Smarandache n-structure

n =2
In any domain of knowledge, a Smarandache 7 -structure, for , On a set
n
S'means a weak structure on 5'such that there exists a chain of proper
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subsets whose corresponding structures
LU:"E.—:L };._ U:.I:'T.—E :;._ . :;._ u12 >._ u11 >._ u1|:|
satisfy the inverse inclusion chain :
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where  signifies strictly stronger (i.e., structure satisfying more axioms).

By proper subset one understands a subset different from the empty set, from
the idempotent if any, and from the whole set.

Now one defines the weak structure:
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Let Abe a set, BEa proper subset of it, an operation on A, and
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be independent axioms, where
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If the operation  on the set A satisfies the axioms and does not
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satisfy the axioms , While on the subset E the operation
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satisfies the axioms , One says that structure
wyq = (-‘4-; G—J) e = (B,t‘:{)) (TE _.,;1 wp
is weaker than structure and one writes ,
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or one says that is stronger than structure and one writes .
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Butif satisfies the same axioms on Aas on B one says that structures
Wpg Wy = Wg
and are equal and one writes
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When satisfies the same axioms or less axioms on Athan on Bone says that
Wy wp Wy = Wg
structures is weaker than or equal to structure and one writes
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, or is stronger than or equal to and one writes
For example a semigroup is a structure weaker than a group structure

This definition can be extended to structures with many operations
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for . Thus, let Abe a setand B a proper subset of it.
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a) If for all , then
(A, b1, Gy ooy ) = (B, G2y oy &)
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b) If such that and
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for all , then
In this case, for two operations, a ring is a structure weaker than a field structure.

This definition comprises large classes of structures, some more important than
others.

As a particular case, in abstract algebra, a Smarandache 2-algebraic structure
(two levels only of structures in algebra) on a set 5, is a weak algebraic

U
structure  on S'such that there exists a proper subset Fof S, which is
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embedded with a stronger algebraic structure
For example: a Smarandache semigroup is a semigroup (different from a group)
which has a proper subset that is a group.

Other examples: a Smarandache groupoid of first order is a groupoid (different
from a semigroup) which has a proper subset that is a semigroup, while a
Smarandache groupoid of second order is a groupoid (different from a
semigroup) which has a proper subset that is a group. And so on.
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