H_i so that $mh(G) \ge b-a+a=b$. Now $M_1=Z \cup \{q_1,q_2,q_3,\cdots,q_a\}$ is a monophonic hull set of G so that $mh(G) \le b - a + a = b$. Thus mh(G) = b. Next we show that $f_{mh}(G) = a$. Since every mh-set contains Z, it follows from Theorem 1.4(b) that $f_{mh}(G) \leq mh(G) - |Z| = b - (b-a) = a$. Now, since mh(G) = b and every mh-set of G contains Z, it is easily seen that every mh-set M is of the form $Z \cup \{d_1, d_2, d_3, \dots, d_a\}$, where $d_i \in H_i (1 \le i \le a)$. Let T be any proper subset of M with |T| < a. Then it is clear that there exists some j such that $T \cap H_j = \phi$, which shows that $f_{mh}(G) = a.$

Subcase 2b. b < c. Let G be the graph obtained from Z_a and T_{c-b} by identifying the vertex m_a of Z_a and α_1 of T_{c-b} and then adding the new vertices $x, z_1, z_2, \cdots, z_{b-a-1}$ and joining the edges $x\alpha_1, \gamma_{c-b}z_1, \gamma_{c-b}z_2, \cdots, \gamma_{c-b}z_{b-a-1}$. Let $Z = \{x, z_1, z_2, \cdots, z_{b-a-1}\}$ be the set of end vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), $Z \subseteq S$. Since $I_h(Z) \neq V, Z$ is not a hull set of G. For $1 \leq i \leq a$, let $H_i = \{h_i, p_i, q_i\}$. We observe that every h-set of G must contain only the vertex p_i from each H_i and each $f_i (1 \le i \le c - b)$ so that $h(G) \ge b - a + a + c - b = c$. Now $S = Z \cup \{p_1, p_2, p_3, \dots, p_a\} \cup \{f_1, f_2, f_3, \dots, f_{c-b}\}$ is a hull set of G so that $h(G) \leq b-a+a+c-b=c$. Thus h(G)=c. Also it is easily seen that S is the unique h-set of G and so by Theorem 1.2(a), $f_h(G) = 0$. Since $J_h(Z) \neq V$, Z is not a monophonic hull set of G. We observe that every mh-set of G must contain at least one vertex from each $H_i(1 \le i \le a)$ so that $mh(G) \ge b - a + a = b$. Now, $M_1 = Z \cup \{h_1, h_2, h_3, \dots, h_a\}$ is a monophonic hull set of G so that $mh(G) \leq b-a+a=b$. Thus mh(G)=b. Next we show that $f_{mh}(G) = a$. Since every mh-set contains Z, it follows from Theorem 1.4(b) that $f_{mh}(G) \leq mh(G) - |Z| = b - (b - a) = a$. Now, since mh(G) = b and every mh-set of G contains Z, it is easily seen that every mh-set S is of the form $Z \cup \{d_1, d_2, d_3, \dots, d_a\}$, where $d_i \in H_i(1 \le i \le a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap H_j = \phi$, which shows that $f_{mh}(G) = a$.

Theorem 3.4 For every integers a, b and c with $0 \le a < b \le c$ and b > a + 1, there exists a connected graph G such that $f_{mh}(G) = f_h(G) = a$, mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0, then the graph G constructed in Theorem 3.1 satisfies the requirements of the theorem.

Case 2. $a \ge 1$.

Subcase 2a. b=c. Let G be the graph obtained from H_a by adding new vertices $x, z_1, z_2, \cdots, z_{b-a-1}$ and joining the edges $xs_1, x_az_1, x_az_2, \cdots, x_az_{b-a-1}$. Let $Z=\{x, z_1, z_2, \cdots, z_{b-a-1}\}$ be the set of end-vertices of G. Let M be any monophonic hull set of G. Then by Theorem 1.3(a), $Z\subseteq M$. First we show that mh(G)=b. Since $J_h(Z)\neq V,Z$ is not a monophonic hull set of G. Let $F_i=\{u_i,v_i\}\ (1\leq i\leq a)$. We observe that every mh-set of G must contain at least one vertex from each $F_i(1\leq i\leq a)$. Thus $mh(G)\geq b-a+a=b$. On the other hand since the set $M=Z\cup\{v_1,v_2,v_3,\cdots,v_a\}$ is a monophonic hull set of G, it follows that $mh(G)\leq |M|=b$. Hence mh(G)=b. Next we show that $f_{mh}(G)=a$. By Theorem 1.3(a), every monophonic hull set of G contains G and so it follows from Theorem 1.4(b) that $f_{mh}(G)\leq mh(G)-|Z|=a$. Now, since mh(G)=b and every mh-set of G contains G, it is easily seen that every g-set g-set

Subcase 2b. b < c. Let G be the graph obtained from H_a and T_{c-b} by identifying the vertex x_a of H_a and the vertex α_1 of T_{c-b} and then adding the new vertices $x, z_1, z_2, \cdots, z_{b-a-1}$ and joining the edges $xs_1, \gamma_{c-b}z_1, \gamma_{c-b}z_2, \cdots, \gamma_{c-b}z_{b-a-1}$. First we show that mh(G) = b. Since $J_h(Z) \neq V, Z$ is not a monophonic hull set of G. Let $F_i = \{u_i, v_i\}$ $(1 \leq i \leq a)$. We observe that every mh-set of G must contain at least one vertex from each $F_i(1 \le i \le a)$. Thus $mh(G) \ge a$ b-a+a=b. On the other hand since the set $M=Z\cup\{v_1,v_2,v_3,\cdots,v_a\}$ is a monophonic hull set of G, it follows that $mh(G) \geq |M| = b$. Hence mh(G) = b. Next, we show that $f_{mh}(G) = a$. By Theorem 1.3(a), every monophonic hull set of G contains Z and so it follows from Theorem 1.4(b) that $f_{mh}(G) \leq mh(G) - |Z| = a$. Now, since mh(G) = b and every mh-set of G contains Z, it is easily seen that every mh-set is of the form $M = Z \cup \{c_1, c_2, c_3, \cdots, c_a\}$, where $c_i \in F_i (1 \le i \le a)$. Let T be any proper subset of M with |T| < a. Then it is clear that there exists some j such that $T \cup F_j = \phi$, which shows that $f_{mh}(G) = a$. Next we show that h(G) = c. Since $I_h(Z) \neq V, Z$ is not a hull set of G. We observe that every h-set of G must contain at least one vertex from each $F_i(1 \le i \le a)$ and each $f_i(1 \le i \le c-b)$ so that $h(G) \ge b-a+a+c-b=c$. On the other hand, since the set $S_1 = Z \cup \{u_1, u_2, u_3, \dots, u_a\} \cup \{f_1, f_2, f_3, \dots, f_{c-b}\}$ is a hull set of G, so that $h(G) \leq |S_1| = c$. Hence h(G) = c. Next we show that $f_h(G) = a$. By Theorem 1.1(a), every hull set of G contains $S_2 = Z \cup \{f_1, f_2, f_3, \cdots, f_{c-b}\}$ and so it follows from Theorem 1.2(b) that $f_h(G) \leq h(G) - |S_2| = a$. Now, since h(G) = c and every h-set of G contains S_2 , it is easily seen that every h-set S is of the form $S = S_2 \cup \{c_1, c_2, c_3, \cdots, c_a\}$, where $c_i \in F_i (1 \le i \le a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap F_j = \phi$, which shows that $f_h(G) = a$.

Theorem 3.5 For every integers a, b, c and d with $0 \le a \le b < c < d, c > a + 1, d > c - a + b$, there exists a connected graph G such that $f_{mh}(G) = a, f_h(G) = b, mh(G) = c$ and h(G) = d.

Proof We consider four cases.

Case 1. a = b = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.

Case 2. $a = 0, b \ge 1$. Then the graph G constructed in Theorem 3.2 satisfies the requirements

of this theorem.

Case 3. $1 \le a = b$. Then the graph G constructed in Theorem 3.4 satisfies the requirements of this theorem.

Case 4. $1 \le a < b$. Let G_1 be the graph obtained from H_a and W_{b-a} by identifying the vertex x_a of H_a and the vertex k_1 of W_{b-a} . Now let G be the graph obtained from G_1 and $T_{d-(c-a+b)}$ by identifying the vertex m_{b-a} of G_1 and the vertex α_1 of $T_{d-(c-a+b)}$ and adding new vertices $x, z_1, z_2, \cdots, z_{c-a-1}$ and joining the edges $xs_1, \gamma_{d-(c-a+b)}z_1, \gamma_{d-(c-a+b)}z_2, \cdots, \gamma_{d-(c-a+b)}z_{c-a-1}$. Let $Z = \{x, z_1, z_2, \cdots, z_{c-a-1}\}$ be the set of end vertices of G. Let $F_i = \{u_i, v_i\} (1 \le i \le a)$. It is clear that any mh-set S is of the form $S = Z \cup \{c_1, c_2, c_3, \cdots, c_a\}$, where $c_i \in F_i (1 \le i \le a)$. Then as in earlier theorems it can be seen that $f_{mh}(G) = a$ and mh(G) = c. Let $Q_i = \{p_i, q_i\}$. It is clear that any h-set W is of the form $W = Z \cup \{f_1, f_2, f_3, \cdots, f_{d-(c-a+b)}\} \cup \{c_1, c_2, c_3, \cdots, c_a\} \cup \{d_1, d_2, d_3, \cdots, d_{b-a}\}$, where $c_i \in F_i (1 \le i \le a)$ and $d_j \in Q_j (1 \le j \le b-a)$. Then as in earlier theorems it can be seen that $f_h(G) = b$ and h(G) = d.

Theorem 3.6 For every integers a, b, c and d with $a \le b < c \le d$ and c > b + 1 there exists a connected graph G such that $f_h(G) = a, f_{mh}(G) = b, mh(G) = c$ and h(G) = d.

Proof We consider four cases.

Case 1. a = b = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.

Case 2. $a = 0, b \ge 1$. Then the graph G constructed in Theorem 3.2 satisfies the requirements of this theorem.

Case 3. $1 \le a = b$. Then the graph G constructed in Theorem 3.4 satisfies the requirements of this theorem.

Case 4. $1 \le a < b$.

Subcase 4a. c=d. Let G be the graph obtained from H_a and Z_{b-a} by identifying the vertex x_a of H_a and the vertex k_1 of Z_{b-a} and then adding the new vertices $x, z_1, z_2, ..., z_{c-b-1}$ and joining the edges $xs_1, m_{b-a}z_1, m_{b-a}z_2, ..., m_{b-a}z_{c-b-1}$. First we show that mh(G) = c. Let $Z = \{x, z_1, z_2, ..., z_{c-b-1}\}$ be the set of end vertices of G. Let $F_i = \{u_i, v_i\}$ $(1 \le i \le a)$ and $H_i = \{h_i, p_i, q_i\}$ $(1 \le i \le b - a)$. It is clear that any mh-set of G is of the form $S = Z \cup \{c_1, c_2, c_3, ..., c_a\} \cup \{d_1, d_2, d_3, ..., d_{b-a}\}$, where $c_i \in F_i (1 \le i \le a)$ and $d_j \in H_j (1 \le j \le b - a)$. Then as in earlier theorems it can be seen that $f_{mh}(G) = b$ and mh(G) = c. It is clear that any h-set W is of the form $W = Z \cup \{p_1, p_2, p_3, ..., p_{b-a}\} \cup \{c_1, c_2, c_3, ..., c_a\}$, where $c_i \in F_i (1 \le i \le a)$. Then as in earlier theorems it can be seen that $f_h(G) = a$ and $f_h(G) = a$.

Subcase 4b. c < d. Let G_1 be the graph obtained from H_a and Z_{b-a} by identifying the vertex x_a of H_a and the vertex k_1 of Z_{b-a} . Now let G be the graph obtained from G_1 and T_{d-c} by identifying the vertex m_{b-a} of G_1 and the vertex α_1 of T_{d-c} and then adding new vertices $x, z_1, z_2, \dots, z_{c-b-1}$ and joining the edges $xs_1, \gamma_{d-c}z_1, \gamma_{d-c}z_2, \dots, \gamma_{d-c}z_{c-b-1}$. Let $Z = \{x, z_1, z_2, \dots, z_{c-b-1}\}$ be the set of end vertices of G. Let $F_i = \{u_i, v_i\}$ $(1 \le i \le a)$ and $H_i = \{h_i, p_i, q_i\}$ $(1 \le i \le b-a)$. It is clear that any mh-set of G is of the form $S = Z \cup A$

 $\{c_1,c_2,c_3,\cdots,c_a\} \cup \{d_1,d_2,d_3,\cdots,d_{b-a}\}, \text{ where } c_i \in F_i (1 \leq i \leq a) \text{ and } d_j \in H_j (1 \leq j \leq b-a).$ Then as in earlier theorems it can be seen that $f_{mh}(G) = b$ and mh(G) = c. It is clear that any h-set W is of the form $W = Z \cup \{p_1,p_2,p_3,\cdots,p_{b-a}\} \cup \{f_1,f_2,f_3,\cdots,f_{d-c}\} \cup \{c_1,c_2,c_3,\cdots,c_a\},$ where $c_i \in F_i (1 \leq i \leq a)$. Then as in earlier theorems it can be seen that $f_h(G) = a$ and h(G) = d.

References

- [1] F.Buckley and F.Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
- [2] G.Chartrand and P.Zhang, The forcing geodetic number of a graph, *Discuss. Math. Graph Theory*, 19 (1999), 45-58.
- [3] G.Chartrand and P.Zhang, The forcing hull number of a graph, *J. Combin Math. Comput.*, 36(2001), 81-94.
- [4] G.Chartrand, F.Harary and P.Zhang, On the geodetic number of a graph, *Networks*, 39(2002) 1-6.
- [5] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, *Discrete Mathematics*, 293 (2005) 139 154.
- [6] M. G. Evertt, S. B. Seidman, The hull number of a graph, Discrete Mathematics, 57 (1985) 217-223.
- [7] Esamel M. Paluga, Sergio R. Canoy Jr, Monophonic numbers of the join and Composition of connected graphs, *Discrete Mathematics* 307(2007) 1146 1154.
- [8] M.Faber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM Journal Algebraic Discrete Methods, 7(1986) 433-444.
- [9] F.Harary, Graph Theory, Addison-Wesley, 1969.
- [10] F.Harary, E.Loukakis and C.Tsouros, The geodetic number of a graph, *Math. Comput Modeling* 17(11)(1993) 89-95.
- [11] J.John and S.Panchali, The upper monophonic number of a graph, *International J.Math. Combin*, 4(2010),46-52.
- [12] J.John and V.Mary Gleeta, The Forcing Monophonic Hull Number of a Graph, International Journal of Mathematics Trends and Technology, 3(2012),43-46.
- [13] J.John and V.Mary Gleeta, Monophonic hull sets in graphs, submitted.
- [14] Li-Da Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Applied Math., 157(2009), 1159-1163.
- [15] Mitre C.Dourado, Fabio protti and Jayme L.Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics 30(2008) 177-182.