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Abstract. Using some new characterizations of ideals in BL-algebras, we revisit

the paper of A. Borumand, and al.[1] recently published in this Journal. Using the

concept of MV-center of a BL-algebra, we give a very simple characterization of

Smarandache BL-algebra. We also restate some of the results and provide much

simpler proofs. Among other things, we notice that Theorem 3.17 and Theorem

3.18 of [1] are not true and they affect a good portion of the paper. Since Defini-

tion 3.19, Examples 3.20, 3.21, Theorem 3.22, Remark 3.23 and Remark 3.24 are

based on a wrong Theorem, they are completely irrelevant.
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1. Introduction

The Study of Smarandache Algebraic Structures was initiated by Raul Padilla

[7] following a paper written by Florentin Smarandache entitled “Special Algebraic

Structures”. A Smarandache Structure on a set A means a weak structure W such

that there exits a proper subset B of A which is embedded with a strong structure

S. Since then, the subject has been pursued by a growing number of researchers.

In his research, Padilla treated the Smarandache Algebraic Structures mainly with

associative binary operations. In [15], a systematic treatment of the basic non-

associative groupoids was given by W. B. Vasantha Kandasamy who studied the

concept of Smarandache groupoids, subgroupoids, ideals of groupoids, semi-normal

subgroupoids, Smarandache Bol groupoids, strong Bol groupoids and obtained many

interesting results about them. Smarandache groupoids exhibit simultaneously the

properties of semigroups and of groupoids. The study of Smarandache semirings,

Smarandache ring and Smarandanche semifields have been developed by many au-

thors [8], [9]. Intensive study of Smarandache BCI-algebras has been given in [4].

Recently, A. Borumand and al. [1] defined the notion of Smarandache BL-algebra

and studied some of its main properties. We recall that BL-algebras were invented

by Hájek [3] in order to study the basic logic framework of fuzzy set theory. The

study of BL-algebras has experienced a tremendous growth over the recent years

from both a logical and algebraic standpoints [5], [6], [10], [14].
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This note has two main goals that both focus mainly on the paper by A. Boru-

mand and al. recently published in this journal. On one hand, we use some new

characterizations of ideals in BL-algebras to offer a simpler presentation of some of

the results and their proofs. On the other hand, it is established that some of the

main results of the paper are false, for instance Theorem 3.22 where it is asserted

that the given relation is a congruence is false. Subsequently, the quotient algebra

constructed and used is no longer valid.

We begin by presenting several characterizations of BL-ideals in BL- algebras that

open the gate to a more accessible treatment and use of BL-ideals. Using the concept

of MV-center of a BL-algebra, we give a very simple characterization of Smaran-

dache BL-algebras. We proceed to present complete justifications as to why the

results mentioned above are false.

2. Preliminaries and Notations

Definition 2.1. A t-norm is a binary operation T on [0, 1], that is commutative,

associative, monotone, and has 1 as an identity element. T is a continuous t-norm

if it is a t-norm and is a continuous mapping of [0, 1]2 into [0, 1].

Example 2.2. The following are important examples of continuous t-norms:

(i) Lukasiewicz t-norm : T (x, y) = max(0, x + y − 1).

(ii) Gödel t-norm : T (x, y) = min(x, y).

(iii) Product t-norm : T (x, y) = x.y .

Note that the dual notion of t-norm is a t-conorm : A t-conorm is a binary

operation T over [0, 1], that is commutative, associative, monotone, and has 0 as an

identity element.

Lemma 2.3. Let T be a continuous t-norm. Then there is a unique operation x→ y

satisfying, for all x, y, z ∈ [0, 1], the condition T (x, z) 6 y iff z 6 (x → y), namely

x→ y = max{z/T (x, z) 6 y}.

Definition 2.4. The operation x→ y from Lemma 2.3 is called the residium of the

t-norm.

The following operations are residual of the three t-norms above :

(i) Lukasiewicz implication : x→ y =

{
1 , if x 6 y

min(1− x + y; 1) , otherwise.

(ii) Gödel implication : x→ y =

{
1 , if x 6 y

y , otherwise.

(iii) Product implication : x→ y =

{
1 , if x 6 y

y/x , otherwise.

Definition 2.5. A BL-algebra is a nonempty set L with four binary operations

∧,∨,⊗,→, and two constants 0, 1 satisfying:
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BL-1 (L,∧,∨, 0, 1) is a bounded lattice;

BL-2 (L,⊗, 1) is a commutative monoid;

BL-3 x⊗ y ≤ z iff x ≤ y → z. (Residuation);

BL-4 x ∧ y = x⊗ (x→ y) (Divisibility);

BL-5 (x→ y) ∨ (y → x) = 1 (Prelinearity).

The main examples of BL-algebras are from the unit interval [0, 1] endowed with the

structure induced by continuous t-norms. Every BL-algebra has the complementa-

tion operation defined by x̄ = x→ 0.

A BL-algebra satisfying the double negation is called an MV-algebra, that is ¯̄x = x.

The following is the most comprehensive list of properties of BL-algebras.

Proposition 2.6. [1],[3],[11], [12]. For any BL-algebra (L,∧,∨,⊗,→, 0, 1), the fol-

lowing properties hold for every x, y, z ∈ L:

1. x ≤ y iff x→ y = 1;

2. x→ (y → z) = (x⊗ y)→ z;

3. x⊗ y ≤ x ∧ y;

4. (x→ y)⊗ (y → z) ≤ x→ z;

5. x ∨ y = ((x→ y)→ y) ∧ ((y → x)→ x);

6. x→ (y → z) = y → (x→ z);

7. (x ∨ y)→ z = (x→ z) ∧ (y → z);

8. x→ y ≤ (y → z)→ (x→ z);

9. y → x ≤ (z → y)→ (z → x);

10. If x ≤ y, then y → z ≤ x→ z and z → x ≤ z → y;

11. If x ∨ x̄ = 1, then x ∧ x̄ = 0;

12. y ≤ (y → x)→ x;

13. x ≤ y → (x⊗ y);

14. x⊗ (x→ y) ≤ y;

15. 1→ x = x;x→ x = 1;x→ 1 = 1;x ≤ y → x, x ≤ ¯̄x, ¯̄̄x = x̄;

16. 0̄ = 1 and 1̄ = 0;

17. x⊗ x̄ = 0, x⊗ y = 0 iff x ≤ ȳ;

18. x ≤ y implies x⊗ z ≤ y ⊗ z;

19. x ≤ y implies z → x ≤ z → y, y → z ≤ x→ z, ȳ ≤ x̄;

20. (x⊗ y) = x→ ȳ;

21. (x→ y)→ (z → z) = (x ∧ y)→ z, (x ∧ y) = x̄ ∨ ȳ, (x ∨ y) = x̄ ∧ ȳ;

22. (x→ y) = ¯̄x→ ¯̄y, (x ∧ y) = ¯̄x ∧ ¯̄y, (x ∨ y) = ¯̄x ∨ ¯̄y;

23. x→ y ≤ (x⊗ z)→ (y ⊗ z);

24. x ∨ y = 1 implies x⊗ y = x ∧ y;

25. x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ y), x⊗ (y ∧ z) = (x⊗ y) ∧ (x⊗ y);

26. (x ∧ y)→ x = (y → x) ∨ (z → x);

27. x→ (y ∧ z) = (x→ y) ∧ (x→ y);

28. ¯̄x⊗ ¯̄y = x⊗ y.
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We would like to point out that some of theses properties are redundant. For in-

stance, 20 can be obtained from 2 by setting z = 0, but we prefer to list all these to

make their uses obvious.

A subset F of a BL-algebra (L,∧,∨,⊗,→, 0, 1) is called a BL- filter if it satisfies:

F1 : 1 ∈ F ;

F2 : For every x, y ∈ F , x⊗ y ∈ F ; and

F3 : For every x, y ∈ L, if x ≤ y and x ∈ F , then y ∈ F .

It is clear from F3 and x ≤ ¯̄x, that x ∈ F implies ¯̄x ∈ F .

A deductive system of a BL-algebra L is a subset F containing 1 such that for all

x, y ∈ L;

x→ y ∈ F and x ∈ F imply y ∈ F.

It is known that in a BL-algebra, BL- filters and deductive systems coincide [12].

In the literature, as for example in [2], MV-algebras are also defined as algebras

(M,⊕,∗ , 0) satisfying:

MV-1 (M,⊕, 0) is an Abelian monoid;

MV-2 (x∗)∗ = x;

MV-3 0∗ ⊕ x = 0∗;

MV-4 (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x

The two definitions of MV-algebras are equivalent through the following transfer.

Given a BL-algebra (L,∧,∨,⊗,→, 0, 1) satisfying the double negation, define ⊕ and
∗ by: x∗ = x̄ and x⊕ y = x̄→ y.

Then (L,⊕, 0) satisfies MV-1 through MV-4.

Conversely, given an algebra (M,⊕, 0) satisfying MV-1 through MV-4, define the

operations ∧,∨,⊗,→ by:

x ⊗ y = (x∗ ⊕ y∗)∗; x → y = x∗ ⊕ y; x ∧ y = x ⊗ (y ⊕ x∗); x ∨ y = x ⊕ (y ⊗ x∗);

x∗ = x̄ and 1 = 0̄ where x̄ = x→ 0.

Then (M,∧,∨,⊗,→, 0, 1) is a BL-algebra satisfying the double negation.

For any BL-algebra L, the subset MV (L) = {x̄, x ∈ L} is the largest MV-sub

algebra of L and is called the MV-center of L [13].

The addition in the MV-center is defined by x̄⊕ ȳ = x⊗ y for any x̄, ȳ ∈MV (L). A

detailed treatment of the MV-center is found in [13]. For every x, y ∈ L, we adopt

the following notation, x� y := x̄→ y. We can observe that if the BL-algebra is an

MV-algebra, the operation � and ⊕ are the same. In particular, in the MV-center

of L, � coincides with ⊕.

Lemma 2.7. In every BL-algebra L, the operation � is associative. That is for

every x, y, z ∈ L, (x� y)� z = x� (y � z).

Proof. Let x, y, z ∈ L, then x� (y � z) = x� (ȳ → z) = x̄→ (ȳ → z) = (x̄⊗ ȳ)→
z = (x̄⊗ ȳ)→ z = (x̄→ ¯̄y)→ z = (x̄→ y)→ z = (x� y)� z �
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Remark 2.8. If L is a BL-algebra that is not an MV-algebra, then there exists an

element x ∈ L such that ¯̄x 6= x. Hence x � 0 6= 0 � x and we conclude that the

operation � is not commutative in general.

In this work, we will make use of the above definitions and notations without

further notice and from the context, it should be clear to the reader which of the

definitions is being used.

3. BL-Ideals

Apart from their logical interests, BL-algebras and MV-algebras also have many

important algebraic properties. In this section, despite the lack of suitable algebraic

addition in BL-algebras, we analyze the notion of BL-ideal in general BL-algebras

which coincides with the notion of ideal in MV-algebras.

Definition 3.1. Let (L,∧,∨,⊗,→, 0, 1) be a BL-algebra and I a non empty subset

of L. We say that I is an ideal or BL-ideal of L if it satisfies:

I1 : For every x, y ∈ I, x� y ∈ I; and

I2 : For every x, y ∈ L, if x ≤ y and y ∈ I, then x ∈ I.

It is easy to see that for any BL-ideal I, 0 ∈ I and for every x ∈ L, x ∈ I if and

only if ¯̄x ∈ I. It is also clear that the intersection of any family of BL-ideals of a

BL-algebra L is again a BL-ideal of L.

The following result is a characterization of BL-ideal.

Theorem 3.2. A non empty set I of a BL-algebra L is a BL-ideal

iff for every x, y ∈ L, x̄⊗ y ∈ I and x ∈ I imply y ∈ I.

Proof. Assume that I is a BL-ideal and let x, y ∈ L such that x, x̄⊗ y ∈ I.

Since x, x̄⊗ y ∈ I, we have x� (x̄⊗ y) ∈ I. We also have y ≤ x� (x̄⊗ y) ∈ I, from

which we conclude that y ∈ I.

Conversely, assume that for every x, y ∈ L, x, x̄⊗ y ∈ I implies y ∈ I. To show that

I is an ideal, let x, y ∈ L such that x ≤ y and y ∈ I.

Since x ≤ y, we have ȳ ≤ x̄ and ȳ ⊗ x ≤ x̄⊗ x = 0 ∈ I. We obtain y, ȳ ⊗ x ∈ I and

apply the hypothesis to conclude that x ∈ I.

In addition, let x, y ∈ I. We observe that x̄ ⊗ (x � y) = x̄ ∧ y ≤ y ∈ I. So,

x, x̄⊗ (x� y) ∈ I and from the hypothesis, it follows that x� y ∈ I. �

Remark 3.3. Let I be a BL-ideal, then for every x, y ∈ I, we have x ∨ y ∈ I and

x ∧ y ∈ I.

To see this, suppose that x, y ∈ I, then since x̄ ⊗ y ≤ y ∈ I, we obtain x̄ ⊗ y ∈ I.

But x̄⊗ (x∨ y) = x̄⊗ y ∈ I, which implies by Theorem 3.2 that x∨ y ∈ I. It is clear

from I1 that x ∧ y ∈ I.

Remark 3.4. If a BL-algebra is an MV-algebra, x� y = x⊕ y. Hence the concept

of BL-ideal coincides with the well known notion of ideal in MV-algebras.



6 CELESTIN LELE AND JEAN B. NGANOU

The following result is another characterization of BL-ideals.

Theorem 3.5. A subset I of a BL-algebra L is a BL-ideal if and only if the follow-

ing conditions hold:

J1: 0 ∈ I; and

J2: For every x, y ∈ L, if x ∈ I and (x̄→ ȳ) ∈ I, then y ∈ I.

Proof. Assume that I is a BL-ideal. It is clear that 0 ∈ I.

Let x, y ∈ L such that x ∈ I and (x̄→ ȳ) ∈ I. We must prove that y ∈ I. First,

we observe that x̄ ⊗ ¯̄y = x̄⊗ ¯̄y = (x̄→ ȳ) ∈ I. We have x, x̄ ⊗ ¯̄y ∈ I and we apply

Theorem 3.2 and obtain ¯̄y ∈ I, from which it follows that y ∈ I.

Conversely, assume that J1 and J2 hold.

Setting y = ¯̄x in J2, we obtain that x ∈ I implies ¯̄x ∈ I. To show that I is an

ideal, by Theorem 3.2, let x, y ∈ L such that x, x̄ ⊗ y ∈ I. Since x̄ ⊗ y ∈ I, we

have (x̄⊗ y) ∈ I. But since (x̄→ ȳ) = x̄⊗ ¯̄y = (x̄⊗ y), then (x̄→ ȳ) ∈ I. Now, we

apply J2 and obtain that y ∈ I.

�

Remark 3.6. The above Theorem enables us to see that our definition of BL-ideal

coincide with the definition given in[1],[16]. It is worth noting that the definition of

BL-ideal given in [1],[16] is hard to use and the authors did not mention that it is

an extension of the definition of the Ideal in MV-algebras.

Example 3.7. Let X = {0, a, b, c, d, e, f, 1} be such that 0 < a < b < c < 1,

0 < d < e < f < 1, a < e and b < f . Define ⊗ and → as follows:

⊗ 0 a b c d e f 1

0 0 0 0 0 0 0 0 0

a 0 a a a 0 a a a

b 0 a a b 0 a a b

c 0 a b c 0 a b c

d 0 0 0 0 d d d d

e 0 a a a d a a e

f 0 a a b d a e f

1 0 a b c d e f 1

→ 0 a b c d e f 1

0 1 1 1 1 1 1 1 1

a d 1 1 1 d 1 1 1

b d f 1 1 d f 1 1

c d e f 1 d e f 1

d c c c c 1 1 1 1

e 0 c c c d 1 1 1

f 0 b c c d f 1 1

1 0 a b c d e f 1

Then (X,∧,∨,⊗,→, 0, 1) is a BL-algebra which is not MV-algebra. I = {0, d} and

J = {0, a, b, c} are proper BL-ideals of X. F = {c, 1} and G = {d, e, f, 1} are proper

BL-filters of X. One should observe that unlike in MV-algebras, filters and ideals

are not dual under complementation. For instance, J̄ = {x̄, x ∈ J} = {d, 1} is

not a filter and Ḡ = {x̄, x ∈ G} = {0, c} is not a BL-ideal. It is also easy to see

that a BL-ideal is a lattice ideal. But a lattice ideal is not always a BL-ideal since

A = {0; a} is a lattice ideal which is not a BL-ideal.
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Example 3.8. Let (L,∧,∨,⊗,→, 0, 1) be a BL-algebra and X a nonempty set. The

set of functions from X → L, LX has a natural structure of BL-algebra with the

operations defined pointwise. Fix any element x0 ∈ X and consider

I = {f ∈ LX , f(x0) = 0}. Routine computations prove that I is an ideal of LX .

4. Smarandache BL-algebra and Smarandache ideals

In this section (L,∧,∨,⊗,→, 0, 1) is a BL-algebra.

Definition 4.1. [1] A Smarandache BL-algebra is defined to be a BL-algebra L in

which there exists a proper subset Q of L such that:

S1 : 0, 1 ∈ Q and |Q| > 2; and

S2 : Q is an MV-algebra under the operations of L.

Remark 4.2. We observe that if L is a BL-algebra that is not an MV-algebra,

the above definition simply means that |MV (L)| > 2. This is due to the fact that

MV (L) is the largest MV-subalgebra of L [13].

Definition 4.3. [1] A non empty subset I of a BL-algebra L is called Smarandache

ideal of L related to Q (or briefly Q-Smarandache ideal of L) if it satifies:

C1 : For every x, y ∈ L, if x ∈ I, y ∈ Q and y ≤ x , then y ∈ I; and

C2 : For every x, y ∈ I, x⊕ y ∈ I.

Remark 4.4. It should be noted that even though x ⊕ y continues to make sense

when x, y ∈ L, this addition is no longer commutative in L. Keeping the same

notation as the authors of [1] did in C2 above led to mistakes in some of the proofs

in [1]. This is why the authors inadvertently concluded on the proofs of some results

that turned out to be false. To avoid this risk of confusion, [C2] may be rephrased

as : For every x, y ∈ I, x� y ∈ I.

Remark 4.5. [1] If I is Q-Smarandache ideal for every MV-subalgebra Q of L, we

simply say that I is a Smarandache ideal of L.

Theorem 4.6. [1] If I is a BL-ideal of a BL-algebra L, then I is a Smarandache

ideal of L.

Proof. A long proof of this theorem was given in [1]. But the result follows directly

from Definition 3.1, Definition 4.3 and Remark 4.5. �

The following example prove that the converse of this theorem is not true.

Example 4.7. [1] Let L = {0, a, b, c, d, e, f, 1} Define ⊗ and → as follows:
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⊗ 0 a b c d 1

0 0 0 0 0 0 0

a 0 b d d 0 a

b 0 b b 0 0 b

c 0 d 0 c d c

d 0 0 0 d 0 d

1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 a c c 1

b c 1 1 c c 1

c b a b 1 a 1

d a 1 a 1 1 1

1 0 a b c d 1

Then (L,∧,∨,⊗,→, 0, 1) is a BL-algebra which is an MV-algebra. Q = {0, b, c, 1}
is the only proper MV-algebra containing in L. I = {0, b, c, 1} is a Q-Smarandache

ideal (in fact a Smaradache ideal) of a BL-algebra L. One should observe that I is

not a BL-ideal since c, (c̄→ d̄) ∈ I, but d /∈ I.

Lemma 4.8. Let S be any non empty set of a BL-algebra L, the following statements

are equivalent:

i : For every x, y ∈ L, x̄⊗ ¯̄y ∈ S implies x̄⊗ y ∈ S.

ii : For every x ∈ L, ¯̄x ∈ S implies x ∈ S.

Proof. i⇒ ii: By setting setting x = 0 in i.

ii ⇒ i: Let x̄ ⊗ ¯̄y ∈ S, we must show that x̄ ⊗ y ∈ S. We observe that x̄ ⊗ ¯̄y =
¯̄̄x⊗ ¯̄y = x̄⊗ y ∈ S. We apply the hypothesis and obtain that x̄⊗ y ∈ S. �

The following result that was stated and proved in [1] is clearly false.

Theorem 4.9. [1] If I is a Smarandache ideal of a BL-algebra L such that for every

x, y ∈ L, x̄⊗ ¯̄y ∈ I implies x̄⊗ y ∈ I, then I is an ideal of L.

Note that in the proof of this Theorem, the authors used the fact that y is an

element of every MV-algebra containing in L which is not part of the assumption.

As in Example 4.7, I = {0, b, c, 1} is a Q-Smarandache ideal (in fact a Smaradache

ideal) of the BL-algebra L and for every x ∈ L, ¯̄x ∈ I implies x ∈ I. One should

observe that I is not a BL-ideal of L.

Theorem 4.10. [1] Define the relation ∼Q on a Q-Smarandache BL-algebra L by:

For every x, y ∈ L, x ∼Q y if and only if x→ y ∈ Q and y → x ∈ Q. It is claimed

in [1] that ∼Q is a congruence on L which is not true.

To see this, we consider the following example [1, Ex. 3.21].

Example 4.11. Let L = {0, a, b, c, d, e, f, g, 1}. Define ⊗ and → as follows:
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⊗ 0 a b c d e f g 1

0 0 0 0 0 0 0 0 0 0

a 0 0 a 0 0 a 0 0 a

b 0 a b 0 a b 0 a b

c 0 0 0 0 0 0 c c c

d 0 0 a 0 0 a c c d

e 0 a b 0 a b c d e

f 0 0 0 c c c f f f

g 0 0 a c c d f f g

1 0 a b c d e f g 1

→ 0 a b c d e f g 1

0 1 1 1 1 1 1 1 1 1

a g 1 1 g 1 1 g 1 1

b f g 1 f g 1 f g 1

c e e e 1 1 1 1 1 1

d d e e g 1 1 g 1 1

e c d e f g 1 f g 1

f b b b e e e 1 1 1

g a b b d e e g 1 1

1 0 a b c d e f g 1

Then (L,∧,∨,⊗,→, 0, 1) is a BL-algebra. Q = {0, d, 1} is an MV-algebra which is

properly contained in L. So, L is a Q-Smarandache BL-algebra. For every x, y ∈ L,

let x ∼Q y if and only if x → y ∈ Q and y → x ∈ I. ∼Q is not a congruence on

L. For example, a ∼Q e and 0 ∼Q 1 but a → 0 �Q e → 1 . Therefore, ∼Q is not

compatible with →.

Remark 4.12. We would like to stress on the fact that the quotient algebra that

the authors attempted to construct is actually hopeless, at least in the direction

taken by the authors. In fact, it is not hard to see that with the relation ∼Q defined

as it was, [0] = [1] = Q and since the implication on the quotient was the projection

of the implication of L, the quotient L/Q (if it made sense) would always be trivial.

This point seems to have evaded completely the authors.

5. Conclusion

The concept of BL-ideal in BL-algebras enables us to revisit the paper [1] and

also settle many important points that were still missing in BL-algebras. For future

work, we could use this new concept of BL-ideal and the many characterizations

given here to study important properties of BL-algebras and related structures with

fuzzy applications.
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